
BEE: Predicting Realistic Worst Case and Stochastic Eye Diagrams

by Accounting for Correlated Bitstreams and Coding Strategies

Aadithya V. Karthik1,3, Sayak Ray2,3, and Jaijeet Roychowdhury1

1The Department of Electrical Engineering and Computer Sciences, The University of California, Berkeley, CA, USA
2The Department of Electrical Engineering, Princeton University, NJ, USA

3Corresponding authors. Emails: aadithya@berkeley.edu, sayakr@princeton.edu

Abstract—Modern high-speed links and I/O subsystems often employ so-

phisticated coding strategies to boost error resilience and achieve multi-
Gb/s throughput. The end-to-end analysis of such systems, which involves
accurate prediction of worst-case and stochastic eye diagrams, is a challenging
problem. Existing techniques such as Peak Distortion Analysis (PDA) typically

predict overly pessimistic eye diagrams because they do not take into account
the coding strategies employed. Monte-Carlo methods, on the other hand,
often predict overly optimistic eye diagrams, and they are also very time-

consuming. As an alternative, we present BEE, an accurate and efficient
computational technique that applies dynamic programming algorithms to
predict realistic worst-case and stochastic eye diagrams in modern high-
speed links and I/O subsystems – with neither excessive pessimism nor

undue optimism. BEE is able to fully and correctly take into account many
features underlying modern communications systems, including arbitrary
high-level transmit-side coding schemes and strategies, as well as various
low-level non-idealities introduced by the underlying channel(s), such as inter-

symbol interference (ISI) and crosstalk, asymmetric rise/fall times, jitter,
parameter variability, etc. Furthermore, BEE accurately captures the fact
that different received bits typically have widely different eye diagrams when
a channel is driven by correlated bitstreams generated by coding strategies.

We demonstrate BEE on links involving (7,4)-Hamming and 8b/10b SERDES
encoders, featuring channels that give rise to multiple reflections, dispersion,
loss, and overshoot/undershoot. BEE successfully predicts actual worst case
eye openings in all these real-world systems, which can be twice as large

as the eye openings predicted by overly pessimistic methods like PDA. Also,
BEE can be an order of magnitude faster (and much more reliable) than
Monte-Carlo based eye estimation methods.

I. INTRODUCTION

High-speed signaling/communications links are becoming increasingly

prominent in today’s cutting-edge mobile chipsets, SoCs, and other high-

performance hardware – including supercomputers, network switches

used in data warehouses, high-frequency trading systems, and so on.

Such links now play a significant role in determining key system-level

performance metrics such as speed, power consumption, and reliabil-

ity [1]–[4]. Over the past decade, the throughput of high-speed links has

improved dramatically, from a few Mb/s to multi-Gb/s. This improvement

is due to sophisticated error-resilient communications techniques that

rely on transmit pre-emphasis/de-emphasis, new coding and modulation

schemes, advanced equalization methods to compensate for inter-symbol

interference (ISI), improved PLLs, DLLs, and clock and data recovery

(CDR) solutions, advances in transceiver/link design with improved

noise/jitter mitigation, etc. [1]–[6].

However, the additional complexity accompanying the above advances

has made system design and optimization vastly more challenging, and

in many situations, existing computational solutions/design tools are no

longer adequate [1]–[3]. For example, a key task is to predict the eye

opening of a high-speed link [1], [2]; this has important implications for

noise margins and end-to-end BER analysis, choice of encoder/decoder

architecture, design-space exploration for the receiver’s front-end, etc.

Uncorrelated

bits

Linear and Time-invariant (LTI)

Analog Channel

Output Accurate WC eye

predicted by PDA

LTI

Fig. 1. Worst case eye diagram computation using PDA.

As depicted in Fig. 1, worst-case eye diagrams are often estimated today

using Peak Distortion Analysis (PDA) [1], [3], [7], which relies centrally

on the assumption that all possible bit sequences are allowed across the

channel. However, in modern high-speed links, it is often the norm to

apply coding strategies [2] to the bits being transmitted, e.g., 8b/10b

encoding, error correcting codes such as the Hamming codes, etc. Such

coding schemes are designed to improve error resilience by incorporat-

ing redundancy in the transmit bits. This significantly restricts the bit

sequences allowed across the channel, and as a result, the transmitted

bits become tightly correlated. This makes eye prediction by PDA

overly pessimistic, which can in turn lead to link over-design, increased

design/simulation/debugging costs, sub-optimal link operation, etc. PDA

also misses subtler effects, such as the fact that different received

bits can have widely different eye openings in the presence of coding

strategies (see §II-C).

