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Abstract— We develop methods for simply yet rigorously analyzing
sub-harmonic injection locking (SHIL) in LC oscillators. Our method
respects nonlinearities while offering intuition and design insights into
the underlying mechanisms of different modes of locking. It can predict
the presence/absence, number, stability and oscillation amplitudes of
locks, as well as lock ranges. We use practical LC oscillator topologies
from integrated RF and UHF applications for demonstration, validating
our technique against SPICE-level simulations while being 1-2 orders of
magnitude faster. To our knowledge, this is the first technique/tool for
SHIL general enough to treat any kind of nonlinearity in LC oscillators.

I. INTRODUCTION

Injection locking (IL) [1]–[4] is a phenomenon in which an oscil-
lator becomes phase-locked to an external periodic input – called the
injection signal – thus oscillating at the same frequency as the input
(fundamental harmonic IL or FHIL) or an integral sub-multiple (sub-
harmonic IL or SHIL). IL and the related phenomenon of injection
pulling [5] are sometimes unwanted (e.g., they can interfere with
desired operation in PLLs), but have also found many applications,
including for frequency division [6], quadrature signal generation [7],
microwave generation in laser optics [8], in analog fibre-optics [9], for
speeding lock in PLLs [10], etc.. IL is also fundamental in biology,
e.g., in circadian rhythms [11], [12].

Sub-harmonic IL, where the oscillator locks to a frequency that
is an exact integral sub-multiple of that of the input, has attracted
attention for decades [13]–[17]. In recent years, SHIL has found
application in RFIC and high-speed digital designs, e.g., for reducing
phase noise, clock jitter and PVT sensitivity in VCOs and PLLs [18]–
[22]. Virtually all such applications use LC oscillator topologies1.

There appear to be no effective tools or methods presently available
for rapid, insightful or rigorous analysis/design of practical LC
oscillator topologies undergoing SHIL. Prior theoretical analyses
[15], [16] are limited to specific simplistic nonlinearities/topologies;
even for those, they fail to provide useful insight into the SHIL
mechanism or into means for its manipulation during design. A theory
based on oscillator PPVs [23]–[25] that explores SHIL in generic
nonlinear oscillators is available [17], but being abstract, suffers from
the same shortcomings.

In this paper, we present a general technique and tool for
analysing and understanding SHIL in negative-resistance LC oscilla-
tors. Unlike prior work, our technique deals rigorously with arbitrary
nonlinearities, while providing direct insight into the SHIL mech-
anism and its manipulation during design. Limitations of previous
methods to simplistic nonlinearities are remedied by incorporating
computational components in our procedure. A key feature is that
the mathematics involved can be viewed graphically, resulting in a
procedure that builds intuition and understanding about SHIL. We

have implemented this procedure as a tool in MATLAB
TM

.

1although IL is in fact generic to all nonlinear oscillators [17].
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Our technique represents the physical oscillator as an equivalent
signal flow graph that involves a feedback loop with an arbitrary
memoryless nonlinearity, an LC filter, and the injection signal. The
filtered output of the LC tank combines with the injection signal
to excite the nonlinearity with two frequency components, at the
injection frequency and a sub-harmonic. The amplitude and phase
relationships between these two components are key in determining
the output of the nonlinearity, of the many frequency components
of which only the one at the sub-harmonic frequency turns out
to be important. This frequency-domain I/O characteristic can be
pre-characterized computationally, at minimal cost, for any given
nonlinearity. The sub-harmonic output of the nonlinearity is filtered
by the LC tank, altering its phase and amplitude in a manner that
can be expressed analytically (or pre-characterized computationally
for complex LC tank topologies). The LC tank’s output combines
with the injection signal to produce the two-frequency-component
input to the nonlinearity, thus completing the loop.

Each step of the above signal flow can be viewed graphically, with
intersections between curves representing consistent completions of
the feedback loop. This graphical procedure provides direct insight
into how lock states change, appear or disappear as the system is
manipulated, in a manner that is difficult using non-graphical solution
procedures. It also provides a complete picture of the number of
locks, their stability, and lock ranges, matching results from PPV-
based analysis [17] but providing greater accuracy and insight –
e.g., into the facts that for nth sub-harmonic injection locking, the
number of locks is a multiple of n, and that these n locks are equally
spaced in phase with gaps of 2π

n . A pleasing feature of our graphical
approach is that it does not involve many iterations (even though IL
is a fundamentally nonlinear problem), but finds solutions in exactly
one pass. Our technique for SHIL also subsumes FHIL as a special
case.

