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Abstract—Defects or traps in semiconductors and nano devices that

randomly capture and emit charge carriers result in low-frequency
noise, such as burst and 1/f noise, that are great concerns in the
design of both analog and digital circuits. The capture and emission
rates of these traps are functions of the time-varying voltages across

the device, resulting in nonstationary noise characteristics. Modeling
of low-frequency, nonstationary noise in circuit simulators is a long-
standing open problem. It has been realized that the low frequency noise
models in circuit simulators were the culprits that produced erroneous

noise performance results for circuits under strongly time-varying bias
conditions. In this paper, we first identify an almost perfect analogy
between trap noise in nano devices and the so-called ion channel noise
in biological nerve cells, and propose a new approach to modeling and

analysis of low-frequency noise that is founded on this connection. We
derive two fully nonstationary models for traps, a fine-grained Markov
chain model based on recent previous work and a completely novel
coarse-grained Langevin model based on similar models for ion channels

in neurons. The nonstationary trap models we derive subsume and unify
all of the work that has been done recently in the device modeling and
circuit design literature on modeling nonstationary trap noise. We also

describe joint noise analysis paradigms for a nonlinear circuit and a
number of traps. We have implemented the proposed techniques in a
Matlab® based circuit simulator, by expanding the industry standard
compact MOSFET model PSP to include a nonstationary description

of oxide traps. We present results obtained by this extended model
and the proposed simulation techniques for the low frequency noise
characterization of a common source amplifier and the phase jitter of a
ring oscillator.

Index Terms—low frequency noise, RTS noise, nonstationary noise,
noise analysis, Langevin equation, stochastic chemical kinetics

I. INTRODUCTION

A. RTS Noise in Transistors and Electronic Circuits

In semiconductors, defects or traps in the crystal structure can

randomly capture and emit charge carriers, resulting in fluctuations

in the number of mobile charge carriers, which can subsequently

cause noise in electric fields, currents and voltages. In MOSFETs,

the traps in the gate oxide are widely believed to be the source

of various kinds of low-frequency noise, such as popcorn or burst

noise and 1/f noise [1]. The trap occupancy function, indicating

whether the trap is full or not, is usually modeled as a two-level

Random Telegraph Signal (RTS) [2]. Hence, the noise due to the

random trapping of charge carriers in semiconductors and transistors

is usually referred to as RTS noise [3]. Low-frequency and RTS

noise is a major concern in the design of electronic circuits used in

RF applications (low-noise amplifiers, mixers, oscillators, PLLs, etc.)

and CMOS image sensors [4], [5], [6]. Moreover, due to technology

scaling, low-frequency noise in MOSFETs is emerging as a source of

great concern in the design of even digital circuits such as SRAMs

and DRAMs [7], [8].

B. Modeling and Analysis of Low Frequency Noise in Circuits

Modeling of low-frequency and 1/f noise in MOSFETs, a subject

with rampant speculations and a great deal of controversy, has been
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a preoccupation for researchers for many decades [9], [10], [11],

[12], [13], [14], [15], [16]. However, almost all of this effort was

directed at modeling low-frequency noise in transistors at a constant

bias point, with stationary statistics for the noise source. Stationary,

frequency domain models for 1/f noise was incorporated into circuit

simulators such as SPICE in the very early days [17], [18] and

frequency domain, AC noise analysis has been a workhorse tool in

analog circuit design since then.

With the explosive growth of wireless mobile communications

in the 90’s, circuits for RF applications such as mixers, oscillators

and PLLs have become an essential part of electronic systems and

consumer electronic devices. Analysis of RF circuits posed a great

challenge to circuit simulators due to their highly nonlinear nature and

the wide frequency range of operation. Since these circuits did not

operate in the small-signal regime, noise models for transistors based

on quiescent conditions and frequency domain AC noise analysis

based on linear time-invariant (LTI) system theory and stationary

stochastic processes were deemed not applicable [15]. As a result, a

great deal of work was done in the 90’s in developing nonstationary

noise models for transistors and noise analysis techniques that can

handle time-varying bias conditions [15], [19], [20], [21], [22],

[23], [24]. This work resulted in specialized circuit noise analysis

techniques that were then implemented in RF circuit simulators.

However, the modeling of (nonstationary) low-frequency and 1/f
noise under time-varying bias conditions has remained as an open

problem [15], [25], [26], [27]. Just when analog/RF electronic circuit

designers started using the newly developed RF circuit noise analysis

techniques, researchers reported that these analyses implemented in

circuit simulators mispredicted the impact of low-frequency noise

on the performance of oscillators and CMOS image sensor circuitry

under strongly time-varying bias conditions and blamed the low-

frequency noise models as the culprit, see e.g. [28], [4], [5], [3].

Subsequently, starting with the seminal paper by El Gamal et.al. [5],

substantial amount of work has been done in developing correct,

truly nonstationary low-frequency noise models, see e.g. [4], [5], [3],

[29], [30]. However, it seems that the results of this work have not

been incorporated, to date, into previously developed RF circuit noise

analysis techniques and RF circuit simulators.