Due to the above limitations of PDA, high-speed link engineers and

communications system architects typically resort to Monte-Carlo sim-

ulation to estimate eye openings. However, exhaustive enumeration of

all relevant bit sequences is often computationally infeasible, so only

a random subset of bit sequences is used for Monte-Carlo simulation.

This frequently misses important bit patterns and corner cases and often

predicts overly optimistic worst case eyes, especially if the system is being

designed for very low BERs (e.g., 10−12). Such overoptimism can lead to

serious problems downstream, e.g., increased system-level design/debug

time, underperformance requiring expensive post-silicon fixes, etc.

Correlated

bits

Linear and Time-invariant (LTI)

Analog Channel

Output PDA is pessimistic
LTI

BEE predicts

accurate WC eye

S1 S2

0

0

1
0

S0

0

0

M

Coding

Fig. 2. Worst case eye diagram computation using BEE.

In this paper, we present BEE, a technique that can efficiently find

worst-case and probabilistic eyes of high-speed links with restricted or

correlated bitstreams due to coding or other mechanisms. As Fig. 2 shows,

BEE takes a description of the restriction/coding mechanism in the most

general form, i.e., a finite state machine (FSM) [8], as well as a description

of the (linear) communications channel. It then analyses them together

to find the precise worst case eye, with neither pessimism nor optimism.

Typically, this eye opening is significantly bigger than the pessimistic eye

predicted by PDA. If the underlying system is probabilistic (e.g., due to

jitter, parameter variability, stochasticity in the coding mechanism etc.),

BEE can also predict important properties of the probability distribution

of the eye, e.g., mean, variance, and higher-order moments.

The core idea behind BEE is to label each node in the underlying FSM

with a realistic worst-case scenario, i.e., a sequence of bits terminating at

the given node with the highest cumulative cost due to ISI, jitter, etc. At

each iteration, the bit sequence associated with each node is expanded

by one bit, and this bit is calculated from previously computed worst

case sequences via an efficient dynamic programming [9] method. The

iterations are continued until the lengths of the computed bit sequences

exceed the memory of the underlying channel. At this point, the computed

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

4B-4

366

bit sequences are provably the worst-case scenarios for the link, and the

corresponding worst-case eye openings are returned. These eye openings

are actual worst cases; they involve neither excessive pessimism nor

undue optimism, unlike PDA or Monte-Carlo based approaches. Further,

BEE’s time complexity is linear in the size of the given FSM.

BEE provides link design capabilities that are far ahead of any existing

technique that we are aware of. It can quickly identify the exact

shape of the worse case eye, a capability that fits well with corner-

based design methodologies. Also, BEE can identify regions of the eye

diagram that correspond to a given probability of occurrence, depicting

them graphically to provide immediate visual intuition. Further, BEE

correctly captures the fact that different bits of a correlated bitstream can

have widely different eye openings, a feature needed for accurate BER

estimates. Also, BEE is orders of magnitude faster (and far more reliable

in predicting actual worst-case scenarios/probabilities) than Monte-Carlo

simulation, making it well suited for practical industrial designs. BEE cor-

rectly accounts for ISI, crosstalk, reflections/loss, overshoot/undershoot,

dispersion, jitter, and parameter variability – all of which need to be taken

into account to make a high-speed link robust in manufacturing practice.

BEE’s modelling framework is general and widely applicable: virtually

any encoder or error correcting scheme that can be implemented digitally

(whether using combinational or sequential logic) can be expressed as an

FSM, while the linear channel can be specified using SPICE netlists,

differential equations, Fourier/Laplace domain transfer functions, mea-

sured data, S-parameters, etc. We expect that replacing PDA’s pessimistic

eyes with BEE’s accurate ones during cutting-edge industrial link design

will have immediate wide-ranging impact; for example, the adoption of

simpler, lower-power encoders with no loss of performance. We plan to

release BEE under an open source license.