The MATLAB
TM

tool implementing our mixed computational-
analytical approach allows us to analyse SHIL in practical LC
oscillator topologies. We present detailed results on two types of
LC oscillators: a cross-coupled differential pair topology favoured
in RFICs, and a tunnel diode based topology popular in UHF
applications. We provide graphical depictions of locking, predicting
the amplitudes/phases of locks and the lower/upper limits of lock
ranges. We validate our predictions against brute force simulation,
demonstrating essentially perfect matches. Our MATLAB-based tool
provides these predictions 1-2 orders of magnitude faster than SPICE-
level simulation (using NGSPICE [26], implemented in C/C++).

The remainder of the paper is organized as follows. In §II, we
start by reviewing the describing function approach for predicting
natural oscillations in LC oscillators. In §III, we present the graphical
procedure noted above for SHIL. In §IV we use our theory and tool
to analyse a cross-coupled BJT differential pair oscillator and a tunnel
diode oscillator, validating our results using SPICE-level simulations.

II. BACKGROUND: DESCRIBING FUNCTION ANALYSIS

The describing function approach mentioned in §I, is used for
solving systems of the kind depicted in Fig. 1a. Here L is a linear
time-invariant system with a nonlinear feedback N present from its
output to input. The transfer function L only depends on the input
frequency ω , whereas the transfer function N depends, among other
things, on the input amplitude, say, A, but not on the input frequency
ω . There are methods (e.g., based on describing functions) for finding
if this system can exhibit stable oscillations, and for finding these
periodic waveforms if it does (under some ‘filtering’ assumptions,
as we will see soon). As will become clear shortly, the describing
function approach splits up the closed loop at the output (marked Vout



2

(a) (b)

Fig. 1: (a) Linear system L with a nonlinear feedback N. (b) RLC circuit
with negative resistance nonlinearity f ().

(a) (b)

Fig. 2: (a) Circuit seen as a nonlinear feedback loop. (b) Nonlinear
feedback loop with the feedback open for analysis.

in Fig. 1a.I) and tries to match the Vout and Vin signals (see Fig. 1a.II)
so that the closed loop becomes consistent. Let us look at one such
method, which is described in [4].

Fig. 1b depicts the LC oscillator circuit that we will be analyzing
throughout this paper. Here f () is the negative resistance element.
Fig. 2a is an equivalent closed loop block diagram representation of
the same circuit; the dashed box represents the linear part L of the
circuit. To analyze the behaviour of this circuit, we ‘cut open’ the
output feedback (see Fig. 2b) in the block diagram representation of
the circuit (and not in the actual physical circuit), and look at the
vout(t)s generated by different vin(t)s at the input. Finally, our aim is
to match vout(t) to vin(t) so that this open loop can be closed back
again for the circuit to become consistent.

For reasons to become clear later, lets start by considering a sinu-
soidal waveform at the input at some frequency ω0, say Acos(ω0t)
(= vin(t)). This input passes through the nonlinearity f (.) to produce
an output current i(t) = f (vin(t)). Since, the input is periodic and
f (.) is memoryless, it can be easily shown that the output current
i(t) would be periodic too, with the same frequency ω0. Thus, i(t)
can be written in a Fourier series representation, say,

i(t) =
∞

∑
k=−∞

Ik(A)e
jω0kt . (1)

The Iks are called the coeffi-
cients of the kth harmonic com-
ponent of i(t), and they only
depend on the input’s amplitude A and the nonlinearity f (.). This
current i(t), after going through an inversion, passes through the LTI
system determined by the RLC tank (see Fig. 6). For an RLC tank
with a good enough Q factor, as can be seen from the amplitude
characteristic of the transfer function, all harmonics other than those
near the centre frequency ωc are significantly attenuated, or in other
words, filtered out by the RLC tank, while the one at the centre
frequency is amplified by a factor of R and its phase is preserved,
i.e., phase change = 0. Thus, if we choose the frequency ω0 of
our input vin(t) to be = ωc, implying the frequency of −i(t) to be
ωc, all the higher harmonic components of −i(t) (the input to the
RLC tank) will be filtered out and only the fundamental harmonic
components (k = ±1) of −i(t) will survive, scaled by a factor of R
at its output corresponding to the peak of the transfer function. Thus,
our assumption of considering a purely sinusoidal waveform at the
input is now justified. Also, note that we don’t really care about the

higher harmonics present in i(t) since they don’t come into play at the
output, which we are basically interested in (these higher harmonics
in i(t) make it highly distorted).