C. Membrane Ion Channel Noise in Nerve Cells

Nerve cells (also known as neurons), special types of cells that

make up the brain and the nervous system, process and transmit

information based on electrical and chemical signaling. Neurons are

able to maintain a voltage difference between the cell interior and

exterior by pumping charged ions (such as sodium and potassium)

through ion channels in their membranes and hence creating an ion

concentration difference. Ion channels are made up of proteins that

can open and close and hence allow or block the passage of ions.

The state of some ion channels, so-called voltage-gated channels, is

a function of the (trans) membrane voltage. Other so-called ligand-

gated channels are controlled by the binding of a substance. The

operation and dynamical behavior of neuron ion channels and currents
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and the membrane voltage was first laid out by Hodgkin and Huxley

in 1952 [31]. It was later realized that individual ion channels behave

stochastically, by closing and opening at random times [32], but

not in a totally arbitrary manner. For voltage-gated channels, the

rates at which they close and open is a function of the membrane

voltage. The stochastic ion channel behavior has been identified as a

source of electrical channel noise and fluctuations in the membrane

voltage [32]. Channel noise in neurons is believed to both influence

the reliability of nerve cell responses in a detrimental manner but at

the same time enable a “broader repertoire of neuronal behavior” [32].

Ion channel noise is claimed to be one of the determining factors in

the size of a brain [33].

D. A Perfect Analogy

Given the description of the charge carrier traps in semiconductors

and transistors and the ion channels in nerve cell membranes, the

following analogy can be formed between them. Both traps and ion

channels behave stochastically and are in one of two states, empty/full

for traps and open/closed for ion channels. The rates at which traps

capture and emit charge carriers are in fact a function of the voltages

across the MOSFET [5], [3], very similar to the case of voltage-gated

ion channels. Stochastic behavior of ion channels results in a noisy

ion channel current which subsequently causes noise in the membrane

voltage. Similarly, the “channel” current in a MOSFET becomes

noisy due to the random emission and capture of charge carriers

by the traps which then results in noisy voltages. Furthermore, both

traps in transistors and ion channels in neurons behave independently

of each other in a stochastic sense, but the transition rates of all

of the ion channels in a particular nerve cell membrane and the

traps in a particular transistor are a function of the same voltage,

the membrane voltage in one case and the voltage applied across

the transistor in the other. Even though the traps and ion channels

are stochastically independent of each other, the same voltage that

controls the transition rates creates a sort of global coupling [34].

As electronic circuit models are commonly used for neurons

and neuronal networks, the almost perfect and complete analogy

described above becomes very natural and can be extended to

encompass the noisy behavior of networks of neurons on one side and

networks of transistors on the other. A neuron is the most basic build-

ing block of a biological neuronal network or the nervous system,

just like the transistor for a microelectronic system. It turns out that

exactly the same mathematical model, i.e., an asymmetrical two-level

RTS signal corresponding to a simple two-state Markov chain, has

been used in modeling the stochastic behavior of both traps [5], [3]

and ion channels [32]. The voltage dependence of transition rates in

this RTS model in both cases is the source of intricate nonstationary

behavior, which makes the modeling and analysis of the resulting

noise and its impact on the system performance a great challenge.

E. Modeling and Analysis of Noise in the Nervous System

The deterministic dynamical behavior of neurons has long been

analyzed based on the celebrated Hodgkin-Huxley equations, a small

set of nonlinear differential equations describing the dynamics of the

membrane voltage and the ion channels, commonly interpreted as an

electronic circuit composed of a nonlinear capacitor and nonlinear,

voltage-controlled conductances [31], [34], [35]. Modeling of ion

channel noise in neurons is typically done by a stochastic modifi-

cation/extension of the Hodgkin-Huxley equations [36], [37], [38],

[39], [40], [34], [41], [32]. The so-called exact method is based on

modeling every ion channel as a two-state, continuous-time, discrete-

space Markov chain, resulting in a stochastic automaton model [34].

Then, the differential equations for the membrane voltage from the

Hodgkin-Huxley model and the Markov chains for the individual ion

channels are simulated together in a Monte Carlo manner using a

hybrid variant of the Stochastic Simulation Algorithm (SSA) [42],

[43], [44], [45]. SSA was first proposed as a Monte Carlo algorithm

for simulating coupled chemical reactions, where a molecule count

based discrete-space model is used to represent the amount of

chemical reactants. In hybrid variants of SSA [45], a continuous-

space, differential equation model is used for some parts of the system

while the rest is modeled in discrete-space. While the simulation

algorithm keeps track of (i.e., generates a sample path for) the states

of all of the ion channels, the differential equations for the membrane

voltage are integrated with an appropriate numerical technique where

the channel conductances are determined by the states of the ion

channels. Since this is a computationally costly algorithm, simpler

variants which keep track not of the states of every ion channel but

only the total number of channels in each state were also used [32].

This type of hybrid Monte Carlo simulation was deemed to be still

too expensive and approximate models where channel noise is repre-

sented by continuous-space, stochastic differential equations (SDE),

i.e., Langevin equations [46], were then proposed [34], [41], [32].

