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Abstract—We propose a new metric for quantifying per-element dis-
tortion that is simple, intuitive and well-defined for both small- and large-
signal excitations. Traditional distortion concepts, based on polynomial
expansions and Volterra series, can be viewed as an approximation of our
new metric. Although computing this metric exactly is quadratic in circuit
size, we devise a novel approximation that (unlike polynomial/Volterra)
also makes sense for large distortions and can be computed efficiently
using adjoint Harmonic Balance. We validate our new approximate
metric on a differential pair and the 741 op-amp, comparing it against
the full metric and demonstrating order-of-magnitude speedups. Unlike
polynomial/Volterra based methods, our proposed per-element distortion
computation technique is easy to implement in any modern simulator
that features Harmonic Balance or similar steady-state/RF analyses.

I. INTRODUCTION

In analog and RF design, linearity is usually of paramount importance.
Even small nonlinearities can lead to distortion that, together with noise
and other non-idealities, can impair performance (e.g., SNR, BER) to
an un-acceptable extent. Locating the sources of nonlinear distortion in
a circuit accurately and efficiently has, therefore, long been of interest
to designers. More precisely, what is often desired is an ordered list of
devices that are “top distortion contributors”; such a list is typically the
starting point for optimizing a circuit for distortion performance.

A key question, of course, is what precisely is meant by the “distortion
contribution” of an individual device. In all past work we are aware of,
this question has been approached by first linearizing the entire circuit
around a DC operating point to obtain an “ideal linear circuit” that has
no distortion. Nonlinearities are then incorporated by expanding device
equations in Taylor series expansions around the DC operating point,
keeping a few higher-order polynomial terms (typically upto the cubic).
The effect of these nonlinear terms on distortion at the circuit’s output
is calculated using an iterative approach, based on Volterra series theory
[1]–[5], that applies repeated linear circuit analyses (“AC analyses”) using
“distortion source inputs” that calculated from each device’s polynomial
expansion via complex formulæ based on Volterra series [6].

One advantage of this approach is that adjoint computation [7] can
be leveraged to find the contribution of each nonlinearity to the total
output distortion efficiently [6, 8], even for circuits with many nonlinear
elements. However, polynomial/Volterra based approaches suffer from
disadvantages that limit applicability as well as implementability. Because
they rely on truncated Taylor expansions which lose accuracy rapidly
with increasing input strength, they are not well suited for today’s analog
and RF-IC design styles, which often use strongly nonlinear operations
(such as switching) internally while still maintaining a relatively linear
I/O relationship. Representing higher-order Taylor terms requires cod-
ing/computing higher derivatives (i.e., tensor derivative) terms, which can
be tedious and error-prone to implement. Moreover, increasing the num-
ber of polynomial terms to much larger than three is usually impractical
because the complexity of distortion formulæ that need to be derived
and implemented for each nonlinear device model increases very rapidly
with the number of polynomial terms. Indeed, implementing Volterra-
based distortion analysis poses such significant coding and maintenance
challenges that prominent commercial simulators today simply do not
offer it at all, leading end-users to devise improvisations such as [9] that,
essentially, implement polynomial-based distortion formulæ by scripting
the simulator. Such approaches cannot, of course, easily take advantage
of the efficiency of adjoint computations.

In this paper, we consider the per-element distortion contribution
question from a fresh perspective, one that does not rely on polynomial
approximations or Volterra series. We first propose a simple new metric
for per-element distortion that is well-defined and makes intuitive sense
even if the device or circuit is in strongly nonlinear operation. The core
idea behind this metric is to replace a given nonlinear device by its lin-
earization, but without modifying any other nonlinear devices at the same
time. The difference made to the circuit’s output distortion due to this
replacement represents its distortion contribution. Proceeding further, we
parameterize the replacement of the device using a parameter β ∈ [0, 1]1,
with β=0 corresponding to full replacement by the linearization, β=1
corresponding to no change, and intermediate values representing a tran-
sition from the fully nonlinear to a purely linearized device. The manner
in which the element’s distortion contribution changes with respect to

1Each nonlinear device has its own separate β parameter.