For nonlinearities f (.) with a negative differential resistance2

characteristic near the operating point, it can easily be shown3 that
∠I1(A) = π (⇒ ∠I−1(A) = π , since I−1 = Ī1), i.e., I1(A) is a nega-
tive real number. Thus, vout(t) = R(−I1(A)e

jωct − I−1(A)e
− jωct) =

−RI1(e
jωct + e− jωct) = −2RI1 cos(ωct), is in phase with vin(t) =

Acos(ωct). At this point, if we wish to close back the cut loop,
we will need vout(t) = vin(t), i.e.,

A =−2RI1(A) ⇒ Tf (A),
−RI1(A)

A/2
= 1. (2)

Such an A, satisfying (2), can be found out graphically by

plotting y = 1 and y =
−RI1(A)

A/2
(versus A, of course) curves to-

gether and then reading off the A component of the intersec-
tion, if any, as shown in Fig. 3 (this figure is for a nega-
tive ‘tanh’ nonlinearity f () and we will be using this nonlinear-
ity for illustration purposes throughout §III while developing our
new theory). [4] plots y = A/2R and y = −I1(A) curves instead.
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Fig. 3: Prediction of natural os-
cillations amplitude A for nega-
tive tanh LC oscillator.

Our choice of plotting (2)
is influenced by two factors:
(a) Tf (A) is the transfer

function4 from the input
phasor A/2 (Acos(ωct) =
A/2e jωct + A/2e− jωct ) to
the output phasor −RI1(A)
(−2RI1(A)cos(ωct) =
−RI1(A)e

jωct − RI1(A)e
− jωct ),

and, we will be using the
graphical visualization provided
by phasors later to our advantage;
(b) we will be using the Tf (A)
formulation later for finding the
stability properties of the solutions.

III. MAIN THEORY

Here we outline our new theory for predicting SHIL, as we
mentioned in §I. Due to space limitations many derivations are put
in the appendix (§VI). We start by finding the stability of the natural
oscillations (see §III-A) we just found in §II. Then we review the
point of view taken in [4] for analyzing FHIL in negative-resistance
LC oscillator circuits (see §III-B). Using a similar view point, we then
elaborate how the describing function technique can be modified to
understand SHIL (see §III-C) (as described in §I) in an intuitive yet
precise and quantitative manner. We will see that small changes to
the feedback loop Fig. 2b enable us to deal with IL.

A. Stability of Natural Oscillations

[4] doesn’t comment on the stability of the solutions obtained
through the graphical procedure (§II), but this is straightforward –

the solution is stable iff the y =
−RI1(A)

A/2
curve cuts the y = 1 curve

from above (see §VI-A1 for an explanation). Using this graphical
procedure, we can see that the solution obtained in Fig. 3 is clearly
a stable one.

B. Fundamental Harmonic Injection Locking (FHIL)

Before moving on to SHIL, we first review the basic point of
view developed in [4] for analyzing the case of FHIL, so as to build
foundation to provide a better understanding of the SHIL case.

After dealing with natural oscillations, [4] then goes on to analyze
the same circuit but now in the presence of an external periodic
disturbance (which we called the ‘injection signal’ in §I) at a
frequency ωi ≈ ωc. Our original circuit diagram and block diagram
change in the manner as shown in Fig. 4a and Fig. 4b, respectively.

2later, by ‘negative resistance’ we will always mean a negative ‘differential’
resistance.

3in fact, for any general memoryless nonlinearity f (), I1(A) is a real number
⇒ ∠I1(A) = 0, or, π.

4in a loose sense since it depends on the input amplitude A as well.
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(a) (b)

Fig. 4: (a) Circuit diagram with added injection. (b) Split feedback loop
with injection.

(a) (b)

Fig. 5: Phasor picture of the split feedback loop with injection present.

We are interested in the case where ωi ≈ωc, and the oscillator gets
locked at the external signal frequency ωi – thus, vin(t) = Acos(ωit)
now. As shown in Fig. 4a and Fig. 4b, the input voltage waveform
vin(t) passes through the nonlinearity block to give current i(t),
which then undergoes inversion, and gets filtered by the RLC tank
to produce the output waveform vout(t). It is at this output that
an injection signal vi(t) gets added. In terms of the phasor picture
(see Fig. 5a), the input phasor A/2 (corresponding to the input
waveform vin(t) = Acos(ωit)) goes through the nonlinearity block
f () to produce a current i(t) with fundamental harmonic component
= I1(A). This current i(t) then undergoes inversion, resulting in an
inversion in its fundamental harmonic component as well, and further
gets multiplied by the transfer function H( jω) of the RLC tank
resulting in B(A,ωi) =−I1(A)H( jωi) at its output. It is at this stage
that vi(t), also a sinusoid, with phasor domain signal Vi, gets added
to B(A,ωi) to produce the final output G. Some subtle points to note
here. Iks don’t get affected by this change in the input frequency. Also,
the higher harmonics of −i(t) are still filtered out since ωi ≈ ωc.