In this paper, we demonstrate BEE on two different types of links. The

first (§III-A) employs a well-known error correcting code, the (7,4)-
Hamming code, in the FSM; the channel is modelled as an RLGC

chain (a commonly used model for an I/O link/interconnect). The second

system (§III-B) employs an 8b/10b SERDES encoder – a very effective

and widely used encoding method employed in several modern standards,

including Gigabit Ethernet, IEEE 1394b, PCI Express, SATA and SAS,

USB 3.0, etc. [10]. The channel here is a weighted sum of smoothed

delays, representing a network of heterogenous transmission lines with

reflections, or a wireless channel with multiple obstructions and reflectors.

In both these cases, we demonstrate that PDA makes overly pessimistic

worse-case eye predictions, whereas BEE is accurate and exact (as

verified against Monte-Carlo). Indeed, the correct eye opening predicted

by BEE can sometimes be twice as large as the pessimistic opening

predicted by PDA, translating to an exponentially lower BER. We also

demonstrate how BEE accurately takes into account clock jitter and

parameter variability in the channel.

The rest of this paper is organized as follows. In §II, we first cover

key concepts such as the standard PDA algorithm, the use of FSMs to

represent bit correlations, etc., and then we present the core algorithms

and techniques underlying BEE. We demonstrate our results (on the two

systems described above) in §III, and we conclude in §IV.

II. CORE TECHNIQUE: NEW EYE ESTIMATION

ALGORITHMS UNDERLYING BEE

In this section, we first describe some key concepts such as how PDA

works, how FSMs can be used to model correlated bits, etc. Then we

present the core techniques and algorithms underlying BEE.

A. Peak Distortion Analysis for LTI channels driven by uncorrelated bits

As we mentioned in §I, PDA is a technique for determining WC eye

diagrams at the output of a Linear and Time-invariant (LTI) channel,

when the channel input is a sequence of uncorrelated bits (i.e., no coding

strategy is used). We now describe how PDA works.

Given an LTI channel, let h(t,T) denote the channel’s response to the

pulse u(t,T) (where t denotes time and T is the pulse width) given by:

u(t,T) =

{

1 if t ∈ (0, T]

0 else

Suppose we apply a sequence of bits {bi}
+∞
i=−∞ to the above system as

input, with each bit being active for a period T . The corresponding input

waveform xb(t,T) is given by:

xb(t,T) =
+∞

∑
k=−∞

bk u(t − kT,T)

The channel’s response yb(t,T) to the above input is given by:

yb(t,T) =
+∞

∑
k=−∞

bk h(t − kT,T)

The key idea behind PDA is that we can formulate the worst case (WC)

eye computation at time ∆ as a pair of optimization problems on a

truncated version of the output yb(t,T):

WC0 (∆, T) = max
{bi}

⌊∆/T⌋

∑
k=−M

bk h(∆− kT, T)

subj. to b0 = 0, and

(1)

WC1 (∆, T) = min
{bi}

⌊∆/T⌋

∑
k=−M

bk h(∆− kT, T)

subj. to b0 = 1

(2)

Here, M is a suitably chosen large integer that exceeds the memory of the

channel. The crux of PDA is that the solutions to the above optimization

problems are straightforward. The intuition is that, simply depending on

the sign of the h(.) term, we decide whether we want the corresponding

bit to be a 0 or a 1. For example, if we are trying to maximize the output

(i.e., the WC0 problem), and we find that h(∆− kT,T) is positive for

some k, we choose bk to be 1, and vice versa. In this way, we obtain

two optimal solutions, WC0 and WC1, for each ∆. By iterating over ∆,

these solutions trace the WC0 (lower half) and WC1 (upper half) of the

required worst case eye opening.

The above, of course, was possible only because the bits {bk} were

all uncorrelated, and could be set to 0 or 1 independently of one

another. On the other hand, if the bits {bk} are correlated (e.g., due

to a coding scheme), the entire method breaks down and more powerful

techniques (discussed below) are needed.

B. FSMs as a way to model fully-general coding schemes

Our chief concern in this paper is the computation of eye openings in

the presence of coding strategies/bit correlations. Therefore, we need a

general way to specify these coding schemes/bit correlations. In this

context, FSMs are powerful data structures that enable us to represent

virtually any kind of bit correlation/coding scheme in a fast, convenient,

and fully general way.

