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Abstract—Ising machines have generated much excitement in
recent years due to their promise for solving hard combinatorial
optimization problems. However, achieving physical all-to-all con-
nectivity in IC implementations of large, densely-connected Ising
machines remains a key challenge. We present a novel approach,
DaS, that uses low-rank decomposition to achieve effectively-dense
Ising connectivity using only sparsely interconnected hardware.
The innovation consists of two components. First, we use the SVD
to find a l o w-rank a p proximation o f t h e I s ing c o upling matrix
while maintaining very high accuracy. This decomposition requires
substantially fewer nonzeros to represent the dense Ising coupling
matrix. Second, we develop a method to translate the low-rank
decomposition to a hardware implementation that uses only sparse
resistive interconnections. We validate DaS on the MU-MIMO
detection problem, important in modern telecommunications. Our
results indicate that as problem sizes scale, DaS can achieve
dense Ising coupling using only 5%-20% of the resistors needed
for brute-force dense connections (which would be physically
infeasible in ICs). We also outline a crossbar-style physical layout
scheme for realizing sparse resistive networks generated by DaS.

I. Introduction
Over the last decade or so, a new and exciting technology
called Ising machines has arisen for solving hard combinatorial
optimization (CO) problems. CO problems [1] are important
in a wide variety of practical applications, including protein
folding, optimal logistics for healthcare/military operations/-
transportation, chip routing, cyber-security and cryptography,
secure grids and communication networks, autonomous vehicles
and robotics, etc.. These problems are generally very difficult
to solve, e.g., they are typically NP-hard/complete [2]. It
has been shown that these problems can be mapped onto an
equivalent NP-hard CO problem known as the Ising problem
[3]. Ising machines, which use analog hardware to solve the
Ising problem, show great promise for outperforming digital
and software techniques for solving CO problems [4–13]. The
Ising problem is described using a weighted, undirected graph
where the nodes are called spins. As explained in Section II-A,
solving this problem corresponds to finding s p in v alues that
minimize a quantity known as the Ising Hamiltonian.

Depending on the application, the Ising graph may be densely or
sparsely connected, i.e., either there is all-to-all (or nearly all-to-
all) connectivity between the spins, or each spin is connected
to only a few other spins. Dense connectivity is generally
difficult t o a c hieve a t s c ale i n h a rdware; t h is i s especially
true for IC implementations of Ising machines [11, 13] as
the number of spins increases, due to the difficulty o f routing
O(n2) connections between n spins. This constitutes a serious
barrier to the development of scalable on-chip Ising machines
for problems that require dense connections. This problem does
not appear to have been considered, far less addressed, in prior
work on the subject, despite how important it is for practical
realization of Ising machines.

One such dense problem, important in telecommunications, is
the MU-MIMO (Multi-User Multiple-Input-Multiple-Output)

detection problem [14, 15]. The efficacy of Ising machines
for MU-MIMO has been demonstrated in simulation [16],
but building hardware to realize this promise, especially for
larger problems, runs into the issue of implementing dense
connectivity. It is essential to achieve dense Ising connectivity
at scale if practical Ising machine ICs that solve, e.g., the
MU-MIMO problem, are to become a reality.

In this paper, we devise a highly accurate method to represent
a useful class of dense Ising problems using only sparse on-
chip resistive networks. Such sparse networks are practical
to implement at scale on ICs. Our method exploits low-rank
structure in the matrix of Ising couplings (i.e., weights of the
Ising graph). This low-rank structure results in a singular value
decomposition (SVD) [17] where most singular values are
negligible. As a result, the matrix can be represented, with
very little error, using a truncated SVD that requires far fewer
nonzero values than the original dense matrix needs.

The next task is to map this SVD approximation onto a sparse
on-chip resistive network. We first devise a technique for doing
so when all required resistors are positive-valued. We use a
small number of Kirchhoff’s Current Law (KCL)-enforcing
auxiliary nodes that form bipartite connections with the spins.
We then show the current-voltage relationship between the spins
is equivalent to that from the truncated SVD. There are as
many auxiliary nodes as non-negligible singular values, so this
constitutes a sparse connectivity fabric when the Ising coupling
matrix has low-rank structure. We devise a mathematical
procedure for generating this sparse bipartite resistive network
from a truncated SVD of the Ising coupling matrix.

Typical Ising problems require a mix of positive and negative
resistors,1 the latter being complicated to implement physically.
We show that even negative values in the truncated SVD
mapping can be elegantly implemented using only positive
resistors. If each spin has a differential output, any connectivity
pattern can be realized using only positive resistors between
the auxiliary nodes and either the positive or negative spins.
Our sparse synthesis algorithm is thus able to treat any Ising
coupling matrix using only positive physical resistors.

We validate DaS on a range of MU-MIMO detection problems,
produced using MATLAB’s Phased Array System Toolbox [19,
20]. For large problem sizes, the MU-MIMO Ising coupling
matrix typically has low effective rank, i.e., many negligible
singular values. We achieve density reductions of ∼ 80 to 95%,
depending on the number of scatterers that interfere with the
communication link. The SVD approximation has very little
impact on the coupling matrix; the absolute sum of the element-
wise approximation error is less than 10−8 times the absolute
sum of the Ising weights.

We also illustrate a simple layout technique, based on a crossbar-

1Negative resistors [18] have a negative R in the Ohm’s Law relation V = IR.
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style physical architecture, that is suitable for implementing
the sparse, bipartite resistive networks generated by DaS. The
technique allows programmable physical interconnectivity, i.e.,
any arbitrary Ising problem with a low-rank structure can be
programmed onto the chip.

