
STEAM: Spline-based Tables for Efficient and
Accurate Device Modelling

Archit Gupta, Tianshi Wang, Ahmet Mahmutoglu Gokcen, and Jaijeet Roychowdhury
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Emails: {architgupta,tianshi,amahmutoglu,jr}@berkeley.edu

Abstract— A common complaint from users of device models is that
the “better” the model, the longer it takes to simulate. Modelling
based on interpolation between sampled data points is attractive in
this context because it offers low model evaluation times. Although
such “table-based” modelling has a long history, important concep-
tual and implementation issues have been obscure in the literature.
These issues include: separating the algebraic (“DC”) and dynamic
(“charge/flux”) components properly; extrapolation outside sampled
regions; smoothness; accuracy vs. computation vs. memory trade-
offs; and suitability of the table-based model for various analyses
(such as DC, AC, transient, RF, etc., analyses).
In this paper, we clarify precisely what functions should be sampled
for a table-based device model to work properly in any analysis. We
re-visit interpolation, showing that well-implemented cubic splines
provide excellent smoothness and arbitrarily great accuracy at low,
almost-constant evaluation cost. However, memory requirements
increase with accuracy. We present a novel extrapolation scheme
using passivity concepts that aids convergence. Using Berkeley MAPP,
we demonstrate speedups of 150× in core BSIM model evaluations
(translating to overall simulation speedups of 6–18×) with relative
errors of 0.001%. Our approach can convert any existing device
model to a smooth/accurate table-based model with small, fixed
evaluation cost. Unlike previous work, our code will be released as
open source, serving as a platform for the community to evaluate
and experiment with table-based models quickly and conveniently.

I. Introduction

The need for accuracy in compact models of semiconductor
devices has been increasing as technologies have scaled and
operating speeds/frequencies have increased.1 As compact mod-
els have improved in their ability to accurately model a wide
range of technologies and physical effects, their sizes (in terms
of equations or lines of code) have also increased, leading to
longer device evaluation times and resulting overall slowdowns
in circuit simulation. For example, even high-level Verilog-A
descriptions of widely-used MOS models such as Berkeley Short-
channel IGFET Model (BSIM) and Penn State-Phillips (PSP)
model contain thousands of lines of code. It is largely because
of device evaluation cost that timing characterization of new cell
libraries in industry typically takes months, even using banks of
parallel computers. In analog/mixed-signal (AMS) design, faster
simulation has consistently been the top item on designers’ wish
lists.

The established way to develop compact models has been to start
with analytical treatments of the device’s underlying physics. To
faithfully reproduce measurements of real devices, it is usually
necessary to augment a purely analytically-derived model with ad-
ditional phenomenological equations and parameters that tune the
model to fit measurements. As new physical phenomena become
relevant with device scaling, analytical and phenomenological
updates are usually made to the compact model, therefore, the
compact model becomes larger and slower.

An alternative and very different philosophy for device modelling,
proposed early in the history of simulation [1–4], is to eschew
any attempt to understand the device’s physics, but instead, to
tabulate measured data from the device at a number of bias

1The role of crude, low-accuracy simulations has been shrinking- e.g., even
digital circuits today require analog-level accuracy during the design process,
while analog/RF simulations have always demanded the highest accuracy models
available.

points and interpolate between these for evaluation. Such “table
based” device models have the advantages of fast evaluation (since
they involve only table lookups and interpolation), simplicity and
generic applicability – in principle, they are easily applied to any
kind of device for which tabulated data is available, without the
need for equation development or any knowledge of its physics.
This is very attractive because developing analytical compact
models for modern nano-devices is typically a difficult and time
consuming activity, requiring a hard-to-find combination of spe-
cialized physics, numerical analysis, and programming expertise.

However, in spite of these attractions and many publications (start-
ing from the 1980s, see Section II for a brief review), table-based
models have been far less prevalent in practice than analytically-
derived compact models. Indeed, the general impression in the
device modelling community is that table-based models are not
adequate if accuracy is important, possibly because some of
the earliest work [1] focussed on very crude digital simulation
applications and did not address the issue of dynamics properly;
possibly also because of the high cost of memory in the early
years, of which significant amounts are required for high accuracy.
Most prior publications [1–7] focus in an ad-hoc manner on
one specific type of device (typically MOSFETs), rather than on
generally applicable techniques, obscuring important details that
can make the difference between whether a table-based model
works well or not. These details include how to model dynamics
correctly using tables; trade-offs between device evaluation time,
accuracy and memory requirements; and extrapolation outside
regions where tabular data samples are available.

