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Abstract—Over the last several years, Oscillator Ising Machines
(OIMs) have been shown to heuristically solve NP-hard combi-
natorial optimization (CO) problems, most notably MAX-CUT.
In this paper, we show that OIMs are capable of solving Multi-
User Multiple-Input-Multiple-Output (MU-MIMO) detection, an
important real-world problem in telecommunications, achieving
near-optimal Symbol Error Rates (SERs). Our results are obtained
using CPU- and GPU-based simulation; the latter features a
parallelizable event-based algorithm for the generalized Kuramoto
equations that reduces OIM simulation times by about 6× without
losing accuracy. We also find that good SER results are obtained
if 6 or more bits are used to quantize the Ising problem’s coupling
weights. We provide runtime, throughput and energy consumption
comparisons of different implementations and algorithms for
MU-MIMO detection, including an OIM emulator chip we had
reported earlier. Our results provide useful guidance for designing
analog OIM ICs tailored for MU-MIMO detection.

I. Introduction
Combinatorial optimization (CO) is an enabling technology in
many fields that impact modern life, including communication
networks, drug/vaccine design, healthcare, delivery logistics,
smart grids, etc.. However, practical problem sizes have kept
outpacing available computational power by large margins. As
a result, there has long been interest in ways to speed up CO.
Many practically-important CO problems are computationally
difficult (e.g., NP-complete [1]). Such problems can be recast
[2] in a standard mathematical form, the Ising model [3–5].
The model is simply a weighted graph, i.e., a collection of
nodes/vertices and branches/edges between pairs of nodes, with
each branch having a real-number weight. Each node (termed a
“spin” in this context) is allowed to take one of two values, either
+1 or -1. Associated with this graph is a cost function, called
the Ising Hamiltonian, obtained by multiplying the weight of
each branch by the values of the two spins it connects to, and
summing over all branches. The “Ising problem” is to find spin
configurations with the minimum possible Hamiltonian value.
For many practical problems, finding a spin configuration with
a Hamiltonian close to the minimum possible is also useful.
Note that the Ising problem is NP-hard/complete [6, 7]. Many
long-standing problems such as protein folding in biology,
finding the optimal artificial neural network for a given set of
training data, optimal strategies for playing the game Go, the
discrete maximum-likelihood (M.L.) problem, and all 21 of
Karp’s list of NP-complete problems [1] have Ising incarnations
[2].
Over the last decade, a class of hardware Ising solvers (known
as Ising machines) has emerged as a promising means to
accelerate solutions to these classically difficult computational
problems. The premise of Ising machines is that specialized
hardware implementing the Ising computational model can
solve many classes of NP-complete problems faster than

classical algorithms (such as semidefinite programming [8]
and simulated annealing [9, 10]) run on digital computers.
Ising machines first came into prominence with the D-Wave
quantum annealer and the Coherent Ising Machine (CIM).
A D-Wave quantum annealer [11] with 2000 spins has been
available commercially for several years, with a 5000-spin
version recently announced. CIM [12, 13] with 2000 spins
has been successfully demonstrated at NTT Research Labs
[14], with larger systems under active development. Though
without question tours-de-force of technology and science
that have established the field of Ising machines and inspired
follow-on technologies, D-Wave quantum annealers and CIM
are not ideally suited for all applications, being physically
large, expensive, and difficult to miniaturize or scale to larger
problems. For example, the CIM/DOPO scheme involves pulsed
lasers and frequency doubling crystals, and is about the size of
a rack for a size-2000 machine [14]; D-Wave machines require
an operating temperature under 80mK, are the size of several
large racks, and are said to cost in the range of $15M.
In 2016, Wang and Roychowdhury discovered that networks of
oscillators represented by Generalized-Kuramoto (or Gen-K)
models can solve Ising problems (heuristically) [15]. In this
scheme, each of the N binary variables (spins) of the Ising
problem is encoded by the phase (relative time delay) of an
oscillator; the weighted edges of the Ising model are embedded
as couplings between the oscillators. They showed that such
systems naturally minimize a Lyapunov function that closely
approximates the Ising Hamiltonian. This ability stems from
the collective behaviour of the oscillators involving two types
of injection locking (Fundamental and Sub-Harmonic Injection
Locking—FHIL and SHIL), a generic synchronization-inducing
property exhibited by the oscillators.