We believe the ideas embodied in DaS will be crucial for
feasibly implementing on-chip Ising machines for MU-MIMO,
especially as their sizes scale to address the needs of 6G and
future standards, and potentially for other dense Ising problems
as well. The remainder of the paper is organized as follows:

1) In Sections II-A and II-B, we outline the Ising problem and
the Ising formulation of MU-MIMO.

2) In Section II-C, we provide a brief summary of DaS and
the core results.

3) In Section III-A, we describe a densely-connected Ising
connectivity mesh and its current-voltage relationship.

4) In Section III-B, we describe the sparsification achieved by a
truncated SVD approximation of a matrix with low effective
rank. We show how to improve the sparsity achieved for
certain classes of matrices in Sections III-B1 and III-B2.

5) In Section III-B3, we obtain a bound on the approximation
error of the Ising Hamiltonian due to taking the truncated
SVD of the Ising coupling matrix.

6) In Section III-C, we map the truncated SVD onto a sparse
resistive network, describing how to implement negative
values in the SVD mapping in Section III-C1. We describe
various implementation details in Sections III-C2 to III-C4.

7) In Section III-D, we describe how to implement DaS as a
programmable network with a crossbar architecture.

8) In Section IV, we show results for various MU-MIMO
problems, demonstrating its effectiveness as the number
of spins scales.

II. Background and Overview
A. The Ising Problem
The Ising problem involves a weighted, undirected graph of n
spin nodes, where there are no self-loops. The value of spin i
is denoted si, and the weight between spins i and j is Ji j. �s
is the vector of spin values and J is the symmetric matrix of
Ising weights, known as the Ising coupling matrix.

The objective of the Ising problem is to minimize the Ising
Hamiltonian,

H(�s) =−1

2

n

∑
i=1

∑
j �=i

Ji jsis j, (1)

where the spins are restricted to be ∈ {±1}.
B. The MU-MIMO Detection Problem
The MU-MIMO (Multi-User Multiple-Input-Multiple-Output)
detection problem is an important problem in telecommunica-
tions that can be mapped to the Ising problem. In modern
wireless communication, multiple users, each with one or
more transmit antennas, simultaneously transmit to multiple
receive antennas. The received signals are, therefore, a noisy
combination of each user’s transmitted symbols. Because the
transmitted symbols are discrete, recovering them from the
received signals turns out to be a hard combinatorial optimiza-
tion problem, i.e., the discrete maximum-likelihood estimation
(MLE) problem. The subsequent paragraphs summarize how to
map the MU-MIMO problem to the Ising problem, allowing
it to be solved by an Ising machine [15, 16].

Consider a MU-MIMO problem with Nt transmitters and Nr
receivers. Let the transmitted signal be denoted by a vector

�x of length Nt , such that xi ∈ {±1}. The resulting vector of
received signals is

�y = HC�x+�n, (2)
where HC ∈ C

Nr×Nt is the channel transmission matrix and
�n ∈ C

Nr represents additive white Gaussian noise (AWGN).

HC, �y, and �n are complex, so we represent them using
real numbers by vertically stacking their real and imaginary
components:

HC,Re =

[
Re{HC}
Im{HC}

]
∈ R

2Nr×Nt , �yRe =

[
Re{�y}
Im{�y}

]
∈ R

2Nr ,

�nRe =

[
Re{�n}
Im{�n}

]
∈ R

2Nr .

(3)

In the detection problem, we would like to determine the
symbols �x that minimize the mean-squared error, given by

||HC,Re�x−�yRe||2 = (HC,Re�x−�yRe)
T (HC,Re�x−�yRe). (4)

To reach an Ising formulation for this minimization problem, we
want to write HC,Re�x−�yRe as a single matrix-vector product.
To do so, we define

ĤC,Re = [HC,Re −�yRe] , and x̂ =
[
�x
1

]
. (5)

With these definitions, (4) becomes
x̂T ĤT

C,ReĤC,Rex̂. (6)
As the objective of the Ising problem is to minimize

−1

2
∑
i, j

Ji jsis j =−1

2
�sT J�s, si ∈ {±1}, (7)

the MU-MIMO problem matches the Ising problem if

J =−2ĤT
C,ReĤC,Re, and �s = x̂. (8)

Ising machines, therefore, can be used to solve the MU-MIMO
detection problem.

The channel transmission matrix, and therefore the Ising
coupling matrix, is invariably dense. Although on-chip im-
plementations of dense Ising solvers are viable for smaller
problems, routing becomes infeasible as the problems scale.
Therefore, we wish to sparsify the MU-MIMO problem to make
it more amenable to large on-chip Ising solver implementations.

C. Overview of Our Method
We show, in Section III-B, that a singular value decomposition
(SVD) of a low-rank dense coupling matrix can yield a sparse
representation. To reach this sparse representation, we compute
the truncated SVD of coupling matrix J ∈R

n×n, J =UmΣmV T
m .

Um ∈ R
n×m, Σm ∈ R

m×m, and Vm ∈ R
m×n, where m is the

number of singular values above a certain threshold. This
threshold can be chosen such that the Ising coupling matrix
from the truncated SVD is almost identical to the Hamiltonian
of the original coupling matrix. If m� n, Um, Σm, and Vm have
far fewer values than those needed to represent a dense coupling
matrix; this is the provenance of the desired sparsification.