Our main goal in this work is to evaluate whether analytical
compact models (like BSIM, MIT Virtual Source (MVS) etc.)
can be converted to table-based models for faster simulation
while maintaining the high accuracy important for virtually all
applications today. Our conclusion is that with proper formulation
and implementation, table-based models evaluate much faster than
the analytical compact models they are based on, while retaining
accuracy that is more than adequate for the vast majority of
simulation and design applications. For example, if we sample
the BSIM3 model to generate a table-based version with a worst-
case error of 0.001%, it evaluates about 150× faster; using the
table-based model for simulation yields speedups of 6-18× over
the original, depending on the analysis (see Section IV).2 Note
that prior work on table-based modelling [7] reports an overall
simulation speedup of only 1.6×. Moreover, with Spline-based
Tables for Efficient and Accurate device Modelling (STEAM), the
speedup is almost independent of the level of accuracy, i.e., one
can obtain even greater accuracies, if desired, without slowing the
table-based model down. Increasing accuracy does require more
memory, however.

We also clarify some important formulation and implementa-
tion questions that have been obscure in the literature. One
key issue, that has consistently been unclear in the previous
attempts at table-based modelling, is how dynamic components
(e.g., charges/fluxes) should be modelled as tables. Another issue

2A 150× speedup in device evaluation results in an overall simulation speedup
of an order of magnitude less because simulator overheads (such as MNA equation
formulation, sparse matrix solution, etc.) remain unchanged.

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

6A-1

463

is that the i − v curves of some novel nano-devices (such as
memristors and FE-FETs) feature folds or “negative resistance”
regions in their characteristics [8], i.e., for some values of bias,
multiple values of output current are possible. The question of
representing such multi-valued I/O relationships using tables has
not even been considered in past work. We show that the correct
way to model both DC and dynamic components of a device as
tables is simply to sample the fe, qe, fi and qi functions of its
ModSpec description.3 Moreover, using the ModSpec format to
represent table-based models ensures that the model is suitable
for any analysis (including DC, AC, transient, harmonic balance,
shooting and other future analyses). We use cubic splines for multi-
dimensional interpolation in this work as they provide accuracy
along with smoothness (for example, continuity of 1st and 2nd

derivatives), but our technique can easily be extended to include
other interpolation methods like cubic Hermite splines [6] or
monotonic piecewise cubic interpolation [3].

As noted in [10], a practical bottleneck in exploring new mod-
elling and simulation ideas has been the lack of a convenient
yet sufficiently powerful implementation platform that is openly
available. Possibly for this reason, actual implementations of
previous table-based models seem unavailable to download and
experiment with. The recently-released open source simulator
Berkeley MAPP [11], has, however, made quick and convenient
prototyping possible; moreover, it includes the ModSpec device
modelling system. We have implemented table-based modelling in
MAPP and used its simulation capabilities for speedup, memory
and accuracy explorations. Since MAPP (and our implementation)
are in MATLAB, all absolute run times reported here are expected
to be large compared to optimized implementations coded in
C/C++; however, relative speedups, as well as accuracy/memory
trade-offs, in C/C++ implementations are expected to be similar to
the results reported here. We plan on releasing our implementation
as open source (simultaneously with publication); our hope is that
it will help other interested workers verify and build upon this
work.

II. Background and Previous Work

A. Previous Work

Work on table-based device modelling dates back to the early
1980s. Splines were proposed in [3, 4] to interpolate branch
currents in 4-terminal MOSFETS; in [3] raw device evaluation
speedups of 3× were reported. Despite the fact that compact
models of the time were far simpler than those today, memory
requirements for tables were a significant bottleneck. In an attempt
to reduce memory usage, CAzM, a macromodelling simulator, was
developed in 1983 [1]. The basic idea of CAzM was to devise
table-based macromodels of entire sub-circuits containing many
devices but only a few external terminals. The sub-circuits were
simulated using DC analysis to build tables of i-v characteristics
at the external terminals. Since CAzM catered primarily to the
needs of elementary digital simulations, the modelling of charges
and dynamics was not emphasised.4

In [5], the authors attempted to address the issue of modelling
dynamics by separating the dynamic and algebraic components
of the terminal currents in a MOSFET as follows:

Iij(VDS , VGS , VBS) = IDC,ij(VDS , VGS , VBS)

+
d

dt
Qij(VDS , VGS , VBS) .

(1)

In (1), Iij is the current between nodes i and j in the model,
VDS , VGS , VBS refer to the drain, gate and bulk voltages relative
to the source, respectively; IDC,ij refers to the steady-state or
“DC” current for the given input voltage values and Qij refers to
the “charge/flux” as a function of the terminal voltages. While this

3ModSpec [9–11] is a recently-proposed formulation, with an openly released
API, capable of modelling any device from any physical domain.