Example FSMs

S1 S2

0

0

1
0

S0

0

0

M1

(a)
S1

0

1

S0
M2

(b)

0

0

1

S2

Fig. 3. Example FSMs representing correlated bits/coding strategies: (a) an FSM
that transmits no two consecutive 1s, and (b) an FSM that transmits a 0 every
third bit.

Briefly, an FSM is a data structure that consists of finitely many discrete

states (e.g., see Fig. 3). Each FSM represents an automaton, i.e., a

4B-4

367

machine that behaves according to a pre-defined logic. At the beginning,

the FSM is in a start state. For instance, the FSMs of Fig. 3 each have

a start state labelled S0. FSMs also have arcs (or edges) between states

annotated with output bits, as Fig. 3 shows. The FSM operates in discrete

time (e.g., at every uptick of a periodic clock signal). At each time point,

the FSM transitions from its current state (along one of the arcs directed

outward from its current state), reaching a new state (wherever the arc

leads to). During this time, the machine’s output is the bit along the arc

that was just followed. For example, in Fig. 3 (a), if the FSM is in state

S0, it could transition to either S1 (producing a 1 as output), or it could

remain in S0 (producing a 0).

It is easy to see that the bit sequences produced by FSMs are correlated.

Each bit cannot be set independently of the others. For example, the FSM

of Fig. 3 (a) can never produce two consecutive 1s at the output. The

FSM of Fig. 3 (b) produces a 0 every third bit.

Also, it can be shown that virtually any digitally implementable system,

including complex communications protocols, encoders and decoders,

error-correcting codes, etc., can be represented as an FSM. This enables

us to use FSMs as a general way to specify arbitrary coding schemes/bit

correlations for eye diagram analysis.

C. Coding schemes: different eye openings for different bits

When a coding strategy is employed as part of a communications scheme,

different received bits can have widely different eye diagrams.

Fig. 4. An example to show that a transmit-side coding scheme can have a
profound impact on receive-side eye diagrams: different received bits can have
widely different eye diagrams. In this example, the encoder transmits a 0 every
third bit (Bit 2, Bit 5, Bit 8, etc.), which significantly improves the eye diagrams
for all bits at the receiver. PDA does not recognize this and is too pessimistic,
whereas BEE accurately accounts for each individual bit, producing worst case
eye diagrams that are consistent with Monte-Carlo simulations. This is true even
for the bits that are always 0, where the question of a worst case 1 does not arise.

For example, consider the coding scheme represented by the FSM

of Fig. 3 (b). This scheme produces a 0 at every third bit. Suppose this

FSM feeds into an LTI channel (e.g., an RLGC chain). The eye openings

for the received bits at the end of the channel will clearly be very different

from one another. For example, every third bit (constrained to be a 0),

will have only a one-sided eye opening (as there is no WC1 to consider).

Similarly, the bit immediately preceding the constrained-0 bit will have a

completely different eye opening from the bit immediately following the

constrained-0 bit. Fig. 4 depicts the eye diagrams for these bits, along

with the eye openings predicted by PDA (black) and BEE (red).

PDA only accounts for the channel, not the coding scheme. Therefore, it

predicts the same pessimistic eye for all bits, as Fig. 4 depicts. BEE, on

the other hand, fully accounts for the underlying coding strategy as well as

the channel, and therefore accurately predicts the worst-case eye opening

for each received bit (including the one-sided “eye” for the constrained-0

bit, as shown in Fig. 4).

D. BEE: Worst case eye prediction for correlated bits/coding schemes

Following §II-B, we model the underlying coding scheme as an FSM,

which produces a correlated bitstream that feeds into an LTI chan-

nel (Fig. 2). We now describe BEE’s algorithm for computing WC eye

openings for such systems.

The problem statement is almost identical to the PDA optimization

problems (1) and (2). The crucial difference, however, is that unlike PDA,

the bits {bk} cannot be independently chosen as 0 or 1; the bits have

to correspond to valid output sequences that can be produced by the

underlying FSM.

As mentioned in §I, the core idea behind BEE is to label each node

in the FSM with a realistic worst-case scenario, i.e., a sequence of bits

terminating at the given node with the highest cumulative cost. This is

best illustrated by an example. Let us imagine that the FSM in question is

the one shown in Fig. 3 (a). Further, let us assume that we are solving the

WC0 optimization problem, and that we would like to maximize 5b0 +
3b1 +2b2, where bit bi is the output of the FSM at time i (assume that

we begin at time 0 at state S0). If we were executing PDA, the solution

would be simple; since all the multiplying coefficients are positive, we

choose all the 3 bits (b0, b1, and b2) to be 1. However, this solution is

overly pessimistic, because we know from §II-B that our FSM can never

produce 2 consecutive 1s.