To use this sparse representation for on-chip Ising solvers, it is
crucial to map it onto a sparse resistive network. This process,
however, is non-trivial, especially if there are negative entries
in Um and Vm and if Um �= Vm (i.e., J is not positive semi-
definite), both of which are invariably the case in problems
of interest. We devised a general procedure to translate the
SVD representation to a sparse resistive network via a set of m
auxiliary nodes, as described in Section III-C. We also show,
in Section III-D, the basic idea behind how our scheme can
be laid out using a programmable crossbar-style architecture.

In Section IV, we show that Ising coupling matrices for many
MU-MIMO problems have a low-rank structure, especially
for large numbers of transmitters and receivers. As a result,
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they are amenable to sparsification using DaS. In general, the
sparsity of a MU-MIMO problem increases as the size of
the problem (number of spins) increases, as the number of
scatterers obstructing the communication channel decreases,
or as the spacing between individual transmitters or receivers
decreases. That sparsity increases as problem sizes increase is,
in particular, a desirable feature from the standpoint of scalable
Ising machine implementation.

III. Dense as Sparse
A. Dense Connectivity

+

−
vk

ik
+

−
v j

i j
R jk

Fig. 1: Example of an Ising Machine connectivity mesh.
In Figure 1, we illustrate a resistive mesh for implementing ana-
log Ising machine connectivity. If there is all-to-all connectivity,

this mesh has
n(n−1)

2 resistors. Each voltage source represents
a spin node; the Ising weights are encoded in the conductances
Jjk =

1
R jk

of the network [11–13]. Applying Kirchhoff’s Current

Law (KCL) at the output of every spin gives us( ⎡
⎣∑ j J1 j · · · 0

. . .

0 · · · ∑ j Jn j

⎤
⎦−

⎡
⎣J11 · · · J1n

...
. . .

...
Jn1 · · · Jnn

⎤
⎦
) ⎡

⎣v1
...

vn

⎤
⎦=

⎡
⎣i1

...
in

⎤
⎦; or

(D− J)�v =�i,

(9)

where D− J is the Laplacian matrix of the network.

We are concerned with the current-voltage relationship because,
in analog implementations of Ising machines, the mapping
vi �→ i j prominently defines the coupling from spin i to spin j
[11–13]. In Oscillator Ising Machines (OIM), for instance, the
current injection at spin j due to spin i (the transconductance
from spin i to spin j) determines the Ising coupling via the
oscillator’s phase response [11].

As D is diagonal, the D�v term does not represent any
interactions between spins. Instead, it constitutes resistive
loading on each spin node. The −J�v term encodes the weights
of the Ising problem that is being solved; the transconductance
matrix J is, in fact, the Ising coupling matrix.

Our goal is to utilize low-rank structures in the J matrix to
represent the current-voltage relationship in (9) sparsely, and to
translate the sparse mathematical representation to a physically
sparse network of resistive connections.

B. Low-Rank Decompositions of Resistive Connections
The Ising coupling matrix J may have low effective rank,
i.e., a large proportion of its singular values may be much
smaller than its largest singular value. Assuming that J has
m non-negligible singular values, its truncated SVD [21] is
J ≈UmΣmV T

m , where Um,Vm ∈ R
n×m and Σm ∈ R

m×m.

As J is a dense, symmetric matrix with zeros on the diagonals,

we require
n(n−1)

2 values to fully characterize J. Using the
truncated SVD, we can represent J using m(2n+ 1) values
(mn each for Um and Vm and m for Σm). If m� n, then this is
a sparse representation: we can represent J using much fewer

values than
n(n−1)

2 , with high accuracy, as seen in the examples
in Section IV. Here, we define sparsity as the number of values
(later, number of resistors) needed to represent J accurately

compared to the
n(n−1)

2 resistors required in Section III-A.

1) Improved Sparsity of the Truncated SVD for Positive
and Negative Semi-Definite Matrices

We can decrease the number of values required to represent the
truncated SVD of J by making J positive semi-definite (PSD) or
negative semi-definite (NSD), i.e., having only positive or only
negative eigenvalues [22]. If J is PSD, then its truncated SVD
is J =UmΣmUT

m . A symmetric NSD matrix can be represented
as the negative of a symmetric PSD matrix, so its truncated
SVD is J =−UmΣmUT

m .

As Vm is the same as or the negative of Um, J can be represented
using only m(n+1) values.

While J is always symmetric in Ising problems, it is generally
neither PSD nor NSD. We can, however, add a constant to the
diagonals of J to get a PSD or NSD matrix. For instance,

JPSD � J+αI, or JNSD � J+β I (10)
Additions to the diagonal of J do not affect the Ising problem,
since the diagonal contributes nothing to the Ising Hamiltonian
(1). So, we can replace J with JPSD or JNSD without changing
the parameters of the Ising problem.

Consider the case where J is PSD. We wish to minimize the
magnitude of α to increase the likelihood that JPSD has low
effective rank. As shown below, we achieve this by setting
α =−λmin(J), where λmin(J) is the smallest eigenvalue of J.