4Modelling internal dynamics for a macromodel is, in essence, the very difficult
problem of nonlinear macromodelling [12–14].

approach is significantly more accurate than the approach taken
in CAzM, it still assumes that all the dynamics (e.g., charges)
can modelled at the external terminals, i.e., it ignores internal
nodes/states, which are critical for accuracy (see Section III-A).
More recently, in [6, 7], the authors briefly mention the usage
of charges (QDB , QGB and QSB) from the BSIM model, how-
ever, no explicit information about the system of equations that
represent the table-based model was provided.

[5] reports a speedup of only 1.4× in a SPICE implementation
using linear interpolation (which is fast), but their work suffered
from modelling errors of up to ∼40%. Using more accurate
interpolation methods resulted in their table-based model being
actually slower than the analytical compact models they were
derived from. [7],5 on the other hand, reports speedups in the
range 1.10 − 1.61× in simulations, with average errors of upto
0.5% in transient simulations. One of the downsides to most of
these attempts, besides the fact that none of them are openly
available for verification, is that it is very difficult to separate
the speedup due to the tabulation-interpolation algorithm from
the overall speedup, since this depends on the simulator being
used. In this paper, we have provided separate numbers for the
two quantities.

B. Relevant Background

1) Spline Interpolation

Splines are piecewise polynomials, used for interpolating a func-
tion from sample values provided at a number of sample points
or knots, e.g., a = x0 < x1 < ... < xn = b. A key
feature of spline interpolation is that it uses local polynomials,
i.e., separate polynomials between every pair of adjacent knots.
Unlike global polynomial approximations (which use a single
high-degree polynomial over the entire range [a, b]), separate low-
degree polynomials can achieve high accuracy while avoiding
artifacts such as the Runge phenomenon [15]. The local nature of
splines also leads to fast computation and localized memory access
properties during their evaluation. This is discussed in detail in
Section IV-D2.

Given a set of knots and sample values at the knots, a cubic spline
interpolant is not unique [15], but can be made so by imposing
a few additional constraints, typically at or near the first and
last knot points. So-called natural splines and not-a-knot splines
are two examples of splines that result from slightly different
constraints [15]. In Section III-B, we show that minor changes
to natural splines result in an interpolation scheme that provides
better performance in simulation.

Univariate splines can easily be extended to higher-dimensional
splines using tensor products [16]. However, the efficiency (in
terms of runtime) of interpolation is determined by the implemen-
tation. Consider a function (say f(x, y)) that has been sampled
over a rectangular grid of points and that we wish to approximate
with a tensor product spline, H. Let the dimensions x and y have
nx and ny sample points each. One of the ways to build H is
to build splines in x for each of the ny sample points and store
the resulting ny × 4nx coefficients. Interpolating for the function
value at an arbitrary point (p, q) requires us to evaluate all the
ny splines at x = p, then fit a spline in y with the resulting
values and evaluate it at y = q. While computation of the first
ny splines can be done once and stored for later reuse, the second
spline fit has to be done at the time of each device evaluation.
While this implementation is common in the literature (e.g., [7]),
it is computationally expensive because building splines requires
inversion of large matrices.

However, a different implementation with far superior computa-
tional properties is available [16].6 The key realization behind

5The authors seem confused about tensor product splines. In paragraph 4, line
9, they claim that for a tensor product spline, “only the coefficients of the first
interpolation dimension can be precomputed and reused”, which is not the case.

6The spline toolbox in MATLAB uses this superior implementation.

6A-1

464

this implementation is that the 4nx spline coefficients for each of
the ny y-samples are themselves functions of y. One can therefore
fit a spline for each of these coefficients. This results in a set of
16nxny coefficients which completely describe H. In other words,
H is a function of the form:

H = C3(y)x
3 + C2(y)x

2 + C1(y)x+ C0(y), (2)
where Ci(y) is a cubic function of y, the coefficients for which can
be precomputed as stated and stored. This makes spline evaluation
inexpensive and local. However, this is achieved at the cost of
more memory since now we need to precompute and store 16nxny

coefficients instead of the previous 4nx coefficients.

2) MODSPEC

In [9], it is shown that any device model can be completely
described using the equations

d

dt
qe((�x(t), �y(t)) + fe(�x(t), �y(t)) = �z,

d

dt
qi((�x(t), �y(t)) + fi(�x(t), �y(t)) = �0,

(3)

where �z are so-called explicit outputs of the device model, �y
are internal unknowns and �x (otherIOs) are all the inputs/out-
puts (IOs) that are not explicit outputs. These equations are
the basis for the MODel SPECification (MODSPEC) device
modelling system. MODSPEC constitutes a general and power-
ful underlying basis for any kind of device model, including
table-based ones. (3) is easily explained with a simple example.

