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Abstract—We present ABCD-NL, a technique that approximates non-linear

analog circuits using purely Boolean models, to high accuracy. Given an
analog/mixed-signal (AMS) system (e.g., a SPICE netlist), ABCD-NL produces
a Boolean circuit representation (e.g., an And Inverter Graph, Finite State
Machine, or Binary Decision Diagram) that captures the I/O behaviour of

the given system, to near SPICE-level accuracy, without making any apriori
simplifications. The Boolean models produced by ABCD-NL can be used for
high-speed simulation and formal verification of AMS designs, by leveraging
existing tools developed for Boolean/hybrid systems analysis (e.g., ABC [1]).

We apply ABCD-NL to a number of SPICE-level AMS circuits, including data
converters, charge pumps, comparators, non-linear signaling/communications
sub-systems, etc. Also, we formally verify the throughput of an AMS signaling

system – modelled in SPICE using 22nm BSIM4 transistors, Booleanized with
high accuracy using ABCD-NL, and property-checked using ABC.

I. INTRODUCTION

AMS systems are becoming increasingly important in chip design. In
recent times, AMS blocks have become key components that limit
system-level performance [2]. Also, AMS components now account for a
significant proportion of design bugs, designer time, and debugging cost.
However, CAD tools for AMS verification have not kept pace with the
rapid growth in complexity of these systems.

An important challenge for AMS verification is the accurate modelling

of AMS components; because these components can introduce design
flaws/loss of performance in a variety of subtle and non-obvious ways, it
is important to model their behaviour at or near SPICE-level accuracy.

Fig. 1. Schematic of a typical AMS signaling/communications sub-system that
arises in signal integrity analysis.

For example, Fig. 1 depicts an AMS system that frequently arises
in Signal Integrity (SI) applications. The system consists of digital
components on the transmit side (e.g., a CPU), whose outputs enter an
analog channel. The channel introduces inter-symbol interference (ISI),
crosstalk, etc. The other end of the channel (the receive side) has more
digital components (e.g., a DRAM/memory controller). A key figure of
merit of this system is its throughput, i.e., the maximum bitrate that
can be reliably sustained. Guaranteeing the system’s throughput is a non-
trivial AMS verification problem, and to issue a meaningful guarantee, it
is necessary to model this system at SPICE-level accuracy.
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Fig. 2. Schematic of a successive approximation A/D converter (SAR-ADC).

To take another example, Fig. 2 depicts a successive approximation
A/D converter (or SAR-ADC). This system contains a number of com-
ponents, both analog and digital. The system’s performance (i.e., its
speed, power consumption, etc.) is frequently limited by the analog
components (e.g., the speed of the DAC, the sensitivity/bandwidth of the
comparator, etc.). Therefore, to verify the SAR-ADC, it is often necessary
to model the analog components at SPICE-level accuracy (even though
it may be sufficient to model digital components at the Boolean level).

Most existing approaches to AMS verification (e.g., [3]–[8]), however,
do not model AMS components at SPICE-level accuracy. The existing
approaches are usually based on hybrid systems methods (e.g., [9]–[14]);
although these methods can reason about continuous analog quantities,
they tend to be limited in terms of scalability. For example, they can
fail even for relatively small AMS systems consisting of just 5-10
analog signals. Due to this limitation, existing verification flows usually
adopt highly simplified “behavioural” macromodels for AMS components,
which do not capture many performance-limiting analog effects (e.g., non-
linear operating regions, DC offsets, ISI, distortion, etc.). As a result,
AMS designers often have to carry out extensive and time-consuming
SPICE simulations; this is a tedious, expensive, and error-prone process.

In an attempt to address the above concerns, a technique called
ABCD-L [15] was recently proposed. ABCD-L represents linear time
invariant (LTI) AMS components using purely Boolean models, i.e., with-
out the need for any continuous variables1. ABCD-L has been shown
to capture the dynamics of linear AMS components to almost SPICE-
level accuracy [15]. Also, because ABCD-L models use only “cheap”
Boolean variables, and not “expensive” continuous variables, the formal
analysis and verification involving these models can be very efficient,
using either the state-of-the-art Boolean techniques (e.g., ABC [1]), or
in conjunction with existing hybrid systems frameworks. The biggest
drawback of ABCD-L, however, is that it applies only to linear systems.
Therefore, ABCD-L cannot be used for verifying systems such as the
communications sub-system of Fig. 1, or the SAR-ADC of Fig. 2, because
these systems are strongly non-linear.