A matrix J ∈ R
n×n is PSD if and only if �xT J�x ≥ 0, ∀�x ∈ R

n.
Without loss of generality, let us consider �x such that ||�x||2 = 1.
Then, it is guaranteed that �xT J�x≥ λmin(J), with equality if �x
is in the span of the eigenvector corresponding to λmin(J).
Setting α =−λmin(J),

�xT JPSD�x =�xT J�x+α�xT�x≥ λmin(J)+α = 0. (11)

Thus, J+αI is PSD when α =−λmin(J). This is the minimum
value of α such that J+αI is PSD: if α <−λmin(J) and �x is
in the span of the eigenvector corresponding to λmin(J),

�xT JPSD�x =�xT J�x+α�xT�x = λmin(J)+α < 0. (12)
This scheme is generally effective if the largest negative
eigenvalue of J is sufficiently smaller than its largest positive
eigenvalue. Otherwise, adding αI to J will result in a substantial
increase in m, making the truncated SVD no longer sparse.

Likewise, to make J NSD, we set β =−λmax(J). In general,
making J NSD improves the sparsity if the low-rank decom-
position of the largest negative eigenvalue of J is much larger
than the largest positive eigenvalue.

2) Scaling U and V for Increased Sparisty
As we will see in Section III-C, our hardware implementation
requires fewer resistors than the m(2n+ 1) (for an arbitrary
matrix) or m(n+1) (for a PSD or NSD matrix) values in the
truncated SVD.

Let us consider an arbitrary, i.e., not PSD or NSD, Ising
coupling matrix. Instead of decomposing the coupling matrix
as J ≈UmΣmV T

m , we J ≈ GinDcGT
out, where Dc is the diagonal

matrix of the column sums of Gout (see Section III-C, specif-
ically Section III-C2 for implementation details, as well as
motivation behind the naming of these matrices). The columns
of Vm and Σm are scaled to obtain Gout and Dc such that
UmΣV T

m = GinDcGT
out and Dc is the diagonal matrix of the

column sums of Gout. So, we represent J using only 2mn
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values, as Dc is obtained from Gout.

For a PSD matrix, we represent JPSD as GDcGT , where the
columns of G are scaled such that UmΣmV T

m = GDcGT and Dc
consists of the column sums of G. In doing so, we represent
JPSD using mn values. Likewise, we can also represent an NSD
matrix using mn values.

3) Impact of the Truncated SVD Approximation on the
Ising Hamiltonian

In choosing m, the number of singular values to use, we
must examine the impact of representing J with a truncated
SVD on the Ising Hamiltonian. Let Ĵ =UmΣmV T

m be the rank-
m approximation of the coupling matrix. Define the Ising
Hamiltonians for the original and SVD-approximated coupling
matrices as

H(�s) =−1

2
∑
i�= j

Ji jsis j and Ĥ(�s) =−1

2
∑
i�= j

Ĵi jsis j, (13)

where �s,si ∈ {−1,1} is a vector of spin values and Ji j is the
element of J at row i, column j.
The error between H(�s) and Ĥ(�s) can be bounded as follows:

|H(�s)− Ĥ(�s)|=
∣∣∣∣∣−1

2
∑
i�= j

(Ji j− Ĵi j)sis j

∣∣∣∣∣
≤ 1

2
∑
i�= j
|(Ji j− Ĵi j)s js j|= 1

2
∑
i�= j
|Ji j− Ĵi j|.

(14)

Thus, if we would like to choose m to enforce some bound
on the approximation error of the Ising Hamiltonian, |H(�s)−
Ĥ(�s)|< ε , we can choose the minimum m such that

1

2
∑
i�= j
|Ji j− Ĵi j|= 1

2
∑
i�= j
|Ji j− (UmΣmV T

m )i j|< ε. (15)

C. Low-Rank Decompositions as Sparse Resistive Networks
In this section, we devise a method to represent the truncated
SVD of a matrix using a resistive network. This method
involves two sets of nodes with bipartite connections: spins and
auxiliary nodes, as shown in Figure 2. There are n spin nodes,
where n is the size of the Ising graph, and m auxiliary nodes,
where m is the effective rank of J, as defined in Section III-B.

The resistor between spin j and auxiliary node k, R jk, has

conductance G jk = R−1
jk .

v1

v2

v3

...

vn

e1

e2

...

em

R11

R
12

R32

Rnm

Fig. 2: Bipartite network.

Define the transconductance matrix

G �

⎡
⎢⎢⎢⎢⎢⎣

G11 · · · G1m

...
. . .

...

Gn1 · · · Gnm

⎤
⎥⎥⎥⎥⎥⎦, (16)

and define Dc and Dr as the di-
agonal matrices of the row and
column sums of G, respectively.
As in Section III-A and Figure 1,
define i j to be the current leaving the jth spin node.

To see how this formulation encodes the truncated SVD of
a matrix, let us examine the equations produced by applying
KCL at the the auxiliary and spin nodes. At the auxiliary nodes,

⎡
⎣∑ j G j1 · · · 0

. . .

0 · · ·∑ j G jm

⎤
⎦

⎡
⎣e1

...
em

⎤
⎦−

⎡
⎣G11 · · · Gn1

...
. . .

...
G1m · · · Gnm

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣

v1

...

vn

⎤
⎥⎥⎥⎥⎥⎦=�0; or

�e = D−1
c GT�v.

(17)

At the spin nodes,⎡
⎢⎢⎢⎢⎢⎣

∑k G1k · · · 0

. . .

0 · · · ∑k Gnk

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1

...

vn

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

G11 · · · G1m

...
. . .

...

Gn1 · · · Gnm

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

e1

...
em

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

i1
...

in

⎤
⎥⎥⎥⎥⎥⎦; or

Dr�v−G�e =�i.