�

�

p ni

diode(Is,Vth)

Fig. 1: Schematic of a diode with an
internal node i.

Figure 1 shows the schematic
of a diode. In the schematic,
diode(VD|Is, Vth) represents the
well-known diode equation re-
lating the current ID through
an ideal diode with the voltage
across its terminals (VD) as

ID = Is(e
VD

VTH − 1). (4)
(4) does not capture the effects
of junction capacitance and series
resistances in a real diode, which
make the model in Figure 1 more

realistic. However, these can be easily incorporated by augmenting
(4) to arrive at

d

dt
�0

︸︷︷︸

qe

+ (
vpn − vin

R
)

︸ ︷︷ ︸

fe

= ipn,

d

dt
Cvin
︸ ︷︷ ︸

qi

+ Is(e
Vin

VTH − 1)− (
vpn − vin

R
)

︸ ︷︷ ︸

fi

= 0.

(5)

In (5) vin is an internal unknown, corresponding to the branch
voltage between the nodes i and n in the schematic. The functions
fe and fi in (5) represent the algebraic (DC) components of the
model, while qe and qi represent the dynamic (charge) components.
The separation of explicit and implicit equations is also important
as they have different physical meanings. While the explicit
equations (formed by qe and fe) relate the terminal currents to the
state7 of the model, the implicit equations in this case represent
the underlying physical laws, i.e., Kirchhoff’s current and voltage
laws, at the internal nodes. Importantly, fe, fi, qe and qi are always
well-defined functions of their inputs, i.e., each of them has a
unique output for a given input. As a result, these functions are
well suited for sampling and table-based representation.

III. STEAM

In this section, we describe our contributions and solutions to
several implementation and conceptual issues that have kept
previous work on table-based models from reaching their full
potential.

7given by two variables, vin and vpn.

A. Table-Based modelling in MODSPEC

Interpolation schemes for table-based models implicitly assume
a functional mapping between the inputs to the model and the
interpolated output — i.e., each entry of the table should store
a single unique value. Past work has invariably used terminal
(external) voltages of a device as the inputs, whereas outputs have
been branch currents/conductances/charges, etc. In the context of
the diode-model discussed in Section II-B2, this translates to a
table-based model with vpn as the input and the branch current
ipn and capacitor charge Cvin as the outputs. Equation (5) points
to a very important fallacy in the assumption that the tabulation of
terminal voltages alone, accurately describes a model. The charge
on the capacitor C is not a function of the terminal voltage vpn.
Although it is a function of vin, it is not expressible as an algebraic
function of vpn directly. Ignorance towards such subtleties has
kept past approaches to table-based modelling from being accurate
or even correct. Typically, the charge at node i is calculated for
a DC operating for the terminal voltage vpn and is then placed
across the device terminals. Figure 2 shows the effect of such an
approximation on a transient simulation of the diode model (from
Figure 1) in series with a resistor being fed with a sinusoidal
input.

We have also confirmed that this approximation does not affect
the results of DC analysis. For DC analysis, the contribution of
the time-varying components, qe and qi, is often irrelevant. In
such a situation, the internal unknowns can be solved for as
algebraic functions of the terminal voltages using DC analysis.
If the algebraic solution is unique (i.e., no folds or “negative
resistance regions”), the outputs �z do have a functional relation
with the terminal voltage inputs. However, devices with folds,
such as FE-FETs and memristors[8], still cannot be modelled
properly using only external terminal inputs; internal unknowns
are necessary for DC modelling as well.

The MODSPEC formulation includes vin as an internal unknown,
making it is easy to express the charge as a function vin. In other
words, a table-based representation of a model is not well posed
if terminal voltages alone can be used as inputs. Tabulating all
the functions (fe/qe/fi/qi) as functions of both the otherIOs (�x,
or in this case, vpn) and the internal unknowns (�y, or in this case,
vin) is necessary for the model to be correctly represented.

0 1 2 3 4

TIME (in s) �10
-6

-0.1

0

0.1

0.2

0.3

0.4

O
U

T
P

U
T

(s
) Table-Based: e_in

Table-Based: e_out
diodeRC: e_in

diodeRC: e_out

Fig. 2: Showing the error in transient analysis
when internal unknowns in the diode-RC model
from Section II-B2 are ignored

Although in some
cases, it may be
possible to eliminate
the internal variables
analytically, this is
typically cumbersome,
and not guaranteed
to be possible.
Most mature MOS
models feature internal
nodes and unknowns
precisely because it

is impossible to express the model using terminal quantities
alone. With the functions fe, qe, fi, and qi, MODSPEC provides
completely general and flexible facilities for describing models.
Our approach towards table-based modelling simply creates
accurate table-based representations of these functions.