As we can see, this split feedback loop diagram is similar to the
one described in §II, except for two major differences. Firstly, there is
an additive injection signal vi(t) (or, phasor Vi) present at the output
vout(t) (or, B(A,ωi)) of the split feedback loop, as can be clearly seen
in the diagrams. Secondly, we are now operating at frequency ωi –
i.e., the frequency of the injection signal, not at the centre frequency
ωc of the RLC tank as in §II. This is because here we are interested
in analyzing the case where the oscillator has “forgotten” its natural
oscillation frequency, and now runs at the injection signal frequency.
Note that this follows directly from the definition of injection locking
(§I).

These two differences cause the corresponding phasor picture to
change in a subtle way (see Fig. 5a and Fig. 5b). Due to the change in
operating frequency, the RLC tank no longer preserves the phase of
its input fundamental at its output (the phase increases or decreases
depending on whether ωi < ωc or ωi > ωc, respectively; see Fig. 6).
That is, the phase of B(A,ωi) (= φd(ωi) = ∠H( jωi)) is non-zero.
Note that this phase depends only on the operating frequency ωi.
Thus, the split loop, if now closed is clearly not consistent for any
value of A 6= 0, i.e., B(A,ωi) 6= A, ∀A 6= 0, ωi 6= ωc.

Here comes the role of the first difference, i.e., the additive injec-
tion signal: the injection signal just makes up for this vector/phasor
difference and makes the loop, when closed, consistent. In terms
of the phasor diagram, this can be translated into choosing Vi such
that G equals A. (Earlier, while dealing with natural oscillations, no
injection was needed to make the closed loop consistent. This was
possible because ∠B(A,ωc) was = 0 = ∠A.)

(a) (b)

Fig. 8: (a) Split feedback loop with injection for SHIL. (b) Phasor picture
for SHIL.
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φd(ω) = 6 H(jω)
ω = ωc

ω = ωi(> ωc)
ω = ωi(< ωc)
φd(ωc) = 0
φd(ωi) < 0
φd(ωi) > 0

Fig. 6: RLC Tank transfer function.

Note that our upper
system block (see
Fig. 4b) is no longer
linear now, but affine.
Thus, the describing
function theory in
its original form for
systems in Fig. 1a form
can’t be applied and
needs modifications to
analyze the important
case of IL.

Using some of the
ideas outlined in this
subsection, we now
move forwards to
provide the theory for SHIL.

C. Sub-harmonic Injection Locking (SHIL)

Here too, we consider an external injection signal present, but now
we assume its frequency to be nωi instead, where ωi ≈ ωc, and n is
a natural number > 1 (n = 1 corresponds to FHIL case). This leads
to a subtle difference compared to the FHIL case: at an operating
frequency other than the centre frequency ωc, the vi(t) signal can no
longer be used to close the loop (or, restore consistency), since it is at
a different frequency from the input vin(t) and output vout(t). Thus,
a different mechanism is at play here. Note that due to the higher
harmonic filtering assumption still valid, vout(t) is still a sinuosoid
but g(t) = vout(t)+ vi(t) has both the fundamental and nth-harmonic
components present.
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TF = 1
6
− I1 = −φd (given)

φs1,As1 (unstable)
φs2,As2 (stable)

Fig. 7: Finding solutions for
SHIL for a given Vi and ωi.

Thus, we now need to account
for the nth-harmonic component as
well at the input vin(t), for consis-
tency. Another point to note is that
apart from the fundamental and nth-
harmonic components, no other har-
monics are present in g(t) or vin(t).

To account for the above changes,
we do a small modification in Fig. 4b
to get Fig. 8a, so that, in the light
of the above discussion, vin(t) still re-
mains a sinusoid (= Acos(ωit)). Since
Vi can no longer be used to align Vout

with A/2 directly, these two phasors
should be aligned by default when
the oscillator is under lock, if locking
is still possible. The role of the nth-
harmonic component at the input to
the nonlinearity f () now immediately becomes clear – to provide
appropriate phase shift in −I1 (recall that it was = 0 in the FHIL
case) so as to counter the phase shift produced by the RLC tank at
the operating frequency ωi. (Note that this viewpoint is general and
also works for n = 1.)