In this paper, we propose ABCD-NL2, a new method that has all the
advantages of ABCD-L, and in addition, works for a large class of non-
linear systems. Given a non-linear AMS system (e.g., a SPICE netlist),
ABCD-NL produces a purely Boolean model (e.g., as a Finite State Ma-
chine (FSM), an And Inverter Graph (AIG), or a Binary Decision Diagram
(BDD)) that captures the dynamics of the given system to near SPICE-
level accuracy. Furthermore, the Boolean model produced by ABCD-
NL is well-suited for use with cutting-edge formal verification/model
checking engines such as ABC [1], or with existing hybrid systems
frameworks. Also, the Boolean model produced by ABCD-NL can be
simulated very efficiently at the logic level (without needing to solve
any differential equations), so ABCD-NL can be used as a much faster,
almost-as-accurate, drop-in replacement for SPICE, in many applications.

ABCD-NL requires only one condition: a DC input to the given system
should eventually result in a DC output. This condition is satisfied by
almost all non-linear systems of interest to AMS designers, e.g., D/A and
A/D converters, amplifiers and comparators, linear and non-linear filters,
equalizers, switches and multiplexers, charge pumps, I/O links, etc.

In the next section (§II), we describe the core techniques underlying

1Similar ideas have also been suggested in works like [16] and [17].
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ABCD-NL. We then apply ABCD-NL (in §III) to a number of non-linear
systems that are of interest to AMS designers. For example, in §III-A,
we Booleanize a charge pump/filter system using ABCD-NL. We also
apply ABCD-NL to the analog components that make up the SAR-ADC
of Fig. 2, such as the D/A converter (§III-C) and the comparator (§III-D).
In all these cases, we show that ABCD-NL’s Boolean model faithfully
reproduces the circuit’s behaviour.

We note that the primary focus of this paper is on modelling AMS

systems for verification, as opposed to the verification itself. However,
for completeness, we present (in §III-E) an example where we use the
verification tool ABC [1], together with a Boolean model produced by
ABCD-NL, to formally verify the throughput of a communications sub-
system of the type shown in Fig. 1.

II. CORE TECHNIQUE: A NEW ALGORITHM FOR
BOOLEANIZING NON-LINEAR ANALOG CIRCUITS

In this section, we describe the key ideas behind ABCD-NL. As outlined
in §I, ABCD-NL takes a SPICE netlist as input, and it produces as output
a purely Boolean model (e.g., an FSM) of the given circuit.

The Boolean model represents the circuit’s inputs and outputs using finite
numbers of bits. The bits returned by the model are interpreted by the user
as discretized analog waveforms. The goal is to preserve the behaviour
of the original circuit as closely as possible in the Boolean model.

Fig. 3. (a) Structure of the FSM model derived by ABCD-NL from SPICE
simulations, and (b) ABCD-NL’s method of exploiting continuity to jump from
one transient FSM state to another.

Algorithm 1: Converting an analog circuit into a purely Boolean ABCD-NL model

Inputs: SPICE netlist cir, Signal list siglist, Output signal sigout, FSM time step tstepFSM

Output: Purely Boolean FSM model fsm for the given circuit

fsm = new FSM()1

DCInputs = enumerateDiscretizedCktInputs()2

insertDCFSMStates(fsm, DCInputs)3

for initInput in DCInputs:4

initFSMState = encodeFSMState(initInput)5

for finalInput �= initInput in DCInputs:6

finalFSMState = encodeFSMState(finalInput)7

cirInputWaveforms = generateStepFunctions(initInput, finalInput)8

[ts, vs] = SPICESimulateTran(cir, cirInputWaveforms)9

tSettle = estimateSettlingTime(ts, vs, siglist)10

numTranFSMStates = ceil(tSettle ÷ tstepFSM) – 111

insertTranFSMStates(fsm, initFSMState, finalFSMState, numTranFSMStates)12

annotateFSMArcs(fsm, initFSMState, finalFSMState, ts, vs, sigout)13

annotateFSMStates(fsm, initFSMState, finalFSMState, ts, vs)14

foreach transient FSM state trst in fsm:15

foreach discrete input inp �= trst.finalInput in DCInputs:16

/* use state/output continuity to obtain new FSM arc */
nextst = estimateNextFSMState(fsm, trst, inp)17