Building tables of spline coefficients: The most important reason
for pushing for table-based models is that the spline interpolant
constructed as in Section II-B1 can be used to evaluate all the
devices that share one set of process parameters. Moreover, this
table needs to be computed exactly once for one kind of device
and can be stored for later use. In most circuit simulations (esp.
transient analysis/dc-sweeps etc.), the solution space has a very
high degree of spatial locality [6]. This translates to code and
data locality for a device model. An efficiently implemented table-
based model can thus get a significant boost in performance by
using cache locality in modern processors (see Section IV-D2 for
details).

6A-1

465

B. Passive Extrapolation

It is well known that Newton-Raphson (NR), which forms the core
component of virtually any modern analysis, can query a device at
highly unphysical input values [17]. However, when NR eventually
converges to a solution, the state of the device at the solution
should be a physically feasible one, provided the device and circuit
have been modelled correctly. In this context, extrapolation plays
a very crucial role. It determines how quickly (if at all) NR will
return from an unphysical region to a region in which the device
is expected to operate and has been sampled for interpolation.
Most compact models have custom mechanisms for handling NR
convergence, collectively termed limiting methods. The key idea
behind limiting is to devise a smooth transition from the functions
that describe device behavior to polynomials or other functions
known to aid NR convergence.

For example, linear elements, like resistors and capacitors, con-
verge well under NR. One can, therefore, think of an extrapolation
scheme that allows a 2-terminal device to undergo a smooth
transition from its sampled region to behave asymptotically like a
resistor with a given resistance. In Section II-B1, we mentioned
that spline interpolation is not unique for a given set of sample
points and function values. We have devised a scheme called “pas-
sive extrapolation” that supplies additional constraints to spline
interpolation to not only make it unique, but to also undergo
a smooth transition and behave asymptotically like a linear or
quadratic device. As an example, we can define any extrapolation
slope for the diode model in Section II-B2, while maintaining
continuity and differentiability of the device functions fe, qe, fi
and qi over their entire domains.

It is important to note that the our extrapolation scheme can
guarantee passivity only for a 2 terminal device. This can be
achieved by setting the extrpolation slope to be the value of
the device function at the extrapolation boundary divided by
the distance of the extrapolation boundary from the origin. In
higher dimensions, where extrapolation involves tensor product
splines, passivity cannot be guaranteed. However, passive extrapo-
lation serves as a heuristic for Newton convergence by providing
flexibility in choosing an arbitrary value of extrapolation slope.
For extrapolation in higher dimensional splines (formed by a
tensor product of several 1-dimensional splines), each 1D spline
is extrapolated using passive extrapolation.

IV. Results

A. Models tabulated with STEAM

Because of its generic applicability, we are able to apply STEAM
to several device models, both simple and complex, including
BJTs, MOSFETs and custom models like RC segments and the
diode model in Section II-B2. The MOS models used in this paper
are BSIM3 (v3.2.4) and the MVS Model (MVS v1.0.1)[18]. Both
models have 2 internal nodes for representing the series resistances
at the drain/source. In our experiments, we connected the source to
the bulk node in order to reduce the dimensionality of the tables
we needed to make, effectively turning the 4-Terminal models
into 3-Terminal ones. The results in the upcoming sections figure
MOSFETs since these are the most relevant to industrial practice
and are expensive to compute.

B. Evaluating Model Functions

To assess speedup and accuracy, we first evaluated device func-
tions fe, qe, fi and qi and their derivatives. To build the spline-
based tables, we sampled the MOS models at uniformly spaced
values of VDS and VGS in the range [−3, 3]V with discretization
step sizes varying from 3mV to as coarse as 1V. Samples over
these grids were used to construct the spline interpolants. These
interpolants were stored and later reused for all the experiments
in the paper.

To estimate the error and speedup due to table-based modelling,
we evaluated the device functions and their derivatives at points
(vdsi, vgsj), that were randomly scattered in the region of interest,

1000 500 300 100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

10
-7

10
-5

10
-3

10
-1

10
1

10
3

M
E

A
N

 E
rr

o
r

(%
)

in
 e

s
ti
m

a
ti
n

g
 I

D
S

10
-2

10
-1

10
0

10
1

10
2

10
3

T
a

b
le

 S
iz

e
 (

in
 M

B
s
)

BSIM-NMOS

BSIM-PMOS

MVS-NMOS

MVS-PMOS

Static Memory

Fig. 3: Error in IDS(fe): table-based model vs. original compact model

i.e. (vdsi, vgsj) ∈ [−3, 3], for both table-based and original
models.