(18)

Using (17) in (18), we obtain
�i = (Dr−GD−1

c GT )�v. (19)
As in Section III-A, we incorporate the loading terms, Dr�v,
into each spin unit.2 Comparing (19) with (9), we have J =
GD−1

c GT . This matches the form of the SVD of a positive
semi-definite matrix, JPSD =UmΣmUT

m .

1) Implementation of Negative Entries in G
v j+ = v j

+

−
v j

i j+

v j− =−v j

+

−
v j

i j−

Fig. 3: Differen-
tial spin node.

Although Um of the SVD of J can contain
positive and negative entries, G is comprised
of conductances and is thus restricted to pos-
itive values.3 In order to properly implement
the SVD, we must revise our formulation.

To do so, we use differential spin nodes,
i.e., each spin has a positive and negative
output. In the bipartite network (Figure 2),
we replace each spin v j with the spin pair
v j and −v j. A connection between ±v j and

auxiliary node ek is positive if there is a resistor R jk+ = G−1
jk+

between v j+ = v j and ek and negative if there is a resistor R jk−
between v j− =−v j and ek.

The transconductance matrix is now

G � G+−G− =

⎡
⎢⎢⎢⎢⎢⎣

G11+ · · · G1m+

...
. . .

...

Gn1+ · · · Gnm+

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

G11− · · · G1m−
...

. . .
...

Gn1− · · · Gnm−

⎤
⎥⎥⎥⎥⎥⎦.

We define Dc =Dc++Dc−, where Dc+ and Dc− are the column
sums of G+ and G−, respectively. Equivalently, Dr = Dr++
Dr−, where Dr+ and Dr− are the row sums of the respective
transconductance matrix.

For this setup, we examine the differential current4�id =�i+−�i−,
where �i+ is the vector of currents leaving the positive spin
nodes and�i− is the vector of currents leaving the negative spin
nodes. Performing KCL at the auxiliary nodes,

Dc�e− (GT
+�v−GT

−�v) = Dc�e−GT�v =�0; or �e = D−1
c GT�v. (20)

At the positive spin outputs, KCL produces the equation
�i+ = Dr+�v−G+�e, (21)

and, at the negative outputs, we have
�i− =−Dr−�v−G−�e. (22)

Taking the differential current,
�id = (Dr++Dr−)�v− (G+−G−)�e = Dr�v−G�e

= (Dr−GD−1
c GT )�v.

(23)

This is equivalent to (19), except that G can now hold
negative entries. As G = G+ − G−, positive entries in G
correspond to positive connections and negative entries to

2These loading terms do not affect the Ising problem or its Hamiltonian,
but circuits implementing Ising spins need to take the loading into account.

3While it is possible to approximate negative resistors using nonlinear
electronic circuits [18], these greatly increase the complexity of hardware
implementation and cannot be perfectly linear.

4It is the differential current that constitutes the coupling input into a spin
from another, as we show later in this section.
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negative connections.

Now, we must show that setting the differential current as in
(23) actually relates to the weights of the Ising Hamiltonian.
To do so, we linearize the positive and negative spin units
around their steady state waveforms, with�i+ and�i− as current
inputs. We examine the pair of spin nodes v j+, v j−, looking
at the current inputs i j+ and i j− in superposition.

First, we will determine the effect of i j+ on v j(t), setting i j− to
0. To demonstrate the core concept, we represent the positive
spin by the differential equation

d
dt

v j(t) = f (v j(t))+bi j+(t), (24)

for some nonlinear function f (·) and constant b.5 Assume that
the spin unit’s differential equation has steady state v js(t). We
then linearize (24) around this steady state to get

d
dt

Δv j(t) =
d
dt
(v j(t)− v js(t))

=
∂ f
∂v j

∣∣∣∣
v js(t)

Δv j(t)+bi j+(t),
(25)

where Δv j(t) represents the change in spin voltage from the
steady state due to small perturbation bi j+(t).
Now, we examine the effect of i j−, setting i j+ to 0. Assume
the differential equation governing the negative spin is

d
dt
(−v j(t)) = f (−v j(t))+bi j−(t); or

d
dt

v j(t) =− f (−v j(t))−bi j−(t).
(26)

Linearizing around the steady state −v js(t),
d
dt

Δv j(t) =−
(
− ∂ f

∂v j

∣∣∣∣−v js(t)

)
Δv j(t)−bi j−(t)

=
∂ f
∂v j

∣∣∣∣−v js(t)
Δv j(t)−bi j−(t).

(27)

Applying superposition, we add (25) and (27) to get

d
dt

Δv j(t) =

∂ f
∂v j

∣∣∣∣
v js(t)

+ ∂ f
∂v j

∣∣∣∣−v js(t)

2
Δv j(t)+b

i j+− i j−
2

=

∂ f
∂v j

∣∣∣∣
v js(t)

+ ∂ f
∂v j

∣∣∣∣−v js(t)

2
Δv j(t)+b

i jd

2
,

(28)

where i jd is the differential current of spin pair v j, −v j.

Therefore, the effective current input that determines the
dynamics of the voltage response Δv j(t) of each differential
spin unit is proportional to the differential current i jd .

2) Ensuring Column Sums of G Match Singular Values
To make the current-voltage relationship in (19) match that
of dense connectivity mesh in (9), we must have GD−1

c GT =
UmΣmUT

m , where J =UmΣmUT
m for a PSD Ising coupling matrix.