This Langevin approach essentially amounts to introducing stochastic

noise terms into the original Hodgkin-Huxley equations, resulting

in a system of nonlinear SDEs, which are then solved numerically

with an appropriate technique, again in a Monte Carlo manner to

generate sample paths for the noisy membrane voltage [34], [41].

Currently, there seems to be an unsettled controversy in the channel

noise modeling literature [37], [38], [39], [40], [34], [41], [32] on the

accuracy of the continuous Langevin channel noise model against the

discrete Markov model.

F. Summary of Contributions, Outline of the Paper, Applications

In this paper, we adopt a synergistic approach in developing noise

modeling and analysis techniques for RTS and low-frequency noise

in transistors and electronic circuits based on techniques for modeling

ion channel noise in neurons.

We first develop stochastic, nonstationary models for charge carrier

traps in semiconductors, i.e., RTS noise, by benefiting from the

two decades of ion channel noise modeling and simulation work

in neurobiology [32] and the extensive literature on modeling and

simulation of stochastic chemical kinetics [43], [44]. In particular, we

develop (i) a continuous-time, discrete-space, fine-grained Markov

chain model in Section II-B (previously known [8]), and (ii) a

continuous-time, continuous-space, coarse-grained Langevin stochas-

tic model (completely new) in Section II-C for a charge carrier trap,

that are both fully nonstationary capturing the impact of arbitrary

time-varying bias conditions. The Langevin model we develop, even

though approximate and coarse-grained, correctly and exactly cap-

tures the first (mean behavior) and second-order (autocorrelation and

spectral properties) probabilistic characteristics of a trap. In most, but

possibly not all, applications in electronic design, such a probabilistic

characterization is adequate.

We discuss, in Section III, how to incorporate the above stochastic

trap models in circuit simulation, i.e., describe techniques for the

joint analysis and simulation of an electronic circuit and a number of

traps. In particular, we describe (i) a stochastic, hybrid, Monte Carlo

type simulation algorithm, in Section III-B, for the joint simulation

of a circuit described by a set of nonlinear differential equations

and a number of traps represented by the fine-grained Markov chain

model, (ii) a stochastic, Monte Carlo type simulation algorithm, in

Section III-C, for the joint simulation of a circuit described by a set
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of nonlinear differential equations and a number of traps represented

by the coarse-grained Langevin model.

The applications of the nonstationary trap models and noise

analysis techniques outlined above include noise analysis for RF

circuits [15], [20], [21], [22], [23], [24], CMOS image sensors [4],

[47], [6], SRAMs and DRAMs [7], [8], and phase noise analysis

for oscillators [20], [27]. In Section IV, we present results obtained

by the proposed models and the simulation techniques for the low

frequency noise characterization of a common source amplifier and

the phase jitter of a ring oscillator.

Finally, we note that the configuration and locations of the traps in

a transistor are not known ahead of time and determined randomly

at fabrication [48]. Naturally, the trap configurations for different

transistors are not the same. As such, one has to not only deal with

the temporal noise caused by the traps but also with the statistical

aspect of the problem due to trap configurations that do not change

over time but determined randomly at fabrication. In this paper, we

do not discuss this important aspect of the problem in hand and

concentrate only on the analysis of temporal noise caused by a given

configuration of traps and its impact on circuit performance.

II. NONSTATIONARY STOCHASTIC TRAP MODEL

A. Preliminaries

Let N(t) be the occupancy function for a certain trap, i.e.,

N(t) = 1 if the trap is full and N(t) = 0 if empty. N(t)
is modeled as a two-state, continuous-time Markov chain that is

characterized by the capture rate λc(t) and the emission rate λe(t).
The time dependence of the capture/emission rates stem from the fact

that these rates depend on the voltages across the MOSFET which

can considerably vary with time during large-signal operation. For

notational simplicity, we do not express the capture/emission rates as

an explicit function of these voltages but simply denote their time

dependence. As a result, the trap occupancy function N(t) must be

regarded as an inhomogeneous Markov chain. Moreover, due to noise

in the circuit, the voltages across the MOSFET must be treated as

noisy signals and hence represented as stochastic processes. This

means that the capture/emission rates are also stochastic, making

N(t) a doubly stochastic Markov chain [49]. We will deal with the

doubly stochastic nature of N(t) and its implications later in our

treatment.