Figure 3 reports the percentage error in estimating the drain cur-
rent IDS and the static memory consumed by the tables generated.
We observed that for very coarse grained discretization steps, both
the value and the derivative are very inaccurate. However, the
accuracy rapidly increases as the discretization is refined. Also,
we observed that the error in derivative is more sensitive to the
discretization step than the function value itself. This is also
reflected in the sensitivity of AC analysis wrt the discretization
step size (Section IV-C3).

1000 500 300 100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

0

20

40

60

80

100

120

140

160

180

S
P

E
E

D
U

P
 i
n

 e
s
ti
m

a
ti
n

g
 I

D
S

BSIM-NMOS

BSIM-PMOS

MVS-NMOS

MVS-PMOS

Fig. 4: Speedup in computing fe at 992 points randomly scattered in the
VDS , VGS plane

Figure 4 shows the speedup in evaluating the device functions
using table-based models with spline interpolation as opposed to
evaluating the compact model itself. Significant speedup (>140×)
is observed even for the very large tables resulting from a 3mV dis-
cretization step. Since the evaluation points are randomly scattered
over the entire interpolation space, we see a slight degradation in
the speedup as table sizes increase, i.e., the discretization steps
become smaller. Later, in Section IV-D2, we show that these
effects are compensated by the spatial locality of the data that
is accessed in an analysis (like DC/transient etc.).

C. Using table-based models inside circuits

We performed a series of experiments to evaluate table-based
models for various analyses. We consider the three most com-
monly used analyses for circuit simulation, i.e., DC, transient
and AC. For each analysis, we describe suitable circuits and
demonstrate the results (speedup/accuracy) of table-based models
and our interpolation/extrapolation approach.

1) DC Analysis

We ran a DC sweep on a CMOS inverter circuit and a differential
pair circuit (Figure 6 and Figure 8 respectively). For the inverter,
VIN is swept from 0-VDD, whereas for the differential pair, the
input voltage VIN is swept in a neighbourhood (±0.1V) of the
common-mode voltage VCM , which is held constant at VDD/2.
Figure 5 shows the results for the inverter simulation. It is not
possible to distinguish the results from BSIM and our table-based
model (discretization step - 5mV) with the naked eye as the error
in simulation is limited to 8μV. We have compiled the error and

6A-1

466

speedup results for different step sizes and models in Section IV-D.

0 0.2 0.4 0.6 0.8 1

V
IN

(volts)

0

0.2

0.4

0.6

0.8

1

V
O

U
T

(v
o
lt
s
)

Table-Based: e_in
Table-Based: e_out

BSIM3.2.4: e_in
BSIM3.2.4: e_out

(a) VOUT V/s VIN for BSIM3.2.4 and table based model

Fig. 5: Analyzing the error in DC-Sweep for CMOS-Inverter

2) Transient Analysis

VDD

VOUT
VIN

Fig. 6: CMOS Inverter

We tested table-based models in tran-
sient analysis for an inverter, a differ-
ential pair and 3/7/31/101-stage ring os-
cillators. While ring oscillator circuits
do not require external inputs for the
purpose of simulation, the remaining cir-
cuits were appropriately biased and fed
with a small sinusoidal input (amplitude
0.1V, frequency 1kHz). For all these
circuits, we get very similar results from
the two models. This points to the fact
that for transient analysis, a compact-
model and a finely sampled table-based

model are identical. Figure 7 shows the error between BSIM3 and
its table-based model in the simulation of an inverter.

0 0.5 1 1.5 2 2.5 3 3.5 4

�10
-3

-6

-4

-2

0

2

4

6

8

�
V

O
U

T
(v

o
lt
s
)

�10
-6

������	
���
Fig. 7: Error in transient simulation for CMOS-Inverter biased at VIN = VDD/2

3) AC, shooting and harmonic balance

VDD

VIN

RL RR

DL DR

IS

S

VCM

Fig. 8: Differential pair

We ran an AC analysis (i.e. to analyze
the phase and magnitude responses) on
the CMOS inverter and a CMOS differ-
ential pair, biased at VIN = VDD/2 and
VIN = VCM = VDD/2, respectively.
Figure 9 shows the phase and magnitude
plots from the simulation of the table-
based model and the BSIM model.

We also tested our table-based models
generated with STEAM in some of the
more advanced analyses like shooting
and Harmonic Balance and saw substan-
tial improvements in both convergence

and speed.