Now that we are able to set G to match Um, we must ensure
that D−1

c matches Σm, the diagonal matrix of singular values.

The most straightforward solution is to add a resistor from
each auxiliary node to ground. Denote the resistor from node
ek to ground by Rek , its conductance by Gek , and the diagonal
matrix of these conductances by De. Now, the KCL equations

5Any analog Ising machine spin can be represented by such a differential
equation [23].

at the auxiliary nodes are

Dc�e+De�e−GT�v = (Dc +De)�e−GT�v =�0; or

�e = (Dc +De)
−1GT�v.

(29)

The equation for the differential current�id is now
�id = (Dr−G(Dc +De)

−1GT )�v. (30)

Thus, we can set De such that (Dc +De)
−1 = Σm, or

Gek +∑
j

G jk++∑
j

G jk− = σ−1
k , (31)

where σk is the kth singular value of J.

If σ−1
k > ∑ j G jk++∑ j G jk−, then this method allows (30) to

match the truncated SVD of J without any added resistive load-
ing on the spin nodes. However, if σ−1

k < ∑ j G jk++∑ j G jk−,
then Gek must be a negative resistor. This, while possible to
implement, is design- and area-intensive.

Alternatively, we can scale the elements of G such that
GD−1

c GT = UmΣmUT
m , without any added resistors. Let us

denote the column sums of Um by Dc,U . We will set the
transconductance matrix G to UmDβ , where Dβ is a diagonal
matrix of scaling factors diag(β1, . . . ,βm) = Dβ . In this con-

figuration, βk multiplies the kth column of Um, so the column
sums of G are Dc = Dc,U Dβ .

To have GD−1
c G match UmΣmUT

m , we must have

UmDβ D−1
β D−1

c,U DβUT
m =UmD−1

c,U DβUT
m =UmΣmUT

m , (32)

so we must define Dβ such that

D−1
c,U Dβ = Σm =⇒ Dβ = Dc,U Σm. (33)

One disadvantage of this method is that, if the elements of
Dc,U Σm are too large, it could lead to excessive loading on
some spin units. This can be mitigated by scaling J by some
constant, positive factor γ .6 If Σ′m = γΣm is the singular value
matrix after scaling, we have Dβ = γDc,U Σm. The resistive
loading term on the spins is Dr�v, so we can choose γ to be
small enough such that the row sums of G = γUmDc,U Σm do
not constitute excessive loading.

3) Representing Negative Semi-Definite (NSD) Matrices
If the coupling matrix is negative semi-definite, we have JNSD =
−UmΣmUm. So, at the spin nodes, we must have the current-
voltage relationship

�id = (D− JNSD)�v = (D+UmΣmUT
m )�v, (34)

where D is a diagonal loading matrix.

To implement this formulation as a resistive network, we add
unity gain buffers between the spin nodes and the resistors
connecting them to the auxiliary nodes. We refer to the outputs
of these buffers as “buffered nodes”. The current output of
these buffers can then be reflected to the spin nodes via current
mirrors, such that the current leaving spin node v j+ is −ib j+.
For the purpose of this paper, we represent this process using
current-controlled current sources rather than showing the
detailed transistor-level implementation we have devised. As the
number of buffers and current-controlled current sources scales
linearly with the number of spins, they do not significantly
impede on-chip layout.

Applying KCL to the buffered nodes in Figure 4, we get the
same result as in (23):

�ib+−�ib− = (Dr−GD−1
c GT )�vb, (35)

where Dr and G are defined as in Section III-C1, �ib+ is the
vector of currents leaving the positive buffered spin nodes, and

6As this modification scales the Ising Hamiltonian by a constant, positive
number, it does not affect Hamiltonian minimization.
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v1+

ib1+ vb1+

v1−
ib1− vb1−

...
...

vn+ ibn+ vbn+

vn− ibn− vn−

e1

...

em

R
out,11+

R
out,1m−

Rout,nm−

−ib1+

i1+

−ib1−
i1−

−ibn+

in+

−ibn−
in−

Fig. 4: Formulation for representing NSD matrices, with buffers and
current-controlled current sources at each spin node.

�ib− is the currents leaving the negative buffered spin nodes.

As a result, the differential current�id at the spin nodes is
�id =−(Dr−GD−1

c GT )�vb = (−Dr +GD−1
c GT )�v. (36)

This matches the desired relation in (34).

4) Representing Arbitrary Matrices

v1+

vb1+

v1−
vb1−

...
...

vn+ vbn+

vn− vn−

e1

eb1

...
...

em ebm

Rout,11−

Rout,nm+

Rin,11+

Rin,nm−

Fig. 5: Bipartite network with buffers at every spin and auxiliary
node, allowing for unidirectional connections.
For coupling matrices that are not PSD or NSD (and cannot be
made PSD or NSD without sacrificing their low-rank structure),
we must implement J =UmΣmV T

m , where Um �=Vm. To achieve
this relationship, we add buffered nodes to each spin and
auxiliary node, as shown in Figure 5. The number of buffers
scales as n+m, so, as in Section III-C3, they do not form a
barrier to on-chip implementation.

We have resistors Rout, jk+ = G−1
out, jk+ from buffered spin

node vb j+ to auxiliary node ek, and an analogous setup
for a negative connection.7 Likewise, we have resistors
Rin, jk+ = G−1

in, jk+ from buffered auxiliary node ebk to spin v j+,
and an analogous setup for a negative connection. Define

Gin �

⎡
⎢⎣

Gin,11+ · · · Gin,1m+
... · · · ...