outp = estimateDiscreteOutputOnTransition(fsm, trst, nextst, inp)18

insertFSMArc(trst, nextst, inp, outp)19

return fsm20

Fig. 3 (a) depicts the Boolean model produced by ABCD-NL. Each
discretized input combination is associated with a DC state (that has
a self loop) in an FSM. These DC states are akin to DC operating points
of the circuit. For example, if the circuit has 2 inputs, and each input is

discretized using 3 bits (i.e., 8 levels), the ABCD-NL FSM would have
64 DC states. These states capture the circuit’s DC behaviour.

To capture the transient behaviour, ABCD-NL introduces additional
transient FSM states between every pair of DC states described above.
The exact number of transient states introduced depends on the dynamics
of the circuit, i.e., the time taken by the system to transition from one
DC operating point to another, when a suitable step transition is applied
at the input. Together, the DC states and the transient states capture the
dynamics of the given system to high accuracy.

Algorithm 1 formally describes the FSM construction procedure used by
ABCD-NL. Line 3 creates the DC states described above. For every pair
of such DC states, ABCD-NL performs a transient SPICE simulation
(Line 9), the results of which are used to create the transient FSM
states (Lines 10–12). Note that, if needed, the user can explicitly specify a
list of important signals (siglist) in the given circuit, which the algorithm
takes into account while creating the transient states (by default, the
algorithm considers all signals as important). Further, the algorithm uses
the SPICE simulations above to label each FSM arc (Line 13) with an
appropriate (discretized) output symbol.

Algorithm 2: Simulating ABCD-NL’s Boolean model, and post-processing to the analog domain

Inputs: Boolean model fsm, Ckt. inputs u(t), FSM step tstepFSM, simulation interval [t0, t f ]
Output: Simulation trace [ts, vs] of the circuit’s output sigout over the interval [t0, t f ]

ts = [], vs = []1

/* start at the DC operating point for the input u at time t0 */
tcurr = t02

ucurr = discretizeInput(u(tcurr))3

statecurr = encodeFSMState(ucurr)4

while tcurr ≤ t f :5

/* simulate one time point by looking up the FSM’s state transition table */
transitionArc = fsm.nextStateArc(tcurr, ucurr)6

/* Look up the o/p on the transition arc, and post-process it from Boolean to analog */
outputcurr = transitionArc.outputSymbol7

analogOutputcurr = BooleanToAnalog(outputcurr)8

/* record the output */
ts.append(tcurr)9

vs.append(analogOutputcurr)10

/* update the simulation variables for the next time point */
tcurr += tstepFSM11

ucurr = discretizeInput(u(tcurr))12

statecurr = transitionArc.finalState13

return [ts, vs]14

By this time, all the states of the ABCD-NL FSM have been created,
and all arcs have been specified for the DC states. However, not all arcs
have been specified for the transient states. To fully specify the system,
ABCD-NL uses an interpolation-based heuristic, as shown in Fig. 3 (b).

For example, suppose that the discretized version of the applied input
switches from one Boolean-encoded value (say, 1), to another (say, 2).
Corresponding to this, the FSM starts moving from state DC1 to DC2, as
shown in Fig. 3 (b). However, before the FSM reaches DC2 (i.e., when
the FSM is in the state marked tr1), let us say the (discretized) input
switches again, this time to 3. This forces the FSM to move towards state
DC3, and we need a method to determine the next action of the FSM.
For this, ABCD-NL takes advantage of the continuity of the underlying
analog waveforms (Lines 17 to 19); it selects a transient FSM state that
is, in some sense, “closest” to the current state tr1, along the paths DC1–
DC3 and DC2–DC3 (this is possible because the ABCD-NL synthesis
algorithm (Line 14) internally maintains an estimate of the analog state

of the circuit at each Boolean state of the FSM). This completes the
Boolean model generation, and the resulting FSM is returned, which, if
necessary, can be transformed into an AIG or BDD using existing tools
such as ABC [1]. (Our implementation of ABCD-NL ensures that its
output can be directly read in by tools such as ABC.)