D. Summary of Results

Figure 10 summarizes the speedup results for various analyses,
discretization steps and circuits. MVS is a far simpler model than
BSIM in terms of code complexity, therefore, it does not benefit

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

10
-4

10
-3

10
-2

10
-1

10
0

M
a
g
n
it
u
d
e
 (

d
B

)

Table-Based:e_DL
Table-Based:e_DR

Table-Based:e_S
BSIM3.2.4:e_DL

BSIM3.2.4:e_DR
BSIM3.2.4:e_S

(a) Magnitude response for MOS differential pair

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

P
h

a
s
e

 (
ra

d
ia

n
s
)

Table-Based:e_DL
Table-Based:e_DR

Table-Based:e_S
BSIM3.2.4:e_DL

BSIM3.2.4:e_DR
BSIM3.2.4:e_S

(b) Phase response for MOS differential pair

Fig. 9: Overlaid plots for AC Analysis on an Inverter and a differential pair for
comparing the behaviour of BSIM with a table-based model

100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

0

5

10

15

20

S
P

E
E

D
U

P
 i
n

 v
a

ri
o

u
s
 A

n
a

ly
s
is

BSIM-DC

BSIM-AC

BSIM-TRAN

MVS-DC

MVS-AC

MVS-TRAN

Fig. 10: Summary of speedup results for CMOS-Inverter and MOS differential
pair circuits

as much from table-based representation as BSIM. The piecewise
polynomial spline interpolation helps speed-up the simulation
process in several ways. The most prominent of these is the conver-
sion of a computation of device functions to table-lookup of spline
coefficients. The coefficients that are obtained from table lookup
are substituted in a cubic expression. This dramatically reduces the
computation that is required for calculating the charges/currents in
the device. Besides, the smoothness of cubic splines and passive
extrapolation cause the table-based model to require fewer NR
iterations for convergence.

CIRCUIT DC AC TRANSIENT

Inverter 0.5% 0.9% 0.03%

Differential-Pair 0.004% 0.05% 0.004%

TABLE I: Analysis of worst-case error for table-based BSIM3 in various circuits
and analyses

6A-1

467

100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

10
-3

10
-2

10
-1

10
0

10
1

10
2

M
E

A
N

R
E

L
E

R
R

O
R

 i
n
 v

a
ri
o
u
s
 A

n
a
ly

s
is

 (
%

)

10
0

10
1

10
2

10
3

T
a
b
le

 S
iz

e
 (

in
 M

B
s
)

BSIM-DC

BSIM-AC

BSIM-TRAN

MVS-DC

MVS-AC

MVS-TRAN

Static Memory

Fig. 11: Summary of error results: Averaged for CMOS-Inverter and MOS
differential pair circuits

1) Error V/s Memory

Figure 11 summarizes the error vs. speedup trade-offs involved
in table-based modelling. The worst-case error follows the same
trend as the average relative error. Specifically, for a 3mV dis-
cretization step, the worst-case error in simulation is reported in
Table I. Overall, the error in simulating an inverter is significantly
more than a differential pair and as a result, the inverter error
dominates the error plots in Figure 11.

While spline-based models are accurate enough for DC and
transient analysis even with coarse grained discretization, AC
analysis is very sensitive to the accuracy of the derivatives (i.e. the
Jacobian matrix). In Section IV-B, we observed that the Jacobian
approximation, in turn, is highly sensitive to the discretization
step. These experiments provide useful insights into the utility of
table-based models for different applications and provide a case
for them for accurate and efficient circuit simulation.

2) Cache Behavior

In order to see the impact of processor caches and spatial locality
of table accesses, we simulated circuits with increasing complexity
and with different sizes of tables. Table II shows the timing
profiles for simulations of 3 and 101 stage ring oscillators. Note
that many MOSFETs in a circuit typically share a single table and
more importantly, access very few portions of that table in a given
NR iteration [6]. Therefore, the data being accessed can usually
be accommodated in L1/L2 caches.8 This results in constant and
low computational requirements, regardless of table size, and can
be seen in Table II: the evaluation time for STEAM remains
unchanged (at 20s) for a 3-stage ring oscillator as the discretization
step is reduced by an order of magnitude, although table sizes
grow from 5.2 MB to 497 MB (See Figure 11). These observations
imply that memory accesses, which form the key component of
STEAM, are localized and continue to benefit performance even
as both the circuit complexity and table sizes grow. As the data in
Table II shows, raw device speedups are significantly higher than
those for the overall transient analysis.

Simulator overheads depend on a large number of factors, and in
this case, overshadow the benefits that can be reaped from table-
based models for large circuits. Since Berkeley MAPP is written in
MATLAB and designed to be an algorithm prototyping platform,
some of the components, like the Modified Nodal Analysis (MNA)
equation engine, consume an inordinate amount of time for
large circuits. With explicit memory management, pointers and
object-oriented programming, a simulator implemented in C/C++
can easily scale the overheads that we see in Table II. In an
efficiently implemented simulator, we believe STEAM can speed
up simulation by at least an order of magnitude across the board.