As §I mentions, BEE solves the above problem via dynamic programming.

In the above example, BEE starts with a simpler problem: what is the

maximum value of 5b0 that leaves us in each state (S0, S1, and S2)

at time 1? Clearly, the answer is 0 for state S0 (corresponding to the

bit sequence 0), 5 for state S1 (corresponding to the sequence 1), and

we cannot ever be in state S2 at time 1. At this stage, therefore, BEE

tags the states S0, S1, and S2 with the optimal bit sequences 0, 1, and

UNDEFINED, and the costs 0, 5, and UNDEFINED respectively.

Now BEE solves a slightly harder problem: what is the maximum value

of 5b0 +3b1 terminating in each state at time 2? Clearly, to arrive at S0

at time 2, we must either reach S0 at time 1 and stay there, or reach

S1 at time 1 and then transfer to S0. The first option yields a maximum

cumulative cost of 0, while the second yields a cost of 5 (a cost of 5 to

reach S1 at time 1, known from the previously calculated optimal solution

at S1, plus a cost of 0 going from S1 to S0). So BEE chooses the second

option, and tags S0 with the sequence 10 and the cost 5. Note how

BEE used the solution to the previous problem to build up a solution

to the current one. This is the crux of BEE’s dynamic programming

algorithm: reusing solutions to previously solved simpler problems to

gradually compute the entire WC eye. Thus, in this example, at the end

of the second iteration, the states S0, S1, and S2 are tagged with the

sequences 10, 01, and 10, and the costs 5, 3, and 5 respectively.

More generally, at each iteration, the bit sequence associated with each

node is expanded by one bit (or set to UNDEFINED), and this bit is

calculated from previously computed worst case costs. The iterations are

continued until the required optimization problem is solved, which occurs

when the lengths of the associated bit sequences exceed the memory of

the underlying channel. At this point, the computed bit sequences are

provably the worst-case scenarios for the link, and the corresponding

worst-case eye openings are returned.

For instance, in the above example, at the end of the final iteration, the

states S0, S1, and S2 are tagged with the sequences 100, 101, and 100,

and the costs 5, 7, and 5 respectively. Picking out the maximum, the

worst case cost is 7, corresponding to the worst case bit sequence 101.

By contrast, if we had used PDA, the worst case cost returned would have

been a pessimistic 10, corresponding to the (impossible) bit sequence 111.

Thus, not only is BEE’s WC prediction provably exact, but it can also

generate a certificate specifying the exact sequence of correlated bits

corresponding to the WC outcome. This is a very useful property; in

addition to providing an independently verifiable mathematical guarantee,

it also serves to benchmark other commonly used heuristics/algorithms

for WC eye estimation.

4B-4

368

We note that our implementation of BEE includes mechanisms for han-

dling asymmetric rise/fall times, jitter, stochasticity and parameter vari-

ability, etc. Each of these is accounted for by adding extra functionality to

the basic algorithm described above. However, due to space constraints,

we are unable to describe these added functions here. However, our results

below illustrate these additional capabilities of BEE using real-world

examples and test-cases.

III. RESULTS

We now apply the algorithms and techniques discussed above to perform

worst case and stochastic analysis of eye diagrams in systems that arise

in Signal Integrity, I/O and high-speed communications applications.

A. Worst case eye analysis of a (7,4)-Hamming encoded system

We now apply BEE to carry out WC eye diagram analysis of a (7,4)-
Hamming encoded communications scheme (a commonly used parity-

based error correcting code), over an LTI channel composed of a chain

of RLGC units (a lumped transmission line model) that captures inter-

symbol interference, crosstalk, overshoot/undershoot, dispersion, etc.

The (7,4)-Hamming encoder accepts 4 data bits (d1 – d4) in parallel, and

outputs a serial stream of 7 Hamming-encoded bits (p1 through p7). The

relationship between the output bits ~p and the data bits ~d is given by:

p1

p2

p3

p4

p5

p6

p7

︸ ︷︷ ︸

~p

=

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

︸ ︷︷ ︸

G

d1

d2

d3

d4

︸ ︷︷ ︸

~d

(modulo 2)

We now construct an FSM for the (7,4)-Hamming coding scheme above.