Algorithm 2 formalises how the ABCD-NL Boolean model can be
simulated in the time-domain, at the logic level. Each time step in this
simulation is simply a table lookup (Line 6), so there are no differential
equations or Newton-Raphson iterations involved. Thus, ABCD-NL based
simulation is much faster than SPICE. For example, even though we have
implemented ABCD-NL in Python (a language not known for being fast),
it was still 2x to 3x faster than HSPICE, for most examples presented in
the next section. We believe that, if the code is re-written in C/C++, it
would be quite straightforward to achieve ∼30x speedup over HSPICE.
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III. RESULTS

We now apply ABCD-NL to circuits that are of interest to AMS designers.
These include, (1) a charge pump/filter system that is relevant to PLL
design, (2) a signaling/communications sub-system that involves (non-
linear) digital logic interfacing with an analog channel, (3) a D/A
converter, and, (4) an analog comparator, the last two circuits being
important analog components that make up a SAR-ADC. In each case, we
show that the Boolean model produced by ABCD-NL is able to accurately
reproduce the SPICE-level analog dynamics of the underlying circuit,
including important performance-limiting non-ideal phenomena.

A. Charge pump driving an analog filter

Fig. 4 shows a charge pump driving an analog filter, a system that plays
an important role in PLLs. The system works as follows: the transistors
M1 and M2 form a current mirror that can pump a current I0 into the load
capacitor CL, whereas transistors M3 and M4 form an opposing current
mirror that can withdraw current I0 from CL. The circuit has two inputs,
Vup and Vdown. During normal operation, exactly one of these inputs is
high; if Vup (Vdown) is high, current is pumped in (out), driving the output
voltage Vout higher (lower); this is called the charging (discharging) mode
of the charge pump, and the system responds most quickly when in one
of these modes (e.g., using a 90nm process, response times are typically
of the order of tens of nanoseconds).

Fig. 4. Schematic of a charge pump driving an analog filter.

In addition to the normal mode of operation, it is also important to capture
the behaviour of the charge pump under anamolous inputs; for example,
if both inputs are high, the charge pump enters an imbalance-driven mode,
which can either charge or discharge the load, depending on operating
conditions. This type of charging/discharging is typically much slower
than normal operation (e.g., hundreds of nanoseconds response time),
because only a small current flows through the load. Finally, if both
inputs are off (cutoff mode), the output voltage, under ideal conditions,
would remain constant; however, due to leakage currents and the resistive
load RL, the capacitor CL slowly discharges to a DC voltage that is almost
0. The cutoff mode is the slowest mode of operation of the system, with
response time in the microsecond range.

Since PLL performance critically depends on the non-linear charge
pump/loop-filter dynamics, our goal is to use ABCD-NL to accurately
model the behaviour of the above system under all possible operating
conditions: charging, discharging, imbalance-driven, and cutoff. So we
designed the system in 90nm CMOS, using BSIM4 device models. We
then applied Algorithm 1 (of §II) to Booleanize this system (using 5 bits
to encode the output waveform), and we simulated the resulting Boolean
model using Algorithm 2, on a range of inputs that covered all four modes
of operation. In each case, we compared the output predicted by ABCD-
NL’s Boolean model, against that predicted by HSPICE. Fig. 5 shows
the results, where HSPICE waveforms are shown in blue, and ABCD-
NL waveforms are in green. As the figure shows, in spite of the widely
differing time scales involved in the four modes, the Boolean model
produced by ABCD-NL closely matches the SPICE-level dynamics of
the system in all its modes.

Fig. 6 further demonstrates the accuracy and robustness of the Boolean
model produced by ABCD-NL. The figure shows a long pseudo-random
bit sequence applied as input to the circuit, which switches the circuit in

Fig. 5. ABCD-NL accurately captures the behaviour of the charge pump under
all four modes of operation, in spite of the widely differing time scales involved.

and out of all 4 modes of operation over a long time frame. Throughout
this time, it is seen that the Boolean model produced by ABCD-NL (the
green waveform) closely tracks the SPICE-simulated output (the blue
waveform) of the system. This indicates that ABCD-NL is indeed a
powerful and accurate modelling technique, and one that can conceivably
be used as a much faster, almost-as-accurate, drop-in replacement for
SPICE over long transient runs.