Fig. 1: An example network of 8 oscillators with various positive or
negative coupling strengths Ji j. Each oscillator can be characterized
by its phase relative to a reference oscillator (e.g., oscillator 8).
From a practical deployment perspective, OIM has compelling
advantages over previous Ising machines. It can be implemented
using plain electronics (in particular, standard CMOS in non-
cutting-edge technologies) in very small form factors, especially
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compared to CIM and quantum annealers. Indeed, prototype
electronic hardware implementations of OIMs have been built
that find good solutions of Ising problems in milliseconds
[16, 17]. OIMs are orders of magnitude cheaper than prior
Ising machines—this, together with small size and easy mass
production, greatly broadens the potential applicability of Ising
machines.

Fig. 2: An illustration of a Multiple User Multiple In Multiple Out
(MU-MIMO) setup. Multiple users transmit their data, x⃗, to a receiver
with multiple antennae, where the signal y⃗ is measured. Transmission
occurs over several paths, characterized by the channel matrix H.
In this paper, we report the performance of OIMs on an
important problem in wireless communications, the MU-MIMO
(Multi-User Multiple-Input-Multiple-Output) detection problem.
As shown in Figure 2, modern wireless communication settings
involve multiple users with single/multiple transmit antennae,
using the same resources (time and frequency) to transmit
to a receiver equipped with multiple receive antennae. As a
result, each received signal consists of a noisy superposition
of several users’ transmitted symbols. MU-MIMO ‘detection’
is the problem of recovering the originally-sent symbols given
the set of signals received. Solving exactly for the most likely
transmitted symbols, i.e., the M.L. (Maximum Likelihood)
solution involves solving a hard CO problem [18, 19]. This is
too computationally expensive to be practical; hence, heuristic
methods that use much less computation, such as LMMSE
(“linear minimum mean-square error”), are universally used
even though they do not recover transmitted symbols as
accurately as M.L.. Here, we report OIM simulation and
hardware performance results on the MU-MIMO detection
problem, and show that OIMs have the potential to achieve
near-optimal symbol error rates.
The rest of the paper is organized as follows. We first provide
background information regarding the Ising problem, FHIL and
SHIL, OIMs, and the MU-MIMO problem (Sec. II). In Sec. III,
we present CPU and GPU simulation methods of OIMs for
MU-MIMO detection. Note that the coupling weights in an
OIM need to be quantized for a hardware implementation;
we explore the impact of finite-resolution couplings on the
performance of OIMs in this section as well.1

This is followed by an event-based algorithm that can further
reduce simulation times (Sec. IV). Conventionally, an ODE
system is solved at incremental time steps starting from a given
initial condition [21]. We present a parallel, event-based Gen-K
ODE solver which exploits properties intrinsic to the Gen-K
model to reduce the number of required time steps. Given
the solution to the ODE at a time step, we estimate a time
interval during which the derivatives of all the variables are
constant.2 We then directly jump to the end of the interval, i.e.,
jump to the next event, and analytically integrate the variables

1A preprint of our CPU-based simulation results was put out earlier [20].
2This is possible only for specific choices of the parameters of the Gen-K

model.