To do so, we observe that not all 7-bit combinations are valid Hamming

codewords. Indeed, although there are 128 possible combinations of 7

bits, only 16 of these represent valid codewords. These can be represented

using a prefix tree like FSM structure, as shown in Fig. 5.

1 0

01 010 10 10 10 1 01 01

0 1

0 10

1

1 0

0 1

10 1

0 1

1 01 0

1

1 0

0 1

0

1

0

1

0 1

0 1

1 0

0

1

0 1

0

1 0

0

1

0

0 1

0

1

0 1

0 0

0 1

1 0

1 1

1

0

Fig. 5. The (7,4)-Hamming encoder FSM based on the 16 codeword prefix tree.

The root of the prefix tree denotes the start state of our FSM. Every proper

prefix of each valid Hamming codeword corresponds to an internal node

in the tree (or a state in the FSM). The 16 leaves of the tree (representing

valid Hamming codewords) are looped back to the start state of the FSM,

which resets the encoder every 7 bits, making it ready to produce the

next 7-bit codeword.

The channel is an analog LTI system that consists of a chain of 30 RLGC

units, as shown in Fig. 6 below.

R

C

L

G

30 units
R

C

L

G

R

C

L

G l���C

u y

Fig. 6. A 30-unit RLGC chain used to model the analog channel following the
(7,4)-Hamming encoder.

The pulse response of the above channel is shown in Fig. 7.

0 1 2 3 4
Time (s)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
o
lt
a
g
e
s
(V
)

Pulse respo se of the (7,4)-Hamming RLGC chain

Input pulse u(t)
Channel response h(t)

Fig. 7. Pulse response of the 30 unit RLGC chain analog channel following the
(7,4)-Hamming encoder.

For the above “(7,4)-Hamming encoder + channel” system, we now

determine the WC eyes at the receiver using BEE. We also validate these

by carrying out a large number of Monte Carlo simulations. We also

apply PDA to the above system (which pessimistically assumes that the

bits are all uncorrelated), and compare its predictions against BEE’s.

The results are shown in Fig. 8. Note that each of the 7 bits produced by

the encoder (per codeword) gives rise to a differently shaped eye opening,

as discussed in §II-C. This is a direct consequence of the correlated nature

of the bits – which PDA is unable to account for. On the other hand, as

seen from Fig. 8, BEE accurately reproduces the true shape of the WC

eye for each received bit.

Further, in the experiment above, BEE was an order of magnitude faster

than Monte-Carlo. Also, even though we simulated thousands of bits

in our Monte Carlo runs, we were unable to generate the worst case.

But once the worst case sequences were discovered by BEE, we were

able to include them in our Monte Carlo runs and confirm that these

sequences indeed led to the worst case outcomes predicted by BEE.

This is true for many real-world systems: the number of Monte Carlo

runs needed to reliably generate worst case outcomes is often completely

impractical from a computational standpoint. In such situations, BEE can

offer valuable guidance in directing the search for the worst case.

B. Worst case eye analysis of an 8b/10b-SERDES system

We now apply BEE to an 8b/10b SERDES encoder, followed by a

behavioral channel macromodel (a cascade of tanh(.) smoothened delays).

In this system, the encoder accepts as input 8 data bits in parallel, and

produces as output 10 serialized bits. The encoded bits have some very

desirable correlation properties that often result in significantly improved

WC eye diagrams at the receiver. For example, it is guaranteed that no

more than 5 consecutive 0s or 1s will occur at any time in the bitstream.

This “normalization” of bits has a very positive impact on worst case eye

diagrams, a fact that is completely ignored by PDA.

3� �����
(
�� ��� � �����	 ��
�	��

3�

3�

P

A

P

A

8

8

8

8

8 �����
(
�� ��� � �����	 ��
�	��

Sa

Sb

Sa

Sb

2x 4x

3��� 9��

Total: 422 states

Fig. 9. An 8b/10b encoder FSM based on 5b/6b and 3b/4b codes.