Tf (A,Vi,φ) =
−RI1x(A,Vi,φ)

A/2
= 1 (3)

∠− I1(A,Vi,φ) =−φd (4)

TF (A,Vi,φ ,φd) = |
RI1 cos(φd)

A/2
|= 1 (5)

Using the
above ideas, it
can be shown
(§VI-B2) that the
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solution should satisfy (3) and (4) (or equivalently, (5) and (4)),
where I1x is the cosine or x- component of phasor I1. Now using
(3) and (4) ((5) and (4)) let us first look at the simpler problem
of finding the solutions given the operating frequency ωi and the
injection strength Vi. Note that for a given Vi and ωi, Tf (TF ) and
∠− I1 are 3D plots in variables A and φ . Let CTf ,1 (CTF ,1) be
the cross-section of z = Tf (z = TF ) surface with the z = 1 plane.
Similarly, let C∠−I1,−φd(ωi) be the cross-section of the z = ∠− I1

surface with the z = −φd(ωi) plane. Clearly, CTf ,1 (CTF ,1) is the
set of all A,φ that satisfy (3) ((5)), and C∠−I1,−φd(ωi) is the set
of all A,φ that satisfy (4). Thus, the intersections of CTf ,1 (CTF ,1)
and C∠−I1,−φd(ωi) curves gives us our solutions (see Fig. 7). The
stability of a solution is checked using the signs of TF − 1 and
∠− I1,φd(ωi)+φd , and the relative slopes of CTF ,1 and C∠−I1,−φd(ωi)
in the neighbourhood of the solution. Consider, for e.g., (φs2,As2).
Around it, ∠− I1 +φd > 0 to the right of C∠−I1,−φd(ωi), and < 0 to
the left of it. Also, TF < 1 below CTF ,1, and > 1 above it. For such
a local picture, the solution is stable if the magnitude of the slope
of C∠−I1,−φd(ωi) is > than that of CTF ,1 (see §VI-B3). This condition

holds and (φs2,As2) is a stable solution. The local picture around
(φs1,As1) is different (∠− I1 +φd is now < 0 on the right and > 0
on the left of C∠−I1,−φd(ωi)), and it can be shown using a similar

logic that (φs1,As1) is unstable.

Fig. 9: Phasor picture depicting n
states of nth-harmonic SHIL (for
n=3).

Another interesting point to
note here is that for any sta-
ble (unstable) solution (φs,As),
there are n ‘states’ correspond-
ing to it that are possible
(see §VI-B4), namely: (φs +
2πk

n ,As), k = 0,1, ...,n− 1 (see
Fig. 9).

Next, we look at the
problem of finding the
lock range given Vi (ωi

is unknown now). With
changing ωi, CTf ,1 remains
the same, but CTF ,1 and
C∠−I1,−φd(ωi) change, since
φd is a function of ωi. Thus,
we can cylindrically extend CTf ,1 along the z-axis in both the
directions and look for its intersection with the z = ∠− I1 surface.
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Fig. 10: Predicting SHIL lock
range.

This intersection will be a curve
and reading off the largest z-
component (in terms of magni-
tude) on this curve that still leads
to a stable lock gives us the max-
imum phase deviation, and thus
the lock range. We depict this 3D
procedure in 2D using isolines of
the 3D surface z = ∠− I1 for (a)
ease in visualization, and, (b) ex-
amining the stability (see Fig. 10).
We draw the isolines of ∠− I1 and
look for the maximum possible
|−φd | visually (see Fig. 10) such
that a stable lock is still possible.
Stability of an intersection is checked in the same way as before.
Invariance of CTf ,1 makes this procedure computationally cheap,
since the CTF ,1 and C∠−I1,−φd(ωi) curves have to be drawn only
locally around the CTf ,1 curve (even less than in Fig. 10). Fig. 10
is qualitatively similar to Fig. 7. Thus, if two solutions correspond to
an isoline of ∠− I1, the left one is unstable and the right one is stable
⇒ at least one (exactly one in this case) stable solution is present till
−φd = −0.295, and no stable solution is present for higher | − φd |
(no solution in this case). This value of −φd marks the boundary of
the lock range.

Two types/levels of speedup are possible compared to simulation:
(a) While doing simulation, a ‘binary search’ needs to be done over
different frequencies to find the lock range upto a certain accuracy.
The same binary search needs to be done while using the prediction
theory as well, if done in a graphical way (though it is more reliable

(a) (b)

Fig. 11: (a) Cross-coupled BJT differential pair oscillator. (b) Circuit
used for finding the i = f (v) curve for the diff-pair circuit Fig. 11a.
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Fig. 12: (a) Plot of the DC sweep, and hence the i = f (v) curve, for the
diff-pair. (b) Predicting the amplitude of steady state natural oscillations
of diff-pair to be A = 0.505V.

since checking for a lock can sometimes be tricky while doing
simulations). But this process can be automated (inside the code,
by comparing the slopes as was pointed earlier). (b) Another is the
time required to do one instance of simulation.