Gin,n1+ · · · Gin,nm+

⎤
⎥⎦−

⎡
⎢⎣

Gin,11− · · · Gin,1m−
... · · · ...

Gin,n1− · · · Gin,nm−

⎤
⎥⎦ ,

7The “in” subscript refers to resistors with current flowing into the spin
nodes, and the “out” subscript refers to current flowing out of the (buffered)
spin nodes into the auxiliary nodes.

Gout �

⎡
⎢⎣

Gout,11+ · · · Gout,1m+
... · · · ...

Gout,n1+ · · · Gout,nm+

⎤
⎥⎦−

⎡
⎢⎣

Gout,11− · · · Gout,1m−
... · · · ...

Gout,n1− · · · Gout,nm−

⎤
⎥⎦ ,

the row sum matrices as Dr,in and Dr,out, and the column sum
matrices as Dc,in and Dc,out.

Performing KCL at the (non-buffered) auxiliary nodes, we have

Dc,out�e = GT
out�v =⇒ �e = D−1

c,outG
T
out�v, (37)

as vb j = v j. At the (non-buffered) spin nodes, we get
�id = (Dr,in−Gin)�e = Dr,in�v−GinD−1

c,outG
T
out�v. (38)

This matches the desired relationship J =UmΣmV T
m , if we set

Gin to be proportional to Um, Dc,out to be proportional to Σm,
and Gout to be proportional to Vm.

D. Analog DaS Crossbar Programmable Implementation
DaS can be implemented in a programmable fashion using
variable resistors and a crossbar switch architecture. Pro-
grammability is essential in order to use the same chip to
solve multiple problems that fit within a maximum number of
spins and feature low-rank structure.

A simple physical layout scheme for programmable connectivity
is depicted in Figure 6. The spins are laid out horizontally,
and the horizontal wires represent the auxiliary nodes.8 Each
square is a switch potentially connecting a spin to a variable
resistor leading to an auxiliary node. There are M layers of
switches and M auxiliary nodes, where M is the maximum
effective rank we choose to allow.

v1+

R 11
+

v1−

R 11
−

· · · vn+

R n1
+

v1−

R n1
−

e1

R 12
+

R 12
−

· · ·

R n2
+

R n2
−

e2

R 13
+

R 13
−

· · ·

R n3
+

R n3
−

· · ·

e3

Fig. 6: DaS crossbar implementation for 3 possible auxiliary nodes.

IV. Results
We demonstrate results on a range of MU-MIMO detection
problems, where the channel transmission matrix is produced
via MATLAB’s scatteringchannelmtx function in the
Phased Array System Toolbox [19, 20] and the Ising coupling
matrix is defined as in (8).

There are several parameters that define a MU-MIMO detection
problem. First, the number of transmitters and receivers
determine the shape of the channel transmission matrix and
therefore the size (number of spins) of the Ising problem. The
number of spins is equal to the number of transmitters, plus one.
The behavior of the channel transmission matrix is primarily
shaped by the spacing between transmitters and receivers (in
number of wavelengths) and the number of obstructors (i.e.,
scatterers) in the channel. In general, the channel transmission

8This simple layout is to illustrate the concept; in practice, the spin nodes
are typically laid out in a rectangular grid, and a few layers of interconnect
will be needed. Also, though Figure 6 shows the crossbar architecture concept
for a PSD matrix, it is easily extended to support arbitrary coupling matrices.
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matrix is smoother for smaller spacing between transmitters
or receivers and for fewer obstructors.

In Figures 7 to 9, we plot the Ising coupling matrices for
65-spin MU-MIMO problems (64 transmitters, 128 receivers)
with different sets of parameters. For the sake of plotting,
we omit the last row and column of J, as these tend to be
several times larger in magnitude than the rest of the Ising
weights. Figure 7 shows the coupling matrix produced in the
case that the spacing is small and there are few scatterers (0.1-
wavelength spacing and 5 scatterers). This coupling matrix is
very smooth and follows an almost sinusoidal pattern. The
coupling matrix in Figure 8 has the same spacing as Figure 7,
but with 15 scatterers instead of 5. The matrix, although still
smooth, has more variation in the magnitude and location of its
peaks and troughs. In Figure 9, we show the opposite end of the
spectrum: relatively spaced out transmitters or receivers, and
many scatterers for the size of the problem (0.45-wavelength
spacing and 50 scatterers). This matrix is not very smooth at
all, due to the larger spacing and high number of scatterers.

Fig. 7: Ising coupling matrix J for a MU-MIMO problem with 64
transmitters, 128 receivers, 5 scatterers, and 0.1 wavelengths between
adjacent transmitters or receivers.

Fig. 8: J for 64 transmitters, 128 receivers, 15 scatterers, and 0.1
wavelengths between adjacent transmitters or receivers.

The MU-MIMO problem (for certain choices of parameters) is
well-suited for DaS for two reasons. First, for relatively smooth
MU-MIMO Ising coupling matrices, there are many negligible
singular values, i.e., the matrix has low effective rank. Second,
the coupling matrix is nearly negative semi-definite: its largest
negative singular value is much greater in magnitude than
its largest positive singular value. So, we use the method in
Section III-B1 to make J NSD before performing the truncated
SVD. This means that we can implement an Ising machine for
MU-MIMO on-chip using mn resistors, where n is the number

Fig. 9: J for 64 transmitters, 128 receivers, 50 scatterers, and 0.45
wavelengths between adjacent transmitters or receivers.

of spins (number of transmitters, plus 1) and m is the effective
rank of J. We choose m such that the approximation error on
the Ising Hamiltonian is less than 10−8 times the absolute sum
of the Ising weights (see Section III-B3).