The 8b/10b encoding is carried out in two stages, (i) a 5b/6b stage that

encodes the first five bits into a 6-bit word, and (ii) a 3b/4b stage that

encodes the last three bits into a 4-bit word. To avoid a streak of more than

4B-4

369

Fig. 8. Eye diagrams predicted by Monte Carlo simulation (various colors), by PDA (black), and by BEE (red) for the (7,4)-Hamming encoded communications
scheme of §III-A. It is clearly seen that BEE is able to produce exact and accurate worst case eye diagrams for the given system, unlike the overly pessimistic eye
diagrams predicted by PDA.

5 consecutive 0s or 1s, the encoder keeps track of a quantity called the

Running Disparity (RD), defined as the number of 1s minus the number

of 0s in the bitstream produced thus far (for details, see [10]). The FSM

model for the 8b/10b SERDES encoder is shown in Fig. 9. The FSM

has two start states (labelled Sa and Sb in the figure), corresponding to

RD being −1 and +1 respectively. As seen from the figure, the 5b/6b

encoding stage is implemented using 64 FSM paths (32 emanating from

Sa and 32 from Sb), each with 5 intermediate FSM states and a terminal

state that is one of the 4 green states shown in the figure. This is followed

by the 3b/4b encoding stage, which consists of 32 additional FSM paths

(8 paths emanating from each of the 4 green FSM states), that eventually

loop back to Sa or Sb after traversing 3 intermediate states each.

The pulse response h(t) of the channel following the FSM is given by:

h(t) =
N−1

∑
i=0

αi

(

1+ tanh(k(t − t
(1)
i))

2

)(

1− tanh(k(t − t
(2)
i))

2

)

Each term in the above summation represents a smooth “dead delay”,

with amplitude αi active during the time interval [t
(1)
i , t

(2)
i]. The pulse

response of the channel is shown in Fig. 10.

0.0 0.5 1.0 1.5 2.0
Time (ns)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
o
lt
a
g
e
s
(V
)

P lse response of the tanh(.) smoothed delay cascade channel

Inp t p lse (t)
Channel response h(t)

Fig. 10. Pulse response of the tanh(.) smoothed cascaded delay channel following
the 8b/10b SERDES encoder.

Similar to our analysis of the (7,4)-Hamming encoder §III-A, we now use

BEE to determine the WC eye diagram for the 8b/10b SERDES system

above. And just like the previous case, we see from Fig. 11 that BEE is

able to accurately reproduce the true shapes of the WC eye diagrams for

the given system (for all the 10 bits), whereas the predictions made by

PDA are overly pessimistic.

C. Jitter analysis and worst case eye diagrams

We now apply BEE to carry out jitter analysis of the systems above. Our

model for jitter is a random time shift of the channel output. Thus, if we

denote the output of the LTI channel by y(t), then the jittered output is

given by y(t −J(t)), where J(t) is the (time-varying) jitter in the system.

If J(t) is bounded, i.e., J(t) always lies in a range (say, between Jmin and

Jmax), then BEE’s worst case dynamic programming algorithm can be

modified to compute the worst case eye in the presence of jitter. Thus, by

setting different bounds on the jitter, we can use BEE to compute the jitter

tolerance of each bit in the system, i.e., the gracefulness of degradation

of the eye associated with each bit as jitter is gradually increased. This

is shown in Fig. 12, where we apply BEE to predict the worst case eye

of each bit in our (7,4)-Hamming system, as jitter increases from 0 to

±10% of the bit period T in gradual steps. At jitter being 0, the worst

case prediction simply reduces to the worst case prediction without jitter

(the black contours in the figure). However, as jitter increases, the eye

of each bit starts collapsing – into smaller and smaller concentric eyes

as shown in the figure. We believe that this kind of detailed information

regarding the tolerance of each bit to jitter can help designers come up

with optimal pre-emphasis/de-emphasis strategies, placement of active

buffers and boosters, more accurate BER analysis, etc.

D. Stochastic analysis of eye diagrams with parameter variability

We now introduce a source of randomness into our analysis, namely

parameter variability.

Fig. 13. Time-varying distribution of pulse response as a result of parameter
variability.

To model parameter variability, we sampled the parameters R, L, G, and

C of the (7,4)-Hamming system from independent Gaussian distributions

with suitable mean and variance. For a large number of such samples, we

computed the pulse responses h(.) as functions of time, and plotted them

on top of one another, yielding Fig. 13. From such data, we generated

a statistical model for h(.) and then applied BEE to carry out combined

stochastic analysis of this model with a probabilistic FSM model.