IV. ILLUSTRATION, RESULTS AND VALIDATION

In this section, we validate the theoretical predictions developed
before in §III, by doing transient simulations on a cross-coupled BJT
differential pair oscillator, and a tunnel diode oscillator.

A. Cross-coupled BJT Differential Pair Oscillator

Fig. 11a shows the schematic of the diff-pair oscillator circuit. The
default NPN model in NGSPICE (with Is = 10−12A) is used for the
BJTs. The nodes nCL and nCR are the two terminals we are interested
in, and the i = f (v) relation is seen across these two terminals. The
voltage difference between these nodes is marked as vout in the circuit
diagram. It is across these two nodes that we insert the RLC tank
and expect the waveform vout to be periodic.

Fig. 11b shows the schematic of the circuit used to run a DC
sweep for extracting the i = f (v) curve. Fig. 12a shows the extracted
ix = f (vx) curve (ix and vx are defined in Fig. 11b). Having obtained
f (), we are now in a position to apply our prediction theory of §III.

1) Natural Oscillations: We start by predicting the presence and
the amplitude of natural oscillations (see Fig. 12b), and validate it
against transient simulation (see Fig. 13).

Fig. 13 shows the natural oscillations that emerge during the
transient simulation of the diff-pair. As can be seen, after some initial
transients, the circuit settles down in a periodic steady state. A close
examination of these steady state oscillations show that the oscillation
waveforms are sinusoids (see Fig. 13) with a frequency of 0.5033
MHz. This is, indeed, consistent with our assumption in §II that all
higher harmonic components gets filtered out by the RLC tank, and
the oscillation frequency is equal to the centre frequency of the tank.

2) SHIL: Next, we inspect 3rd SHIL for |Vi| = 0.03V, say
(Fig. 14). We don’t plot the TF = 1 curves here for clarity since
they almost overlap with the Tf = 1 curve. Due to the same reasons
as was noted for Fig. 10, in the case where an isoline of ∠− I1
intersects Tf = 1 curve twice, the solution to the right is the stable
one. We note that A (and φ ) decreases with increasing |ωc −ωi| till
a cut-off point is reached, after which a stable lock is not possible –
giving us our lock range.
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Fig. 13: Transient simulation of the diff-pair validating the predicted
steady state natural oscillations amplitude of A = 0.505V.
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Fig. 14: Predicting the SHIL lock range of the diff-pair.

To facilitate state change, pulses of roughly 1.5us duration are
given at time instances of 2ms and 4ms and all three states (n = 3
here) are observed (see Fig. 15). Note that the state change is seen
with respect to the reference signal – a signal at 1/nth of the injection
signal frequency and phase locked with the injection signal.
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Fig. 15: SHIL states of the differential pair oscillator.

SHIL lower lock limit upper lock limit lock range ∆ f
Simulation 1.4998 MHz 1.5174 MHz 0.0176 MHz
Prediction 1.501065 MHz 1.518735 MHz 0.01767 MHz

We see that the value of A for SHIL is lower than that for natural
oscillations. Here, compared to simulation, a speedup of about 25
times is achieved.

B. Tunnel Diode Oscillator

Fig. 16a shows the schematic of a tunnel diode oscillator. Details
about the model used for the tunnel diode can be found in §VI-C.

We proceed in the same order as the previous diff-pair example,
and obtain the i = f (v) curve first for the tunnel diode (Fig. 16b), for
using it in our prediction theory of §III. The i = f (v) immediately
brings out the fact that the tunnel diode acts as a negative resistance
for operating points near 0.25V (unlike 0V as in the diff-pair
example). Thus, as is seen in Fig. 16a, we bias it around this operating
point. This shifts the i = f (v) curve to the left by a distance of 0.25V,
bringing the negative resistance part above the origin.

1) Natural Oscillations: Fig. 16c predicts the presence of natural
oscillations and its amplitude in the tunnel diode oscillator and Fig. 17
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Fig. 16: (a) Tunnel diode oscillator. (b) Tunnel diode’s i = f (v) curve.
(c) Predicting the amplitude of natural oscillations for the tunnel diode
oscillator to be A = 0.199V.

is the transient simulation that validates the prediction. We observe
that the steady state natural oscillations are sinusoidal again, with a
frequency of 0.5033 GHz – consistent with the filtering assumption
and centre frequency of the RLC tank.
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Fig. 17: Transient simulation of the tunnel diode validating the predicted
steady state natural oscillations amplitude of A = 0.199V.
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Fig. 18: Predicting the SHIL lock range of the tunnel diode oscillator.