β provides considerable insight into existing polynomial/Volterra based
analyses, which (it turns out) compute the derivative of output distortion
with respect to β at β = 0 for all nonlinear devices. In other words,
polynomial/Volterra approaches compute a particular approximation to
our new distortion metric.

Computing all per-element distortions using our new metric requires
replacing each nonlinear device individually, a procedure that scales
roughly quadratically with the size of the circuit (i.e., requires the same
order of computation as [9]). To alleviate this and bring the complexity
down to linear, we propose a different approximation to our distortion
metric, namely, the derivative of output distortion with respect to β at
β=1 for all nonlinear devices. We argue that this approximation better
captures per-element distortion than the polynomial/Volterra one because
it represents the impact of moving each device towards linearity without
changing the other devices, which remain in fully nonlinear operation.

Importantly, we show that our proposed approximation around β = 1
can be computed efficiently (i.e., in computation/memory linear in the size
of the circuit) using adjoint harmonic balance2 [11, 12]. Another impor-
tant advantage is that – unlike for polynomial/Volterra based methods –
implementing our method need involve no modification to existing device
model code in any modern, well-structured simulator; the parameters β
can be introduced outside the device model, and will typically involve
only a one-time change of a few lines in the code responsible for building
circuit equations. Our technique thus combines desirable features that
have eluded previous approaches: it computes per-element distortions that
are meaningful for large- as well as small-signal operation, it does so in a
scalable and efficient manner, and it can be implemented easily in modern
simulators without touching device models.

We present results on a differential pair and the 741 op-amp from
an implementation in our simulator MAPP3. We compare the proposed
derivative approximation around β = 1 with our full distortion metric
and demonstrate that the former serves as an excellent proxy for rank-
ordering distortion contributors. We obtain order-of-magnitude speedups
for our examples; these speedups grow roughly linearly with the number
of nonlinear devices in the circuit.

The remainder of the paper is organized as follows. In Section II-A, we
provide necessary background on formulating circuit equation as DAEs
and describe how to introduce the β parameters noted above. Next,
in Section II-B, we briefly recapitulate adjoint harmonic balance. Our
main contributions (the new per-element distortion metric and the new
approximation around β = 1) are developed in Section II-C. Finally, in
Section III, we demonstrate our method on representative circuits and
also illustrate how incorporating feedback can help reduce per-element
distortion contributions as calculated by our method.

II. DEFINING, APPROXIMATING AND COMPUTING DISTORTION

A. Incorporating β parameters into circuit DAEs
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Fig. 1. A illustration of circuits with non-linear devices. Linear or linearized
devices are colored black, while non-linear devices are colored red or blue.
(a) Original circuit with non-linear devices. (b)Assign the parameter β to the
circled device.

A circuit with non-linear devices, as illustrated by Fig. 1(a), can be
described by differential algebraic equations (DAEs) (1) [13]

2Although outside this paper’s scope, shooting [10] can also be used.
3MAPP (Model and Algorithm Prototyping Platform) is a well-structured,

MATLAB-based electronic and multi-physics simulator that we expect to
release freely as open-source by Dec 2014.



q⃗(x⃗(t))

dt
+ f⃗(x⃗(t), u⃗(t)) = 0⃗. (1)

x⃗(t) is the unknown of the circuit and u⃗(t) is the input. The derivative
term q⃗(x⃗(t)) describes memory characteristics of the circuit, such as
charge or flux. The non-derivative term f⃗(x⃗(t)) describes memoryless
characteristics of the circuit, such as voltage or current. Output of the
circuit y(t) is usually a linear combination of the unknown x⃗(t) (2)

y(t) = l⃗⊤x⃗(t). (2)
Given a periodic input, the output of the circuit will eventually become

periodic with the same frequency. And because non-linear devices in the
circuit will generate higher harmonics, the output of the circuit will also
contain distortions on higher harmonics. Distortion contribution from a
non-linear device can be illustrated in Fig. 1(a). The red bars on the
output distortion represent the distortion contribution from the red non-
linear device.