V. Conclusions and Future Work

We have shown that using table-based versions of modern compact
models can provide significant evaluation and simulation speedups,

8If this were not so, dynamic memory requirements would slow the simulation
dramatically as the circuit complexity increases.

CIRCUIT MODEL
Total

Model
Simulator

Time overhead

3-Stage

Ring

Oscillator

STEAM (5mV) 20.8 4.2 16.6

STEAM (50mV) 20.7 4.1 16.6

BSIM 82.7 72.3 10.4

101-Stage

Ring

Oscillator

STEAM (5mV) 259.6 14.6 245.0

STEAM (50mV) 256.9 14.4 241.5

BSIM 356.8 205.0 141.8

TABLE II: Runtime analysis for 3-stage and 101-stage Ring Oscillator circuits

while retaining accuracy as high as desired. Although memory
requirements for table storage grow with increasing accuracy, the
memory needed is practical even in low-cost computers today.
We believe that this work opens the door to an era of much faster
simulation without sacrificing accuracy, and may also ease the
flow of compact model development for device physicists.

References
[1] William M Coughran Jr, Eric Grosse, and Donald J Rose. Cazm: A circuit

analyzer with macromodeling. IEEE Transactions on Electron Devices,
30(9):1207–1213, 1983.

[2] AR Rofougaran, B Furman, and AA Abidi. Accurate analog modeling of
short channel fets based on table lookup. In Proc. IEEE CICC, pages 13–1.
IEEE, 1988.

[3] Tal Shima and Haruaki Tamada. Table look-up mosfet modeling system using
a 2-d device simulator and monotonic piecewise cubic interpolation. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2(2):121–126, 1983.

[4] James A Barby, Jiri Vlach, and Kishore Singhal. Polynomial splines for
mosfet model approximation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 7(5):557–566, 1988.

[5] Victor Bourenkov, Kevin G McCarthy, and Alan Mathewson. Mos table
models for circuit simulation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 24(3):352–362, 2005.

[6] Rouwaida Kanj, Tong Li, Rajiv Joshi, Kanak Agarwal, Ali Sadigh, David
Winston, and Sani Nassif. Accelerated statistical simulation via on-demand
hermite spline interpolations. In Proc. ICCAD, pages 353–360. IEEE, 2011.

[7] Xiao Li, Fan Yang, Dake Wu, Zhenya Zhou, and Xuan Zeng. Mos
table models for fast and accurate simulation of analog and mixed-signal
circuits using efficient oscillation-diminishing interpolations. TCAD: IEEE

Transactions on Computer Aided Design of Integrated Circuits and Systems,
34(9):1481–1494, 2015.

[8] Tianshi Wang and Jaijeet S. Roychowdhury. Well-posed models of memris-
tive devices. CoRR, abs/1605.04897, 2016.

[9] D. Amsallem and J. Roychowdhury. ModSpec: An open, flexible specifi-
cation framework for multi-domain device modelling. In Computer-Aided

Design (ICCAD), 2011 IEEE/ACM International Conference on, pages 367–
374. IEEE, 2011.

[10] T. Wang, K. Aadithya, B. Wu, J. Yao, and J. Roychowdhury. MAPP: The
Berkeley Model and Algorithm Prototyping Platform. In Proc. IEEE CICC,
pages 461–464, September 2015. DOI link.

[11] MAPP: The Berkeley Model and Algorithm Prototyping Platform. Web link.

[12] C. Gu and J. Roychowdhury. Model Reduction via Projection onto Nonlinear
Manifolds, with Applications to Analog Circuits and Biochemical Systems.
In Proc. ICCAD, pages 85–92, November 2008.

[13] M. Rewienski and J. White. A Trajectory Piecewise-Linear Approach to
Model Order Reduction and Fast Simulation of Nonlinear Circuits and
Micromachined Devices. In Proc. ICCAD, November 2001.

[14] N. Dong and J. Roychowdhury. General-purpose nonlinear model order
reduction based on piecewise polynomial representations. IEEE Trans. on

Computer-Aided Design, 27(2):249–261, February 2008.

[15] Jens Hugger. Institute for Mathematical Sciences University of Copenhagen,

Denmark (E-mail: hugger@math.ku.dk) May 24, 2007. Citeseer, 2007.

[16] Carl De Boor. A practical guide to splines, volume 27.

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes – The Art of Scientific Computing. Cambridge University Press,
1989.

[18] S. Rakheja and D. Antoniadis. MVS Nanotransistor Model (Silicon).
https://nanohub.org/publications/15, Oct 2014.

6A-1

468

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