2) SHIL: Next, we inspect 3rd SHIL for |Vi| = 0.03V, say (see
Fig. 18). Here too, the qualitative nature of the plot (which defines
the stability of the solutions) is the same as that of Fig. 14 and Fig. 10.
Thus, A and φ decrease with increasing frequency deviation upto a
cut-off point which marks the boundary of the lock range.

SHIL lower lock limit upper lock limit lock range ∆ f
Simulation 1.507185 GHz 1.512293 GHz 0.005108 GHz
Prediction 1.507320 GHz 1.512429 GHz 0.005109 GHz

Now, we give pulses of 1ns duration at time instances of 2us and
4us to facilitate state change (see Fig. 19) and all three states (n = 3
here) are observed (states seen with respect to the reference signal,
as before).

Here, again, the value of A for SHIL is lower than that for natural
oscillations. For this example, compared to simulation, a speedup of
about 50 times is achieved.

V. CONCLUSION

Here we provide a technique for analyzing SHIL in negative-
resistance LC oscillators, that apart from being general and rigorous,
is also the simplest and most insightful treatment of SHIL to date. Our
procedure is developed in an elegant analytical way so that it can be
viewed graphically thus providing intuition and much more design
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Fig. 19: SHIL states of the tunnel diode oscillator.

insights into SHIL compared to simulation. Also, all the solutions
can be found and viewed graphically much faster than simulation.
Our approach can deal with any type of nonlinearity in the circuit
by resorting to computational approach, rather than assuming any
specific form on the nonlinearity.
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VI. APPENDIX

Here we provide the proofs and derivations of the results used
in the paper. §VI-A1 finds the stability of the natural oscillations
found through the graphical procedure. §VI-B2 derives the procedure
for finding the solutions for SHIL, §VI-B3 discusses their stability
properties, and also comments on the general symmetry of the lock
range. §VI-B4 justifies the existence of n states in nth-SHIL. §VI-C
provides the model of the tunnel diode used in §IV.

A. Natural Oscillations

1) Stability: Here we examine the stability of the natural oscilla-

tions. The solution is stable iff the y =
−RI1(A)

A/2
curve cuts the y = 1

curve from above. This can be seen by recalling that Tf is the open
loop system’s transfer function in the phasor domain. When the input
amplitude A grows by a small positive amount δA, Tf (A+δA)< 1
and hence the system tries to reduce the input amplitude. Whereas,
when the input amplitude falls by a positive amount, Tf (A−δA)> 1
and hence the system tries to increase the input amplitude. Thus, the
system has a restoring effect overall making the solution stable. A
similar argument can be used to show that the solution is unstable if

y =
−RI1(A)

A/2
curve cuts y = 1 from below – hence the ‘iff’ part in the

original statement.

B. SHIL derivations

1) Circle property: The following property will be helpful and
used later to do the derivations for the SHIL case (see Fig. 20):

Fig. 20: Circle property of
the RLC tank circuit.

For a fixed input phasor, the output
phasor of the RLC tank circuit sweeps
a circle as the operating frequency
is varied continuously. Also, the di-
ameter of this circle is the output
phasor when operating at the centre
frequency. In other words, the locus of
the head of the output phasor B(A,ωi)
is a circle with diameter as the pha-
sor B(A,ωc). In Fig. 20, we denote
B(A,ωc) by B, and B(A,ωi) by Bo. M is the mid-point of OB and
the centre of the circle.

Fig. 21: Use of the circle
property.

Using the fact that the diameter
of a circle subtends a right angle at
the circumference (see Fig. 21), the
output phasor B(A,ωi) of the RLC
tank at any given operating frequency
ωi can be easily found by projecting
B(A,ωc) along the φd(ωi) direction
(i.e., the direction that makes an angle
of φd(ωi) from the horizontal).

2) Finding the solutions: Here we
derive the method used for finding solutions for the SHIL case.

Fig. 22: Using circle
property for SHIL.

See Fig. 8a and Fig. 8b. It is possi-
ble to write the Fourier series of i(t) =
f (Acos(ωit)+2Vi cos(nωit +φ)) since it re-
mains periodic. But I1 is no longer a function
of A alone, and also depends on Vi and the
phase difference φ between them.