A non-linear device in a circuit can be described by (3)

y⃗D(t) =
−−→
NL(x⃗D(t)) =

dq⃗NL(x⃗D(t))

dt
+ f⃗NL(x⃗D(t)), (3)

where x⃗D(t) is the input of the device and y⃗D(t) is the output. q⃗NL

and f⃗NL respectively describe memory and memoryless characteristics
of the device.

The distortion contribution of a device is generated by its non-linearity.
So if (3) is linearized at its operating point x⃗∗

D and y⃗∗D as (4)

y⃗D(t) =
−−→
LIN(x⃗D(t)) =

dq⃗NL(x⃗
∗
D)

dx⃗D

dx⃗D(t)

dt

+ y⃗∗D +
df⃗NL(x⃗

∗
D)

dx⃗D
(x⃗D(t)− x⃗∗

D),

(4)

the device will no longer generate higher harmonics, and it will not
contribute distortions to the output.

In order to observe non-linear devices’ individual distortion contribu-
tion to the output, we can respectively replace each non-linear device
with its linearized counterpart and compare the difference of the output
distortion. To do this, we assign a new parameter β to each non-linear
device. As shown in (5)

y⃗D(t) = (1− β)
−−→
LIN(x⃗D(t)) + β

−−→
NL(x⃗D(t)), (5)

β is the combinational factor of the original non-linear device’s output
and the linearized device’s output. If β is 0, the device becomes the
purely linearized model . If β is 1, the device is still the original non-
linear model By adjusting β between 0 and 1, we will be able to observe
the non-linear device’s individual effect on the output, as is illustrated in
Fig. 1(b).

Now the DAE (1) can be re-formulated as (6)
q⃗(x⃗(t), β⃗)

dt
+ f⃗(x⃗(t), u⃗(t), β⃗) = 0⃗, (6)

where β⃗ is the vector whose components are βi for each non-linear
device. This work has been implemented in Berkeley Model & Algorithm
Prototyping Platform (MAPP), a multi-physics simulator for compact
model and analysis algorithm development. In this platform, this im-
plementation can be done by adding a few lines of code completely on
DAE level, and no modifications on device models are needed.

B. Harmonic Balance adjoint sensitivity analysis
To compute the distortion of the circuit, Harmonic Balance (HB)

analysis is applied to obtain the periodic steady state solution of (6).
In HB, the periodic unknown x⃗(t) and input u⃗(t) are expanded into
truncated Fourier series as (7),

u⃗(t) =

M∑
k=−M

U⃗ke
j2πkf0t , x⃗(t) =

M∑
k=−M

X⃗ke
j2πkf0t, (7)

where M is the highest order of harmonics, f0 is the fundamental
frequency, {U⃗k} and {X⃗k} are the Fourier coefficients of x⃗(t) and u⃗(t).

The unknown x⃗(t) and the input u⃗(t) are both periodic, so q⃗(x⃗(t), β⃗)
and f⃗(x⃗(t), u⃗(t), β⃗) are also periodic with the same frequency. Thus, we
can sample the periodic waveform of q⃗ and f⃗ and transform them to
frequency domain as truncated Fourier series as (8)

q⃗(x⃗(t), β⃗) =

M∑
k=−M

Q⃗ke
j2πkf0t,

f⃗(x⃗(t), u⃗(t), β⃗) =

M∑
k=−M

F⃗ke
j2πkf0t.

(8)

{Q⃗k} and {F⃗k} are Fourier coefficients of q⃗ and f⃗ .
It’s not hard to be convinced that {F⃗k} and {Q⃗k} can be regarded as

functions of {X⃗k} and {U⃗k}. Besides, on each harmonic Q⃗ke
j2πkf0t

and F⃗ke
j2πkf0t still satisfy the equation (6). So, we can derive Harmonic

Balance equations from DAE (6) as (9)

H⃗HB(X⃗N , β⃗)=

M∑
k=−M

j2πkf0Q⃗k(X⃗N , β⃗) + F⃗k(U⃗N , X⃗N , β⃗) ≈ 0⃗. (9)

N = 2M + 1 is the total number of harmonics. X⃗N is the vector built
by stacking {X⃗k} together. U⃗N is stacked by {U⃗k}. (2) is modified as
(10) Y⃗ N = (IN ⊗ l⃗⊤)X⃗N . (10)
Y⃗ N is stacked by Fourier coefficients of the output y⃗(t). l⃗⊤ is modified
as IN ⊗ l⃗⊤ where IN is an identity matrix of size N and ⊗ is the
Kronecker product operation. For example, if N = 3, IN ⊗ l⃗⊤ can be
expressed as the matrix in (11).