B. Chapman-Kolmogorov Equation for a Trap

Let P (n, t) denote the probability that N(t) = n , where n is

either 0 (empty) or 1 (full). Given that we know the probability that

the trap is in any one of the possible states at time t, we will derive

an equation for the trap to be in a certain state n at time t + dt,
where dt is assumed to be small enough so that at most one capture

or emission event can occur in the time interval [t, t+ dt) [44]. For

the trap to be in state n at time t+ dt, either the trap was already in

state n at time t and no event has occurred in [t, t+ dt), or the trap

was in some other state n′ at time t and an event has occurred in

[t, t+ dt) which caused the state to change from n′ to n. Let A be

the event that the trap is in state n at time t+dt. Let H∅, Hc and He

be the events that the trap is in state n, n− 1 and n+ 1 (at time t)
respectively. In this case, the conditional probabilities P (A |Hc ) and

P (A |He ) are in fact the probabilities of the capture and emission

events occurring in [t, t+ dt) [44]. Due to the Markov property and

based on the capture and emission rates λc(t) and λe(t) [50], these

conditional probabilities can be expressed as follows

P (A |Hc ) = λc(t) dt (1)

P (A |He ) = λe(t) dt (2)

The conditional probability P (A |H∅ ), i.e., the probability that no

event occurred in [t, t+ dt) is given by

P (A |H∅ ) = 1− [(1− n)λc(t) dt+ nλe(t) dt] (3)

where the factors n and (1 − n) are required in order for the

expression to be correct. Above, the probability that a capture occurs

when the trap is in state n is set as (1−n)λc(t) dt A capture event

has a nonzero probability only if the trap is empty, i.e., if n = 0. If

the trap is full, i.e., if n = 1, then this expression correctly yields

zero capture probability. Similarly, the probability that an emission

occurs when the trap is in state n is set as nλe(t) dt. And hence,

the probability that no event occurs in [t, t+ dt) is given by (3).

Since the events H∅, Hc and He are disjoint and at least one of

them must happen, the law of total probability [44] gives us

P (A) = P (A |H∅ )P (H∅)+

P (A |Hc )P (Hc) + P (A |He )P (He)
(4)

If we substitute (1), (2) and (3) in (4), we obtain

P (n, t+ dt) =

[1− ((1− n)λc(t) dt+ nλe(t) dt)] P (n, t)+

λc(t) dt P (n− 1, t) + λe(t) dt P (n+ 1, t)

(5)

We rearrange the terms above

P (n, t+ dt)− P (n, t)

dt
=

− [(1− n)λc(t) + nλe(t)] P (n, t)+

λc(t) P (n− 1, t) + λe(t) P (n+ 1, t)

(6)

and take the limit as dt → 0 to arrive at

d P (n, t)

dt
=− [(1− n)λc(t) + nλe(t)] P (n, t)+

λc(t) P (n− 1, t) + λe(t) P (n+ 1, t)
(7)

The above, called the Chapman-Kolmogorov equation (CKE) [50] in

the theory of stochastic processes, known as the Master equation [46]

in physics, provides the ultimate, complete stochastic characterization

for the two-state Markov chain model for the trap under considera-

tion. If we evaluate (7) for the two states n = 0 and n = 1, keeping

in mind that P (n, t) is zero for all other n, we obtain

d P (0, t)

dt
= −λc(t) P (0, t) + λe(t) P (1, t) (8)

d P (1, t)

dt
= −λe(t) P (1, t) + λc(t) P (0, t) (9)

which is a system of two simple linear differential equations with

time-varying coefficients that can be easily solved for the state

probabilities P (0, t) and P (1, t) if the time-varying capture and

emission rates λc(t) and λe(t) are available. We note that (8) and

(9) yield
d

dt
[P (0, t) + P (1, t)] = 0 (10)

which also follows from the fact that the total probability of being

in state 0 or 1 is always 1, i.e.,

P (0, t) + P (1, t) = 1. (11)

C. Stochastic Differential Equation for a Trap

The Markov chain model for a trap described above can be

regarded as a continuous-time, discrete-space stochastic model. As we

discuss later, this model could become too costly (computationally)

when a large number of traps and a circuit are jointly analyzed.

We now derive an approximate, coarse-grained, continuous-time,
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continuous-state stochastic model for a trap in the form of a stochastic

differential equation (SDE) [46], which can offer considerable com-

putational cost savings in the joint analysis of a circuit and a large

number of traps.

We consider a time interval [t, t+ τ) and assume that the capture

and emission rates λc(t) and λe(t) are constant over this interval.

Then, the trap occupancy function N(t) can be (approximately)

expressed as follows

N(t+ τ) ≈ N(t)− Pe(N(t), τ) + Pc(N(t), τ) (12)

where Pe(N(t), τ) and Pc(N(t), τ) represent the (random) number

of emission and capture events that occur in the time interval

[t, t+ τ). With the above approximation, which is known as the

tau-leaping condition [43], [44], we are allowing a multiple number

of emission and capture events in [t, t+ τ). As such, the resulting

N(t+ τ) is not guaranteed to be 0 or 1, even if N(t) satisfies

this condition. This is due to the approximate nature of the leap

condition that led us to (12). In order to make (12) more concrete,

we need to precisely characterize the random variables Pe(N(t), τ)
and Pc(N(t), τ). It follows that these random variables can be

approximated as simple Poisson (counting) random variables with

parameters N(t) λe(t) τ and (1−N(t)) λc(t) τ respectively. The

factors N(t) and (1−N(t)) have been introduced into these expres-

sions based on similar reasoning as for the ones in (3). However, with

the continuous approximation we are developing here, N(t) will take

all values between 0 or 1 (and possibly outside), perhaps representing

a fractionally full trap. As such, with the N(t) factor appearing

in the parameter for the Poisson random variable Pe(N(t), τ) that

represents the number of emission events, having i emissions in

[t, t+ τ) will have a probability of e−N(t) λe(t) τ N(t) λe(t) τ/i!.
When N(t) = 0, number of emissions will be zero with probability

one, whereas for larger values of N(t), higher number of emissions

will become more probable.