We performed DaS on MU-MIMO problems with different
sets of parameters, choosing m as described above. We then
calculated the relative density of each DaS representation: the
number of resistors used in DaS divided by the number of
resistors required for dense connectivity, i.e., nm

n(n−1)/2
= 2m

n−1 .

In Figure 10, we fixed the number of scatterers at 20 and
calculated the density of DaS for spacings of 0.05, 0.25, and
0.45 wavelengths, varying the number of transmitters. Overall,
the density decreases as the number of transmitters increases.
For smaller numbers of transmitters, larger spacing results in
higher density, but spacing makes little to no difference as the
number of transmitters increases to several hundred. All three
curves converge to ∼ 8% density.

In Figure 11, we fixed the spacing to be 0.45 wavelengths
and examined problems with 5, 25, and 45 scatterers. As in
Figure 10, we varied the number of transmitters, and saw
that the density decreases with more transmitters. The density
increases with the number of scatterers. The curves for each
number of scatterers get closer together as the number of
transmitters increases, but they do not converge to the same
value. The curves with 5, 25, and 45 scatterers converge to
∼ 2, 9, 18% density, respectively.
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0.25 Wavelength Spacing

0.45 Wavelength Spacing

Fig. 10: Normalized number of resistors needed to represent J (1 is
dense) vs. number of transmitters, for various spacing. The number
of scatterers is fixed at 20.

A. Hierarchical Decomposition
Many matrices representing electrostatic and electromagnetic
processes have Green’s functions that are smooth in the far
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Fig. 11: Normalized number of resistors needed to represent J (1 is
dense) vs. number of transmitters, for various numbers of scatterers.
The spacing is fixed at 0.45 wavelengths.

field. As a result, although they do not have low effective rank,
they have a low-rank structure in off-diagonal blocks.

For Ising coupling matrices derived for such processes, we
compute the SVD of matrix blocks as follows:

1) We compute the SVD of J and take note of its effective rank
m (the number of singular values above a certain threshold,
determined based on the value of the largest singular value).

2) The number of values needed to represent the SVD of J is
Nv = mn if J is PSD or NSD, and Nv = 2mn otherwise.

3) Divide J into four equally-sized blocks:

J
(

1 :
n
2
,1 :

n
2

)
, J

(
1 :

n
2
,

n
2
+1 : n

)
, (39)

J
(n

2
+1 : n,1 :

n
2

)
, J

(n
2
+1 : n,

n
2
+1 : n

)
. (40)

4) For each block, recursively compute its rank map.
5) Denote the number of values required to represent each

sub-block as Nv1, Vv2, Nv3, and Nv4. If Nv1 +Nv2 +Nv3 +
Nv4 < Nv,i.e., sub-dividing J decreased the density of the
representation, set Nv = Nv1+Nv2+Nv3+Nv4 and return the
recursively-determined rank map. Otherwise, return the SVD
of the full J matrix.

The SVD of each matrix block can be implemented in hardware
via the process in Section III-C4.

We examine J � AT A, where A is the discretized Green’s func-
tion of some asymptotically smooth electromagnetic process.
This discretized Green’s function plays the same role as the
scattering channel matrix H in the MU-MIMO problem, so
we take the product AT A to produce an Ising coupling matrix.

For the sake of demonstration, we will approximate the Green’s
function by the sum of matrices of the following form:

A�(i, j) =

{
1

|i− j−�| , i− j �= �

0, i− j = �.
(41)

In Figures 12 and 13, we show the results of recursively
decomposing various size-512 matrices of the form J = AT A.
We measure the density of each block as the number of resistors
required to implement it in sparse hardware divided by the
number of resistors required for dense connectivity (essentially,
m
n ). Blocks of J are colored according to their density; cyan
denotes sparser blocks and magenta denotes denser blocks.

Recursively subdividing these matrices, we achieved a density
of 21.36% for A = A25 and a density of 28.52% for A = A400+
A100. Although we did not need this hierarchical low-rank
decomposition method for MU-MIMO problems, it can serve
as a useful component of our DaS toolbox of sparsification
methods for other classes of dense real-world Ising problems.

Fig. 12: Decomposition of J = AT A, where A = A25.

Fig. 13: Decomposition of J = AT A, where A = A400 +A100.

V. Conclusion
In this paper, we have presented Dense as Sparse (DaS), a
method that uses techniques from linear algebra to implement a
dense Ising coupling matrix as a sparse resistive network. DaS
has two key innovations: using a truncated SVD to sparsify
the coupling matrix and synthesising the sparsified form on-
chip. This synthesis consists of a bipartite interconnection, with
relatively few resistors, between spin and KCL-enforcing auxil-
iary nodes. DaS can utilize positive/negative semi-definiteness
of the Ising coupling matrix to increase sparsity. Results on
the MU-MIMO detection problem in telecommunications yield
sparsities of ∼5%-20% for size-1000 problems, with essentially
no loss of accuracy in coupling. Programmable physical fabrics
implementing DaS-generated sparse resistive meshes are easily
laid out physically on ICs. As such, DaS offers considerable
promise for overcoming a critical roadblock in IC-based Ising
machines: implementing dense interconnections at scale.
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