I3 ⊗ l⃗⊤ =

 l⃗⊤

l⃗⊤

l⃗⊤

 (11)

Distortion of the output can be obtained by solving (9). Furthermore,
we can compute sensitivity of the output Y⃗ N with respect to the
parameter β⃗ by adjoint sensitivity analysis. Consider a small perturbation
on the parameter ∆β⃗ causes a small change on the unknown ∆X⃗N , their
relationship can be described by (12)

H⃗HB(X⃗∗
N +∆X⃗N , β⃗∗ +∆β⃗) = 0⃗,

∂H⃗HB

∂X⃗N

∆X⃗N +
∂H⃗HB

∂β⃗
∆β⃗ ≈ 0⃗,

∆X⃗N ≈ −(
∂H⃗HB

∂X⃗N

)−1 ∂H⃗HB

∂β⃗
∆β⃗.

(12)

X⃗∗
N and β⃗∗ are the solutions of (9).
For simplicity, we will refer to the Jacobian of H⃗HB with respect

to X⃗N as matrix H, and the Jacobian with respect to β⃗ as matrix B.
Sensitivity of the unknowns X⃗N can be described as its derivative with
respect to the parameter β⃗ as (13)

∂X⃗N

∂β⃗
= lim

∆β⃗→0⃗

∆X⃗N

∆β⃗
= −H−1B. (13)

And sensitivity of the output can then be expressed as (14)
∂Y⃗ N

∂β⃗
= (IN ⊗ l⃗⊤)

∂X⃗N

∂β⃗
= −(IN ⊗ l⃗⊤)H−1B. (14)

Computing the inverse of the Jacobian H in (14) directly is very
expensive especially for Harmonic Balance equations. However in the
adjoint system (15)

∂Y⃗ N

∂β⃗

⊤

= −B⊤H−⊤(IN ⊗ l⃗), (15)

H−⊤(IN ⊗ l⃗) can be computed altogether by sparse matrix techniques
with linear time cost. And the following sparse matrix multiplication with
matrix B⊤ also takes linear time cost. Thus, the overall time cost for HB
adjoint sensitivity analysis to compute the sensitivity of the output is still
linear.

C. Quantification and computation of device distortion contribution
1) Quantification of device distortion contribution: First of all, set

all β⃗ in (9) to be 1⃗ and apply HB to compute the output Y⃗ N . The total
output distortion on each harmonic is illustrated in Fig. 1(a). To exclude
the non-linear effect of non-linear device i on the output, we can replace
it with its linearized counterpart by setting its βi to 0. Apply HB again
to compute the new output Y⃗

(i)
N . This output doesn’t include distortion

contributed by device i. Then, the distortion contribution from device i,
or

−→̃
Y

(i)
N can be justifiably quantified as (16)

−→̃
Y

(i)
N ≜ Y⃗ N − Y⃗

(i)
N . (16)

2) Rigorous but brute force method: This quantification naturally
leads to a rigorous but brute force method to compute distortion con-
tribution from each non-linear device. First set β⃗ as 1⃗ and apply HB
to compute the original output Y⃗ N . Then for each device i, set βi to
0. Apply HB on the modified circuit to compute the new output Y⃗

(i)
N .

Then use (16) to compute
−→̃
Y

(i)
N , the distortion contribution from device

i. To obtain distortion contribution of every device with this method,
HB needs to be applied for every non-linear device in the circuit, which
is computationally expensive. Therefore this brute force method doesn’t
scale as the number of non-linear devices in the circuit grows.

3) Proposed method using adjoint sensitivity analysis: Here we
propose a more efficient method to replace the brute force one. It also
starts with applying HB on the original circuit to compute Y⃗ N . But
next instead of computing the exact distortion contribution, HB adjoint
sensitivity analysis is applied to compute the derivative of the output with
respect to βi of each non-linear device. This derivative is then used as
an approximation of the device distortion contribution computed by brute
force method.