B. Signaling system: Non-linear digital logic + analog channel

Fig. 7 shows a mixed-signal sub-system, of the type depicted in Fig. 1.
As we mentioned in §I, such systems are often encountered in Signal
Integrity (SI) applications. In this example, the transmit side takes 3 bits
as input (A, B, and Cin), and adds them up using a full-adder, thereby
producing 2 output bits: the sum S, and the output carry Cout. These 2
bits are then sent across an analog channel that consists of several RC
stages, inter-linked with coupling capacitances. At the other end of the
channel, the receiver cleans the arriving waveforms Sch and Cch using
chains of inverters.

Fig. 7. A signaling/communications sub-system that arises in SI applications.

We have modelled each transistor in the above system using a
22nm BSIM4 analog SPICE model (obtained from [18]). Therefore,
the system above exhibits several realistic non-linear analog effects,
including leakage currents, loading effects, delays, channel-induced
ISI/crosstalk, etc. Our goal is to use ABCD-NL to accurately reproduce
the analog waveforms at the output of the channel (Sch and Cch), in the
presence of these adverse analog effects. This is a crucial requirement
for SI analysis.

Fig. 8 shows the results obtained by applying ABCD-NL to the above
system. Part (a) shows three randomly generated 40-bit sequences (for
A, B, and Cin, respectively), applied as inputs to the circuit. In part (b),
these inputs are applied at a bitrate of 1 Gbps. At this bitrate, the system
behaves in a fairly ideal manner, i.e., distortion, crosstalk, etc. are mini-
mal, as seen from the blue HSPICE waveforms Sch and Cch of Fig. 8 (b).
Also, the green waveforms in the figure show the predictions made by
ABCD-NL’s purely Boolean model (using 4 bits to encode each output
waveform); as the figure shows, ABCD-NL’s purely Boolean model is
able to accurately predict the system’s dynamics at this bitrate.

Fig. 8 (c) shows the same bit pattern applied to the circuit, but at a
higher bitrate (3.2 Gbps). At this bitrate, the system produces considerable
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Fig. 6. ABCD-NL can predict the response of the charge pump/filter system, almost to SPICE-level accuracy, even over long time frames that involve rapid switching
between all 4 modes of operation.

Fig. 8. ABCD-NL closely matches the SPICE-level analog behaviour of the
signaling/communications sub-system of Fig. 7, at both high and low bitrates.

distortion, with significant ISI and crosstalk. Here also, it is seen from the
figure that ABCD-NL is able to accurately reproduce the analog dynamics
exhibited by the system. This demonstrates that ABCD-NL is indeed a
viable modelling technique for SI applications, even when the underlying
system exhibits pronounced non-linear analog effects.

C. D/A converter (DAC)

Fig. 9. Schematic of a D/A converter used within a SAR-ADC.

We now apply ABCD-NL to produce a purely Boolean model of a
canonical mixed-signal system, a D/A converter used within a SAR-ADC.
As Fig. 9 shows, we have a 4-bit D/A converter consisting of four Analog
Devices AD8079A analog buffers (SPICE models available from [19]),
and an R/2R ladder that feeds into a voltage follower.

A key figure of merit of a D/A converter is speed; so it is important to

Fig. 10. ABCD-NL closely matches SPICE-level simulation of the D/A converter,
for several input bit transitions.

accurately capture the delay of the system for all possible bit transitions
at the input. Fig. 10 shows many of these transitions (due to space
constraints, we are unable to show all the transitions), and indeed, it can
be seen from the figure that ABCD-NL accurately captures the system’s
delay for all these inputs (using 6 bits to encode the D/A output).

Furthermore, because our D/A converter is embedded within a SAR-
ADC, it is important to have our Boolean model reproduce the system’s
dynamics for input patterns that are typical to the SAR-ADC environ-
ment. Fig. 11 illustrates this environment for a 4-bit SAR-ADC. The red
waveform shows a 150kHz sine wave, which is the ADC input. The ADC
operates at about 8MHz, so each period of the input generates about 52
ADC samples. Over these samples, the input bits b0 to b3 of the D/A
converter switch as shown in the top half of Fig. 11. The blue waveform at
the bottom of the figure depicts the D/A output, as predicted by HSPICE.
And as seen from the green waveform, ABCD-NL is able to reproduce
this response very accurately. This shows that ABCD-NL is indeed an
accurate and powerful way to Booleanize non-linear data converters for
analysing mixed-signal systems.