The approximate equation in (12) can in fact be directly used in

simulating (in a Monte Carlo manner) a trap with an appropriate

choice (most likely, adaptive) for the time step τ [43], [44]. However,

(12) is not yet a truly continuous-space model in a differential

equation form. N(t) in (12) is still integer valued, though not

restricted to be 0 or 1 anymore. We proceed further as follows. The

Poisson random variables Pe(N(t), τ) and Pc(N(t), τ) have means

(and also variances) equal to N(t) λe(t) τ and (1−N(t)) λc(t) τ
respectively. The increment term in (12) is composed of the difference

of two Poisson random variables which has a probability distribution

known as the Skellam distribution [51]. This distribution has as its

mean, the difference of the means of the Poisson random variables

and as its variance, the sum of them. For large mean values, the

Skellam distribution can be approximated by a Gaussian distribution

with the same mean and variance. We approximate

N(t+ τ) ≈ N(t) + (1−N(t)) λc(t) τ −N(t) λe(t) τ

+
√

|(1−N(t)) λc(t) +N(t) λe(t)| τ N (0, 1)
(13)

where N (0, 1) is a zero mean Gaussian random variable with

variance equal to one. With the Gaussian approximation, N(t) is

now continuous valued. Next, we recognize (13) above as the Euler

discretization of the following SDE

dN(t) = (1−N(t)) λc(t) dt−N(t) λe(t) dt

+
√

|(1−N(t)) λc(t) +N(t) λe(t)| dW (t)
(14)

where W (t) is the Wiener processes [50]. In physics, an SDE in the

form above is known as a Langevin equation and a Wiener process

as a Brownian motion. The differential of the Wiener processes,

dW (t) in (14), is simply a white noise process. SDEs are commonly

expressed in differential form as in (14) with differentials of Wiener

processes as opposed to a regular differential equation form with

white noise forcing, since white noise is, mathematically, not well

defined.

The SDE in (14) is a linear equation, but the noise source

(the Wiener process) is modulated with a state (N(t)) dependent

term. This SDE serves as a nonstationary stochastic, continuous-

time, continuous-space differential equation model for a trap. It can

be solved numerically (in a Monte Carlo manner) using the Euler

discretization in (13). It can also be used as an analytical tool in

performing (semi) analytical joint analysis for a circuit and a number

of traps. Even though the SDE model was derived after a number

of approximations starting with the Markov chain model and the

CKE in (7), it can be used to produce the correct (and exact) first

and second-order probabilistic characteristics for a trap, exactly the

same as one would have obtained based on the CKE, which we state

without proof. We note that in the doubly stochastic case, where there

is also a coupling from the trap states to the event rates (λe, λc)

the above statement no longer holds and the first and second-order

statistics can only be approximated. Here, a first and second-order

characterization refers to the mean behavior and all of the second-

order moments, i.e., variance, autocorrelation function and spectral

density.

III. JOINT ANALYSIS OF A CIRCUIT AND TRAPS

A. Preliminaries and Trap Model in PSP MOSFET model

We have so far developed nonstationary stochastic models for the

occupancy function for a single trap. Since the traps are assumed to be

stochastically independent, the generalization of the single trap model

to a collection of traps in a single transistor or many transistors is

trivial. On the other hand, a two-way link between the trap occupancy

function N(t) and the currents and voltages of a transistor needs to be

established, i.e., we need models on how the currents in a MOSFET

are affected by a certain trap in the gate oxide and how the capture

and emission rates are a function of the voltages across the transistor.

There seems to be an unsettled controversy in the low-frequency

noise modeling literature as to whether charge carrier traps influence

the current in a transistor by changing the number, or by modulating

the mobility, of free charge carriers [16]. In this work, we subscribe

to the former “school of thought” and model the effect of a captured

charge carrier in the channel of the transistor by a change in its

flatband voltage, ∆VFB , [52]

∆VFB =
q

Cox Weff Leff
(15)

This change has a direct impact on the threshold voltage of the

transistor and thus, on its charge and current values. The VFB shift

for a single charge carrier can be multiplied with the fractional trap

occupancy function in (14) and incorporated into the continuous state

model as well. Moreover, the trapping events of charge carriers can

be modeled with the classical Shockley-Read-Hall (SRH) theory of

recombination [53]. Based on this model, the capture and emission

time constants, τc = 1/λc and τe = 1/λe, of the random process

are estimated as

τc =
1

c v̄ σ̄
, τe = τc e

−(ET − EF )/kT
(16)

The key variable in these equations is c, the carrier concentration at

the trap location. The remaining variables are defined as follows: v̄
is the average velocity of charge carriers, σ̄ is a constant called the
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capture cross section of the trap, ET is the trap energy level and EF

is the Fermi level.