For a lock to be possible, we need the fun-
damental harmonic components at the input
and output to match, i.e.,

A/2 =Vout =−I1(A,Vi,φ)H( jωi)

⇔ ∠− I1(A,Vi,φ)+∠H( jωi) = 0,

and, |I1(A,Vi,φ)||H( jωi)|= |A/2|= A/2.
(6)

The phase part of the above equation is,

∠− I1(A,Vi,φ)+∠H( jωi) = ∠− I1(A,Vi,φ)+φd = 0, (7)
and the magnitude part is,

TF = |
I1(A,Vi,φ)Rcos(φd)

A/2
|= 1. (8)

Simplifying using the circle property (see Fig. 22), we get,

∠− I1(A,Vi,φ)+∠H( jωi) = ∠− I1(A,Vi,φ)+φd = 0

⇒ |I1(A,Vi,φ)||H( jωi)|= |I1(A,Vi,φ)||Rcos(φd)|

= R|− I1(A,Vi,φ)||cos(∠− I1(A,Vi,φ))|

= R|− I1x(A,Vi,φ)|= A/2

⇒ A/2 =Vout =−RI1x(A,Vi,φ),

(9)

where I1x is the cosine component of phasor I1 and is thus indepen-
dent of ωi. Thus, the transfer function from the fundamental harmonic
component of the input to the fundamental harmonic component of
the output, when locked, is,

Tf (A,Vi,φ) =
−RI1x(A,Vi,φ)

A/2
. (10)

3) Stability: Here we analyze the stability of the solutions (As,φs)
obtained for the SHIL case. We have two variables that can lead to
instability of the lock, namely, A and φ .

Fig. 23: Finding stability of solutions for SHIL.

In Fig. 23, we assume TF < 1 above the TF = 1 curve and > 1
below it. Also, ∠− I1 + φd > 0 to the right of ∠− I1 = −φd curve
and < 0 to the left of it (φd is fixed here). Other cases can be handled
similarly. The vertical and horizontal vectors are the restoring forces
in the A and φ components, respectively (note the directions, for e.g.,
∠− I1 + φd > 0 ⇒ output phasor Vout rotates counterclockwise ⇒
A/2 rotates counterclockwise ⇒ phase difference between A/2 and
Vi decreases ⇒ φ decreases). The idea is to visualize the restoring
force fields in the neighbourhood of the solution to find its stability. It
can be easily shown, by visualizing the restoring force fields, that the
solution is stable if the magnitude of the slope of the ∠− I1 =−φd

curve is ≥ the magnitude of the slope of the TF = 1 curve; if <, and
the slopes have the same sign, then the solution is unstable; if <, and
the slopes have different signs then only looking at the directions of
the force field is not sufficient for finding the local picture of the force
field, but we won’t get into the details here (in fact, thresholds can be
found on the slopes at which the solution switches from a stable to
an unstable one). For the examples encountered in this paper, seeing
just the slopes is sufficient.

Another point to note is that if (φs,As) is a stable (unstable)
solution, so is (−φs,As). This can be seen by substituting t by −t.
Doing so results in conjugating the fundamental and nth harmonic
components everywhere, and thus flips the relative phase φ between
the input and injection phasors. This will also require the RLC tank
to cause a phase deviation of −d, if it was causing a phase deviation
of d before. This is possible since RLC transfer function is even in
amplification and odd in phase deviation around the centre frequency
ωc (see Fig. 6). Any perturbation that led to a restoring (diverging)
effect before, will also do so now since all the new phasors are
conjugates of the old ones, and conjugation is nothing but reflection
about the x-axis. It can be easily shown that stability is preserved
under reflections. This proves that the lock range is iso-directional
about ωc with respect to phase deviation, and thus is of the form
(ωc/p, pωc), for some p > 1. This also justifies our plotting of the
SHIL graphs only in the 0 ≤ φ ≤ π range.
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4) Existence of n states: Here we justify the existence of n states

in nth-SHIL. We start by showing that if (φs,As) is a stable (unstable)
solution, so is (φs +

2π
n ,As). This can be seen by substituting t by

t + 2π
nωi

. By doing so, the nth harmonic phasor remains unchanged

(since (nωi(t +
2π
nωi

)) = (nωit + 2π)), but the fundamental harmonic

phasor everywhere gets rotated counterclockwise by 2π
n (since (ωi(t+

2π
nωi

)) = (ωit+
2π
n ), I1 changes to I1e j 2π

n upon this time substitution).
It can be easily shown that stability is preserved under translations
in phase.

C. Tunnel Diode Equations

Here we provide the model for the tunnel diode that we used in
§IV. The current Itd through the tunnel diode is given by,

Itd = Itunnel + Idiode, (11)
where Idiode is the p-n junction current given by,

Idiode = Is(e
v

ηVth −1), (12)
and Itunnel is the tunnel current given by,

Itunnel =
v

R0
e
−( v

V0
)m

. (13)

Here, Is is the saturation current (= 10−12A), η the ideality factor
(= 1), Vth the threshold voltage (= 0.025V), typically 1≤m≤ 3 (= 2)
and 0.1 ≤ V0 ≤ 0.5 (= 0.2V), and R0 is the resistance of the tunnel
diode in the ohmic region (= 1000Ω).
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