Now we will explain why this is a reasonable approximation. The
distortion of the output can be treated as a function of βi as

−→
Y

(i)
N (βi).



Alter the parameter βi from 1 to 0, the output
−→
Y

(i)
N (βi) will also change

from Y⃗ N to Y⃗
(i)
N . By definition, device distortion contribution defined

in (16) can be expressed as (17)
−→̃
Y

(i)
N ≜ Y⃗ N − Y⃗

(i)
N ≜ −→

Y
(i)
N (1)−

−→
Y

(i)
N (0). (17)

This can be computed by the brute force method precisely. And the
derivative of the outputwith respect to each βi can be expressed as
∂
−→
Y

(i)
N

(1)

∂βi
. This derivative can be computed efficiently by HB adjoint

sensitivity analysis
The relationship between the device distortion contribution and the

derivative approximation is illustrated in Fig. 2. As an example, the
distortion-β curve of a illustrative device is plotted as the blue solid
line in Fig. 2. The exact distortion contribution

−→̃
Y

(i)
N of the device,

which can be computed by the brute force method, is just the difference
between the starting and ending value of the distortion-β curve. Tangent
line of the curve is also plotted as the red dash line in Fig. 2. The

derivative approximation ∂
−→
Y

(i)
N

(1)

∂βi
, which can be computed by the

proposed method, is just the difference between the starting and ending
value of the tangent line. Generally, Distortion contribution from different
devices in a circuit usually have orders of difference. But for each device,

the derivative ∂
−→
Y

(i)
N

(1)

∂βi
is generally of the same order as the exact

distortion contribution
−→̃
Y

(i)
N . Thus, the derivative computed by the HB

adjoint sensitivity analysis is a good approximation to identify different
devices in the circuit.
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Fig. 2. Distortion-β curve of a il-
lustrative device is plotted as the solid
blue line. The tangent line of the curve
is plotted as the red dash line. Distor-
tion contribution of the device is mea-
sured as the difference between starting
and ending value of the distortion-β
curve, and the derivative approxima-
tion of the device is measured as the
difference between starting and ending
value of the dash line.

Besides, compared with pro-
viding circuit designers the ex-
act value of device distortion
contribution, it’s more valuable
to provide a sorted list of de-
vices ranked by the amplitude
of each device’s distortion con-
tribution. With this information,
circuit designers are able to iden-
tify the most significant distor-
tion contributors. In this sense,
the derivative approximation is
usually good enough to preserve
this ranking.

Compared with the brute force
method which needs to do HB
for every non-linear device and
1 HB on the original circuit, the
proposed method requires only
1 HB on the original circuit in
addition to ignorable time cost

for adjoint sensitivity analysis. So the scalability of this method is much
better then the brute force method.

III. VALIDATION ON REPRESENTATIVE CIRCUITS

In this section, we will apply the proposed algorithm to analyze two
sample circuits, a Bipolar Junction Transistor (BJT) differential pair with
active load and a 741 Operational Amplifier (OpAmp) with negative
feedback. We will first briefly introduce each circuit. Then we will discuss
the result of the proposed algorithm and compare it with the rigorous but
brute force method. In Section III-B, we will also see how the proposed
method help to improve the overall circuit linearity.
A. A BJT differential pair with active load

Fig. 3. Schematic of a BJT
differential pair

Fig. 3 is the schematic of a BJT
differential pair with active load. In
this circuit, Q7 and Q6 form a cur-
rent mirror and Q7 provides a con-
stant current for Q5 and Q4. Q5 and
Q4 are differential pairs that transfer
the differential input to the output.
Q2 and Q3 are two PNP transistors
that form active load, and they are bi-
ased by Q1 such that current through
Q2 and Q3 are half of the current
through Q7. Output of the circuit is
define to be Vout+ − Vout−. Supply
voltage Vdd is 5V . Common mode
voltage source V1 supply a DC voltage of 1.2V to shifts Vout+ and Vout−
to the middle such that the output can have largest range. Differential
input is provided by V2, which in our experiment, is a sinusoidal signal.
Frequency of the input is 1kHz and amplitude is 1.3mV .