In order to include (15) and (16) in our simulation framework, we

employ the surface potential based compact MOSFET model, PSP

[54]. PSP calculates the current trough the device by determining the

position dependent electric potential at the channel of the transistor.

The charge density at the same location is then obtained from this

value and translated into the drain current. During this process, the

carrier concentration variable, c, in (16) can be extracted from the

charge density information. The integration of the flatband voltage

change (15) into the compact model can be accomplished easily by

modifying the instance parameter VFB_i.

We note that the methodology we describe next is not limited to

this flatband voltage model and can use any mapping between the

trap occupancy function and the current fluctuation in a transistor.

This mapping need not be memoryless and can possibly incorporate

nontrivial dynamics. The same principle applies to the relationship

between the voltages across the device and the capture/emission rates

of traps.

The KCL and KVL equations for a circuit, using a Modified

Nodal Analysis (MNA) formulation, can be written as a system of

Differential-Algebraic Equations (DAEs)

d q(x)

dt
+ f(x) + b(t) = 0 (17)

where x ∈ ℜM is a vector of M circuit unknowns such as node

voltages, inductor and voltage source currents, and the nonlinear

vector functions f : ℜM → ℜM and q : ℜM → ℜM represent the

nonlinear memoryless components and the energy storing elements

in the circuit. The vector b(t) represents the external and bias inputs

to the circuit. For non-autonomous circuits, b(t) changes with time

t, for autonomous oscillator circuits, b(t) = b consists of only the

constant bias inputs. In order to capture the impact of traps on the

circuit, we modify (17) as follows

d q(x,N)

dt
+ f(x,N) + b(t) = 0 (18)

where N ∈ ℜP is vector of P trap occupancy functions, and q(x,N)
and f(x,N) represent the impact of the traps on the KCL and KVL

equations possibly in the form of a change in the threshold voltages

of the transistors.

In order to have a complete description for the circuit with the

traps, we also need a model that describes the dynamics of the trap

occupancy function vector N(t) in addition to (18). For this, we use

the Langevin model that was derived in Section II-C in the form

dNi(t) = (1−Ni(t)) λc,i(x, t) dt−Ni(t) λe,i(x, t) dt

+
√

|(1−Ni(t)) λc,i(x, t) +Ni(t) λe,i(x, t)| dWi(t)
(19)

Above, dWi(t) i = 1, . . . , P represent P independent Gaussian

white noise sources. The Langevin equations for different traps are

not directly coupled with each other, but coupled with the rest of the

circuit equations in (18).

The ultimate model for a trap is the stochastic automaton, i.e.,

discrete-space Markov chain model that was described in Sec-

tion II-B. In this case, the dynamics of each entry Ni(t) of N(t) is

governed by an independent, two-state Markov chain fully specified

by the transition (i.e., capture and emission) rates λc,i(x, t) and

λe,i(x, t). However, we note that there is a two-way coupling be-

tween the dynamics of Ni(t) and the circuit variables in x, resulting

in a doubly stochastic nature. As such, the Markov chains for the

traps need to be jointly simulated/analyzed with the rest of the circuit

equations in (18) [8].

We next discuss two joint analysis and simulation paradigms for a

circuit and a number of traps.

B. Noise Simulation based on Markov Chain Trap Model

For the most detailed and accurate analysis of a nonlinear circuit

with time-varying bias conditions and a number of traps associated

with it, the discrete-space, two-state Markov chain models for the

traps and the nonlinear DAEs of the circuit are jointly simulated in the

time-domain in a Monte Carlo manner. Well established numerical

methods for solving nonlinear DAEs in the time domain [55] and

simulation techniques for discrete stochastic Markov models [43] are

available.

Due to the two-way coupling between the circuit and the traps, the

simulation techniques mentioned above need to be properly interfaced

with each other. More specifically, the simulation of the discrete-space

Markov chain trap model generates a number of events in time that

result in jumps in the trap occupancy functions and hence the currents

in the MOSFET transistors based on (15). The numerical DAE solver

needs to be synchronized with these jump events. Moreover, the state

transition rates (capture and emission rates) of the Markov chains

depend on the circuit variables that are being computed with the

DAE solver. Thus, the jump event times with which the DAE solver

needs to be synchronized are not only not known ahead of time but

also depend on the outcome of the DAE solver itself.

In dealing with this interfacing problem, one method is to set

up integral equations involving the DAE-state dependent Markov

transition rates which implicitly determine the timing of the jump

events [56], [57], [45]. These equations then need to be solved in

an iterative manner coupled with the time-step control mechanism of

the DAE solver. The integral equations here can be easily converted

to differential equations and appended to the list of the DAEs for the

circuit, and a DAE solver that can handle implicit events [58] may

be used. With this technique, however, one may incur considerable

overhead in the DAE solver by iteratively solving for the jump

event times. Alternatively, based on a useful property of Poisson

processes, called Poisson thinning [59], and its generalization to

continuous-time Markov chains, called uniformization [60], [61], one

can generate jump event times which are known ahead of time.