D. Analog comparator

We now apply ABCD-NL to an analog comparator, another key com-
ponent in a SAR-ADC. For this demonstration, we shall Booleanize an
off-the-shelf comparator (LT1016 from Linear Technology, whose SPICE
model is available online [20]), and deploy the resulting Boolean model
in a SAR-ADC environment.

Booleanizing a SAR-ADC comparator is a particularly challenging prob-
lem because the circuit is highly non-linear, and very sensitive to its
(large signal) inputs; for example, a differential input of 1mV elicits a
very different response from the system compared to a 2mV (or 1V)
differential, in terms of delay, the final steady state solution, etc. This
necessitates very fine discretization of the input waveforms, which can
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Fig. 11. ABCD-NL, using a purely Boolean model, is able to accurately capture the dynamics of a D/A converter embedded within a SAR-ADC, across a long time
frame encompassing several ADC samples.

in turn result in a very large Boolean model unless domain knowledge is
used (see below). Moreover, for each input sample of the SAR-ADC, the
comparator usually begins at a large differential (of the order of 1V), and
the closed-loop dynamics of the system uses feedback to progressively
make this differential smaller, until it is of the order of 1mV. And the
Boolean model must capture the dynamics of the comparator, to high
accuracy, in spite of this large operating range.

Fig. 12. ABCD-NL can use domain knowledge to achieve better efficiency. For a
comparator, rather than directly operating on the input bits, it is significantly more
efficient to first transform the input signals into common mode and differential
mode components (using combinational logic), which can then be used to drive
ABCD-NL’s sequential Boolean model.

As indicated above, to reduce the size of the Boolean model, ABCD-
NL supports the use of domain knowledge. Fig. 12 illustrates this point
for the comparator. Because the input has to be discretized very finely
(e.g., using 16 bits or more per signal), it is inefficient to apply ABCD-NL
directly to the discretized input. Instead, we use a combinational logic unit
to compute the common mode and differential components of the input,
which can be discretized relatively coarsely (e.g., using just 6 bits for
the differential mode, and 0-2 bits for the common mode). In particular,
the differential component is discretized non-uniformly, placing more
emphasis on small differentials (because they exert a powerful influence
on system dynamics), and a smaller emphasis on large differentials (where
the behaviour quickly saturates).

Fig. 13 illustrates the results. Part (b) of the figure shows that ABCD-NL,
with the efficiency enhancements above, is able to accurately reproduce
the SPICE-level analog behaviour of the comparator, for a wide range of
input excitations. These excitations are generated as follows: initially, the
input differential between the inputs V+ and V− is chosen to be either
large (1V) or small (1mV). This choice has the effect of biasing the
comparator either at a strongly polarized bias point, or a weak bias point.
Now, a second choice is made: the input differential is suddenly reversed
in polarity, using either a small driving strength (1mV differential), or
a large driving strength (1V differential). This choice has a significant
impact on response time; for example, a strong differential signal starting
from a weakly polarized system state evokes a much faster response than
a weak differential trying to flip the system from a strongly polarized
state. The goal is to design the Boolean model to accurately capture all
the different corner cases, and as Fig. 13 (b) shows, the Boolean model
produced by ABCD-NL achieves this goal (using 5 bits to encode the
output waveform).

Also, for verification purposes, it is important to model the comparator’s
departure from ideal behaviour. An important factor in this context is
the DC sensing offset of the comparator. For example, Fig. 13 (c) shows
a situation where the comparator behaves in a highly unexpected way:
even though V− is always higher than V+ (i.e., an ideal comparator’s
output would remain low throughout), the LT1016 actually switches from
low to high. Such unexpected behaviour can potentially introduce bit-

errors in the context of a SAR-ADC, due to incorrect decisions made by
the comparator within the feedback loop. Therefore, while analyzing a
SAR-ADC that uses this comparator, it is important to use a comparator
model that accurately accounts for such imperfections and shortcomings.
And as Fig. 13 (c) shows, ABCD-NL’s Boolean model does accurately
reproduce the behaviour of the comparator. This is a powerful advantage
offered by ABCD-NL – anything that SPICE can predict, the Boolean
model can incorporate.