Fig. 4. Frequency domain
output of the differential pair

Apply Harmonic Balance analysis on
the original circuit to compute the output
of the circuit. Frequency domain results
are shown in Fig. 4. Distortions on even

harmonics are low due to differential
output cancellation. But on odd har-
monics, for example the 3rd harmonic,
distortion can be measured as large as -36dB.

Fig. 5. Distortion contribution to
the 3rd harmonic of the output from
each transistor

To analyze the distortion con-
tribution to the 3rd harmonic
from each device, adjoint sensi-
tivity analysis is applied to the
circuit and its result is shown as
the red bars in Fig. 5. Amplitude
of distortion contribution of each
device is plotted along y-axis,
and devices are sorted by the am-
plitude of distortion contribution
along x-axis. It can be observed that Q7 and Q6 contributed least
distortion. As current mirror, they are working in at the DC operating
point such that their non-linear effect can be ignored. Same is true for
Q1. Q2 and Q3 as active load contribute some amount of distortion. But
because their VBE are fixed by Q1, they are not contributing as much
distortion as Q4 and Q5. Inputs to Q4 and Q5 change dramatically that
their non-linear effect can no longer be ignored.

The brute force method is also applied to compute each device’s exact
distortion contribution and the result is shown as blue bars in Fig. 5. For
devices such as Q5, brute force method computes a similar yet different
amplitude of distortion contribution. However the ranking provided by
brute force method is the same as the proposed method. A more precise
comparison between the values computed by both method can be found
in Table.I.

TABLE I
DEVICE DISTORTION CONTRIBUTION ANALYSIS ON THE DIFFERENTIAL

PAIR
HB adjoint Brute Force

Q5: −2.560e−3−j5.223e−6 Q5: −7.007e−3−j1.599e−5
Q4: −1.548e−3−j5.383e−6 Q4: −6.825e−3−j1.570e−5
Q3: −8.766e−5−j1.690e−5 Q3: −9.512e−5−j1.706e−5

Q2: −8.488e−5−j1.705e−5 Q2: −9.183e−5−j1.720e−5
Q1: −1.184e−10−j4.622e−12 Q1: −1.184e−10−j4.604e−12
Q7: −2.255e−14+j1.806e−12 Q7: −2.095e−14+j1.837e−12

Q6: +5.737e−14+j1.023e−14 Q6: +6.911e−14+j2.372e−14

CPU time: 344s CPU time: 1148s
From Table.I we can also learn that CPU time of the proposed

algorithm is about 3.3X faster than the brute force method. The circuit
contains 7 non-linear devices, and by rough estimation, the brute force
method should be about 8X slower than the proposed method because it
requires 1 HB on the original circuit and 7 HB for every non-linear device
in the circuit while the proposed method requires only 1 HB in addition
to trivial extra amount of time cost for adjoint sensitivity analysis. The
reason that brute force method is not 8X slower is because the solution of
the first HB on the original circuit is used as initial guess for successive
HB. After linearizing a single device, the new solution is still very close
to the original one. So Newton-Raphson takes less iterations to converge
and therefore successive HB also takes less time than the original HB.
But even so, applying HB for every non-linear device is still not scalable
for circuits with large number of non-linear devices.
B. An Operational Amplifier with negative feedback

Fig. 6. Schematic of a 741 Operational Amplifier

Fig. 7. Negative feed-
back configuration

741 Operational Amplifier [14] in Fig. 6 is
a more complicated example which contains
26 BJTs. Transistors such as Q11, Q12, Q10
etc.act as current mirrors and determine the
reference current of the circuit. Q1 to Q6
form a monolithic amplifier that drives follow-
ing stages. Q16, Q17 etc.form the intermediate
stage and Q14, Q20 etc.form output stage of the circuit. Q15, Q21, Q22,
Q24 etc.perform short-circuit protection and are normally off. Q23B is
designed to prevent excessive current flowing into base of Q16. As shown
in Fig. 7, negative feedback is used to obtain a closed-loop gain of −2X.
In the experiment, supply voltage Vdd and Vee are respectively 15V and