In the thinning/uniformization technique, one uses a homogeneous

Poisson process with a known, constant rate in order to generate

a number of potential jump event times for the non-homogeneous

Markov chains with time-varying transition rates that model the traps.

Then, these jump events are selected (sub-sampled) in a probabilistic

manner and partitioned among the transitions of the Markov chains.

With this technique, a small fraction of the potential jump events

may eventually get wasted, but the DAE solver no longer needs to

iteratively compute the timing of the implicit jump events. Instead,

the time-step control of the DAE solver is simply forced to place

a time point at all of the jump event times that are known ahead

of time. Moreover, one can avoid wasting jump events based on the

use of a further generalization of Poisson thinning, called adaptive

uniformization [61]. A hybrid simulation technique similar to the one

we describe here was proposed in [62] for the simulation of stochastic

chemical reaction dynamics with mixed differential equation and

discrete Markov models. A similar technique was applied to the

simulation of RTS noise in SRAMs and DRAMs in [8].

C. Noise Simulation based on Langevin Trap Model

The hybrid Monte Carlo simulation scheme we described in Sec-

tion III-B that is based on discrete Markov models for the traps will
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Fig. 1. Power spectral density at the output of a common source amplifier
at a fixed bias point. The n-channel transistor contains two oxide traps with
different transition rates.

indeed produce the most accurate results as there are no approxi-

mations involved. On the other hand, when simulating a nonlinear

circuit with a large number of transistors and hence a very large

number of traps, the computational cost of this scheme can become

prohibitive due to very high density of jump events. In this case,

the DAE solver will be forced to take very small time steps that are

essentially dictated by the need to pause at all of the jump events.

This limits the use of this accurate simulation scheme with circuits

that have at most tens of transistors.

A more computationally efficient joint simulation scheme can be

developed based on the approximate, continuous-space, Langevin

SDE model that was derived in Section II-C, as one is no longer

required to deal with discrete jump events. In this technique, the

circuit DAEs in (18) are numerically solved along with one additional

(stochastic) differential equation as in (19) per trap. However, due

to the white noise sources (with state-dependent intensities) in (19),

the joint solution of these nonlinear differential equations needs to

be performed with specialized numerical integration techniques for

SDEs [63], [64]. When the SDE model in (19) is used for the

traps and the combined circuit DAEs and the trap SDEs are solved

numerically in a Monte Carlo manner (to generate sample paths

for the circuit variables and the trap occupancy functions), the only

approximations done are the ones we have stated in Section II-C in

deriving the Langevin model from the discrete Markov model.

IV. RESULTS

A. Implementation Notes and CIRSIUM

The fundamental differences between the nonstationary noise anal-

ysis methods we have developed in this paper and the existing low-

frequency noise modeling paradigms necessitated the development

of a new simulation tool. The implementation of the stochastic

automaton method (SAM) and the Langevin equation method (LEM)

requires a compact MOSFET model, extended to include a nonsta-

tionary description of oxide traps, as well as a modular interface

to a circuit equation generation core for the solution of equation

(18) together with (19). To this end, we have developed CIRSIUM, a

new CIRcuit SImulator Under Matlab® [65]. CIRSIUM has an object

oriented design, and provides a flexible and modular framework that

enables the rapid development of new device models and circuit

analysis techniques. The integration of the SUNDIALS suite [58]

with the simulator core and the use of sparse data structures allows for

a fast and accurate solution of dynamical circuit equations. Moreover,

a conversion module making use of ADMS [66] has been developed

for the translation of the PSP compact MOSFET model from the

Verilog-A hardware description language, which also automatically

generates the code for the computation of Jacobians. This module can

be used for the integration of other Verilog-A models into CIRSIUM

as well.

The two analysis techniques, SAM and LEM, require different

stochastic simulation methods. For the simulation of the discrete

events in SAM, we employ the adaptive uniformization technique

[61] to determine the occurrence points of capture/emission events

ahead of time. At the time of the ith event ti, the time to the next

event is determined by generating a sample of an exponential random

variable, ∆Ti ∼ Exp(λ), where the rate parameter λ is chosen such

that λ >
∑P

k=1 λk(ti). Here, λk(t) is the voltage dependent event

rate of the kth trap. The differential equation solver is then forced

to put a time point at t = ti + ∆ti and another random variable

determines which trap will make a transition, where the likelihood

of a transition is governed by the rates λk(ti +∆ti) [67].

Contrary to the discrete nature of SAM, the Langevin model uses a

continuous random process to account for the noise generated by the

stochastic behavior of the oxide traps. Thus, once the routines for the

evaluation of the coupled differential equations (17) and (18) are in

place, numerical SDE solution techniques can be used to simulate the

effects of the traps on the circuit. Efficient implementations of these

techniques require the Jacobians of voltage and current variables with

respect to the trap states and vice-versa, which were included in the

extended PSP model as well.