Finally, Fig. 13 (d) shows that ABCD-NL accurately reproduces the
behaviour of the comparator when it is embedded in a typical SAR-ADC
environment. The ADC, and the input to it, are the same as in Fig. 11.
Over one time period of the input waveform (i.e., 52 ADC samples), the
top half of Fig. 13 (d) plots the comparator inputs V+ and V−. The bottom
half of the figure shows that ABCD-NL is able to capture the system’s
response, almost to SPICE-level accuracy, over this entire time frame.

E. Formal verification with an ABCD-NL model

As we remarked before, the main focus of this paper is the accurate mod-

elling of AMS components for verification, as opposed to the verification
itself. However, for completeness, we now present an example where we
Booleanized an AMS system using ABCD-NL, imported the resulting
Boolean model into a verification engine (ABC, [1]), and carried out
formal property checking of the model against an AMS-design relevant
specification.

Fig. 14. Schematic of a system that was formally verified using a combination
of ABCD-NL and ABC. The inverters were designed in a 22nm CMOS process,
using BSIM4 models. The channel was modelled as a long RC chain.

Fig. 14 depicts the system that we formally verified. It follows the
same pattern as the systems shown in Figs. 1 and 7. As we mentioned
earlier, such systems play an important role in SI applications, where it is
important to determine, and formally verify, the throughput of the system.
We have used 22nm BSIM4 models for each transistor in the system, and
an analog channel that consists of several RC units chained together.

Fig. 15. Encoding the throughput property, along with constraints on the input,
in a Boolean form so as to formally verify the ABCD-NL model using ABC [1].
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Fig. 13. ABCD-NL applied to a Linear Technology LT1016 comparator (part (a)). Part (b) shows that ABCD-NL is able to capture the dynamics of the comparator
over a wide range of differential input excitations (from 1mV all the way to 1V). Part (c) shows that ABCD-NL can duplicate the SPICE-level dynamics of the
comparator even when there is serious departure from ideal behaviour. Part (d) demonstrates that ABCD-NL is well-suited to model the comparator in the context of
a SAR-ADC.

Fig. 15 shows the verification flow that we used. As the figure shows,
the Boolean circuit that is verified consists of three parts, (1) the ABCD-
NL Boolean model, (2) the Boolean logic that encodes the property to
be checked, and (3) some Boolean logic to encode constraints on the
inputs that can be applied to the AMS system. The circuit of Fig. 15
is constructed in such a way that the given AMS design fails to meet
its throughput specification if and only if the bit bout can somehow be
asserted to 1 by choosing an appropriate sequence of bits applied at bin.

The constraint on the input is that it can change only once per N

clock periods of the ABCD-NL model. The time period of ABCD-NL’s
sequential Boolean model is 10ps (see Algorithm 1). The input constraint
is modelled using a counter that outputs a 1 every N clock cycles (Fig. 15).
If this constraint is violated, the bit marked bc immediately becomes 0
and stays there forever, which makes it impossible to assert bout to 1.
This ensures that any counter-example returned by ABC would satisfy
the input constraint.

The throughput property to be checked is that, given the above constraint
on the input, the output should always reach an acceptable state before
N clock cycles (i.e., before the input can change). This acceptable state
is defined as being ≥ 0.8V for a 1, and being ≤ 0.2V for a 0.

Fig. 16. Checking that the counter-example returned by ABCD-NL + ABC is
valid in the analog domain.

Clearly, there is an N0 such that the above throughput property will fail for
all N ≤ N0. We can use ABC to quickly zero in on N0, by incorporating
ABC-based verification within a binary search loop. In this way, we
were able to determine that N0 = 38. This translates to a throughput
of approximately 2.56Gbps. Furthermore, we were also able to confirm,
using HSPICE, that for N = 38, the counter-example returned by ABC
is a valid one in the analog domain (Fig. 16). Therefore, the throughput

bound obtained is tight and meaningful. Thus, ABCD-NL is a powerful
and capable modelling technique that can be used for AMS verification.

IV. CONCLUSIONS

In conclusion, we have developed and demonstrated ABCD-NL, a new
technique for producing purely Boolean models of non-linear analog
circuits, suitable for AMS verification. We have applied ABCD-NL to
several circuits that are of interest to AMS designers, including charge
pumps, signaling/communications sub-systems, D/A converters and com-
parators used in SAR-ADCs, etc. In addition, we have demonstrated a
formal verification example where we used ABCD-NL, in conjunction
with ABC, to formally verify the throughput of an AMS system.
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