Fig. 8. Distortion Contribution to the 2nd harmonic of the output from each transistor

−15V . Input to this circuit is a sinusoidal signal. Amplitude of the input
is 6.7V and frequency is 1kHz.
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(b) Frequency domain and time domain output of the
OpAmp after removing Q23B

Fig. 9. Frequency and time domain output of the OpAmp

Harmonic Balance is applied
to this circuit to obtain output
distortion. Frequency domain re-
sults are shown in Fig. 9(a). Dis-
tortion can be observed on each
harmonic, descending slowly as
order of harmonic grows. On the
2nd harmonic, for example, the
distortion is about −47dB.

To analyze the distortion con-
tribution to the 2nd harmonic
from each device, HB adjoint
analysis is then applied and result
is shown as the red bars in Fig. 8.
Amplitude of distortion contribu-
tion of each device is plotted along y-axis and devices are sorted by
the amplitude of distortion contribution in descending order along x-
axis. We can learn from Fig. 8 that contribution from Q11, Q12 etc.are
below −200dB. This is because they basically act as current mirrors and
are working at the DC operating point. Therefore their non-linear effect
can be ignored. Besides, transistors such as Q15, Q21, Q22, Q24 etc.are
normally off, thus contribute little distortion as well. It’s no surprising
that contribution by Q1 to Q6 are significant. They by themselves form
a monolithic amplifier at the input stage thus suffer from violent shift of
operating point. What’s more, their contributions are also amplified by
successive stages. Q23B is identified as the most significant contributor,
which we will talk about later.

Brute force method is also applied and the result is shown as blue bars
in Fig. 8. Again, for devices such as Q23B , brute force method provides a
similar yet different amplitude of distortion contribution. It’s worth noting
that along x-axis, the device ranking provided by brute force method is
slightly different from the proposed method by placing Q6 after Q2 and
Q4. This is because exact distortion contribution from Q6, Q2 and Q4
are very close to each other, as listed in the right column of Table.II.
For devices whose contribution have orders of difference, approximation
computed by adjoint analysis is still good enough to distinguish them.
A more precise comparison can be found in Table.II. It also shows that
proposed algorithm is about 9X faster than the brute force method.

TABLE II
DEVICE DISTORTION CONTRIBUTION ANALYSIS ON THE OPAMP

Vin = 6.7V × sin(2π103t)

HB adjoint Brute Force
Q23B :−2.685e−5− j2.411e−9 Q23B : −1.071e−4− j1.167e−6

Q5: −1.451e−5 + j6.578e−8 Q5: −9.513e−6− j5.851e−8
Q1: +8.828e−6− j3.494e−8 Q1: +5.897e−6− j2.553e−8
Q3: +8.798e−6− j3.483e−8 Q3: +5.879e−6− j2.545e−8

Q2: −3.103e−6 + j1.992e−8 Q2: −4.292e−6− j2.735e−8
Q4: −3.094e−6 + j1.987e−8 Q4: −4.278e−6 + j2.726e−8
Q6: +4.277e−6− j9.374e−8 Q6: +4.175e−6 + j1.066e−7

CPU time: 830s CPU time: 7489s
Both methods in Fig. 8 reveal that Q23B is the most significant

distortion contributor, which is quite surprising. Because by design, Q23B
should just prevent excessive current flowing into the base of Q16 and
shouldn’t effect the output too much. With this clue, one possible option
to improve the overall circuit linearity is to remove Q23 from the circuit.
Experiment proves this option to be very effective. Distortion on second
harmonic falls dramatically to −119dB after removing Q23B , as shown
in Fig. 9(b).

IV. CONCLUSION

In this paper we proposed a new quantification of device distortion
contribution and an efficient method to compute its approximation. The
proposed method is easy to implement and requires no modification
on device models. It is computationally low cost, requiring only one
Harmonic Balance and one adjoint sensitivity analysis. Therefore, it
is scalable for circuits with large number of non-linear devices. This
work has been implemented in Berkeley Model & Algorithm Prototyping
Platform (MAPP), and will be released as open source.
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