B. Common-Source Amplifier

As a first example, we present the noise analysis results for a

common source amplifier. This circuit consists of a single n-channel

transistor and a resistor (Figure 1). The transistor is biased with a

fixed gate voltage, Vin, and hence, the only dynamical behavior in

the circuit is caused by the activity of oxide traps. A single such trap

is expected to cause a noise voltage component at the output of the

circuit with a Lorentzian power spectral density (PSD)

S(f) =
2∆V 2λ

4λ2 + (2πf)2
(20)

where ∆V is the change in the output voltage due to a cap-

ture/emission event. Multiple traps with different transition rates

result in a PSD in the shape of a superposition of multiple Lorentzians

as confirmed by measurements [68].

Using CIRSIUM, we have simulated this common source amplifier

circuit with SAM as well as LEM. We have placed two interface traps

in the transistor with transition rates adjusted to be approximately

two decades apart from each other at the bias point. Figure 1

compares the results obtained with the two simulation methods for

the noise voltage power spectra at the output of the circuit. The

power spectra were estimated from the time series data accumulated

by running the SAM and LEM simulations long enough to capture

the low frequency spectral components. As expected, we obtain a

monotonically decreasing power spectrum with two “corners”. It

is not surprising that the SAM algorithm which relies on discrete

switching events as noise sources closely matches the analytical

results in (20) (smooth, red curves). The noise model in the LEM

algorithm, on the other hand, has a structure that does not exhibit

any resemblance to a random telegraph signal but, nevertheless, its

accuracy in predicting the impact of the oxide traps on the output

voltage noise spectrum is as good as the discrete algorithm based on

stochastic automatons.
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C. Phase Jitter in a Ring-Oscillator

As a second application of our nonstationary, low-frequency noise

analysis framework, we analyse the effects of low-frequency noise on

the accumulated phase jitter of a ring-oscillator. The ring-oscillator

is an autonomous oscillator circuit, and hence, it exhibits phase

fluctuations with increasing variance. Contrary to the common source

amplifier, this circuit has truly nonstationary noise characteristics

due to the nature of these phase fluctuations [20]. Low frequency

noise in oscillators causes fluctuations in the zero-crossing times of

the periodic waveforms known as phase or timing jitter (shown in

the inlay of Figure 2). For instance, in an n-channel transistor, the

threshold voltage increases due to the capture of an electron by a

trap, resulting in a delay in the discharging process of the next stage

which subsequently causes timing jitter.

Here, we analyse a ring-oscillator consisting of three CMOS

inverter stages connected in a closed loop chain. Each transistor in

the inverters contains two oxide traps with different capture cross

sections and therefore with differing voltage dependent transition

rates. In order to characterize the variation in the phase evolution

of the circuit, we consider the output voltage of the first inverter

V (t) = x(t+ α(t)) + y(t)

where x(t) is the periodic waveform of the unperturbed oscillator,

y(t) represents the variation in the amplitude of this signal and α(t)
is the phase deviation [20]. We determine α(t) for each multiple

of the oscillation period, kT , by calculating the crossing times of

the waveforms through the level corresponding to the half of the

power supply voltage. In a Monte Carlo manner, we proceed to

build ensembles of a large number of simulations and determine the

variances of the random variables α(kT ).
Figure 2 compares the results obtained from simulations with SAM

and LEM. As in the previous example, the Langevin model closely

matches the discrete event model. Moreover, the results have the

correct functional form as predicted by the theory of phase noise in

oscillators with colored noise sources [27].

D. Discussion

We have demonstrated the accuracy of the newly developed

Langevin equation model for low-frequency noise analysis on two

example circuits. The first example, the common source amplifier,

confirmed that our model accurately predicts the power spectral

density of noisy signals in transistors under constant bias conditions.

The second and more interesting example, the phase jitter charac-

terization for a ring-oscillator due to nonstationary, low-frequency

noise with multiple traps that exhibit nonstationary characteristics,

belongs in a realm where currently there are no theoretical results.

This example demonstrates the ability of LEM to cover a large area

of more complicated low-frequency noise behavior. In addition to the

speed increase in such simulations provided by LEM over SAM, our

methodology allows for further development of robust, efficient and

possibly non Monte Carlo methods in nonstationary, low-frequency

noise analysis.

V. CONCLUSIONS

The RTS and low frequency noise simulation techniques we have

described in this paper are of the stochastic, Monte Carlo, simulation

type, which usually become quite inefficient in analyzing large and

complex systems. However, the Langevin trap model proposed in this

paper can be incorporated into the non Monte Carlo noise analysis

algorithms that are currently implemented in circuit simulators for

RF circuits and phase noise analysis of oscillators [15], [24], [23],

[20]. This forms part of our current and future work.

In this paper, we focused on how one can benefit from the ion

channel noise modeling and stochastic chemical kinetics literature

in developing models and analysis techniques for RTS and low-

frequency noise in electronic circuits. However, we believe that the

non Monte Carlo noise analysis techniques that have been developed

recently for electronic circuits can be put to use in large-scale

analysis of noise in the nervous system [32], [69]. We are currently

also pursuing this line of work that emphasizes a two-sided cross-

fertilization between the two disciplines.
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