4B-4

370

Fig. 11. Eye diagrams predicted by Monte Carlo simulation (various colors), by PDA (black), and by BEE (red) for the 8b/10b SERDES encoded communications
scheme of §III-B. It is clearly seen that BEE is able to produce exact and accurate WC eye diagrams for the given system, unlike the overly pessimistic eye diagrams
predicted by PDA.

Lo� �o���� !�

fo� "#����

H#$% �o���� !�

fo� "#����

Fig. 12. Using BEE to predict the jitter tolerance/jitter margin of each bit in the (7,4)-Hamming system. The outermost eye diagram for each bit is the worst case
eye in the absence of jitter. As jitter is gradually increased (from 0 to 10% of the period T), the eyes start shrinking until the opening completely vanishes.

0.05 0.00 0.05 0.10 0.15
Time (ns)

0.5

0.0

0.5

1.0

1.5

V
o
lt

a
g
e
s

(V
)

Stochastic Analysis of Parameter Variability in the (7,4)-Hamming system using BEE

Fig. 14. Statistical characterization of a (7,4)-Hamming eye opening in the
presence of parameter variability in R, L, G, and C of the underlying RLGC
channel. The dashed line with the red markers is the time-varying mean of the
channel output. The colored bands each have a thickness of 0.3σ , where σ is
the time-varying standard deviation (square root of the variance) of the channel
output.

The resulting statistical eye characterization is shown in Fig. 14 (please

see the figure caption for more details).

IV. SUMMARY, CONCLUSIONS, AND FUTURE WORK

To summarise, we have developed and demonstrated BEE, a new efficient

technique for accurately computing worst case and statistical eye dia-

grams in high-speed links and I/O subsystems, in the presence of arbitrary

coding strategies, ISI, crosstalk, jitter, parameter variability, etc. To the

best of our knowledge, no such comprehensive analysis technique existed

prior to this work.

We have demonstrated BEE on some real-world designs (involving (7,4)-
Hamming and 8b/10b SERDES coding schemes), showing that BEE

is able to quickly and accurately predict actual worst case/stochastic

eye openings for each bit in these systems, unlike PDA which often

predicts overly pessimistic eye openings. In addition, BEE was an order

of magnitude faster (and much more reliable in obtaining actual worst

case eyes) than Monte-Carlo simulation.

In future, we would like to explore algorithmic refinements that will en-

able BEE to directly analyze error-correcting encoders, communications

protocols, and other Boolean systems (e.g., circuits expressed in Verilog,

or as And Inverter Graphs or Binary Decision Diagrams), without having

to first convert such systems into FSM form. Also, we would like to

release BEE to the community as open source software.

REFERENCES

[1] S. H. Hall and H. L. Heck. Advanced signal integrity for high-speed digital designs.
John Wiley & Sons, 2011.

[2] G. Balamurugan, B. K. Casper, J. E. Jaussi, M. Mansuri, F. O’Mahony, and J. Kennedy.
Modelling and analysis of high-speed I/O links. 32(2):237–247, 2009.

[3] B. K. Casper, M. Haycock, and R. Mooney. An accurate and efficient analysis method
for multi-Gb/s chip-to-chip signaling schemes. pages 54–57, 2002.

[4] J. E. Jaussi, G. Balamurugan, D. R. Johnson, B. K. Casper, A. Martin, J. Kennedy,
N. Shanbhag, and R. Mooney. 8-Gb/s source-synchronous I/O link with adaptive receiver
equalization, offset cancellation, and clock de-skew. 40(1):80–88, 2005.

[5] P. K. Hanumolu, G. Y. Wei, and U. K. Moon. Equalizers for high-speed serial links.
15(2):429–458, 2005.

[6] J. A. Davis and J. D. Meindl. Interconnect technology and design for gigascale
integration. Springer, Netherlands, 2003.

[7] http://download.intel.com/education/highered/signal/ELCT865/Class2 15 16 Peak
Distortion Analysis.ppt.

[8] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation, 2ed. Addison-Wesley, 2001.

[9] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms.
The MIT press, 2001.

[10] http://en.wikipedia.org/wiki/8b/10b encoding.

4B-4

371