exploiting the fact that the derivatives were constant throughout
the interval.
Moving onward from CPU and GPU simulations, the next step
is hardware implementation of OIMs for MU-MIMO detection.
A prime contributor to analog OIM performance degradation
is the variability of components. In [22], this was addressed
by emulating OIMs in digital hardware; we summarize it in
Sec. V. Note that OIM emulation is accomplished by directly
solving the underlying ODE (i.e., the Gen-K ODE) in hardware.
Moreover, fixed point operations are exploited to make the
implementation more efficient.
We consolidate the results from each of the above sections
in Sec. VI. Here, we show that OIMs achieve near-optimal
Symbol Error Rates (SERs) as opposed to other heuristics such
as LMMSE whose performance is up to 20× worse than M.L..
We also show that the event-based Gen-K ODE solver reduces
simulation times by up to 6× while maintaining near-optimal
SERs. With regards to real world implementations, we find
that 6-7 or more bits of coupling resolution are sufficient
to guarantee negligible degradation in OIM performance;
this makes analog OIMs feasible. Finally, we summarize the
performance of the digital OIM emulator IC. The preliminary
CPU and GPU simulations along with the emulator IC set
up a baseline for future analog OIM implementations; an
analog OIM must match the detection accuracy of the emulator
IC while being more efficient with power in order to be
competitive.

II. Background
A. The Ising Problem
The cost function of the Ising problem, i.e., the Ising Hamilto-
nian is defined as

C(s1, · · · ,sn)≜−
1
2

n

∑
i, j=1

Ji j sis j, (1)

where si ∈ {−1, +1}, i = 1, · · · ,n, are the n spins, Ji j are the
weights; Ji j obey Ji j = J ji and Jii = 0. An alternative version of
the Ising Hamiltonian uses so-called “external magnetic field”
terms comprised of a linear combination of the spins, i.e.,

C̃(s1, · · · ,sn)≜−

[
1
2

n

∑
i, j=1

Ji j sis j +
n

∑
i=1

Bisi

]
. (2)

By adding one more spin, sn+1 ≡ 1 and defining
Jn+1,i = Ji,n+1 ≜ Bi, i = 1, · · · ,n, and Jn+1,n+1 ≜ 0, (3)

it is easily shown that (2) is equivalent to (1), i.e.,
C̃(s1, · · · ,sn)≡C(s1, · · · ,sn,sn+1 = 1). (4)

Thus the form (1), which we use here, is general enough to
capture external magnetic field terms.

B. FHIL, SHIL, and Oscillator Ising Machines
OIMs (Oscillator Ising Machine) are networks of mutually
coupled, self-sustaining, nonlinear ([23]) of oscillators. They
employ phenomena known as Fundamental and Sub-Harmonic
Injection Locking—FHIL and SHIL.
If an oscillator is disturbed by an external input with a frequency
ωD close to ω0 (as illustrated by the waveform at the top left
of Figure 3) it will spontaneously change its natural frequency
to exactly match that of the external input. Moreover, the
external input and the oscillator’s output waveform become
synchronized (“phase locked”) to each other, as illustrated at
the right of Figure 3. This phenomenon, which has a long and
rich history dating back to at least 1672 [24], is known today as
injection locking, or more precisely, as fundamental-harmonic
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FHIL off

D=1.02 0

O= 0

FHIL on

D=1.02 0

O=1.02 0

Fig. 3: Illustration of Fundamental-Harmonic Injection Locking
(FHIL) and Sub-Harmonic Injection Locking (SHIL). The figure on
the left shows the interaction of a self-sustaining nonlinear oscillator
(of free-running frequency ω0) with a driving signal of a slightly
higher frequency (ωD = 1.02ω0). It leads to a shift in frequency of the
oscillator (ωO = ωD) and locking of the oscillator’s and the signal’s
phases. Figure on the right is an illustration of 2nd-subharmonic
injection locking (2-SHIL). Without the SYNC signal, interacting
self-sustaining oscillators settle in a fixed phase relationship according
to their coupling. When a 2-SHIL signal of sufficient amplitude is
introduced, the phases lock at either π or 0.

injection locking (FHIL).
It can be shown [25] that if FHIL occurs, the phase difference
between the injection and the oscillation waveforms will be a
single fixed number, i.e., there cannot be two or more different
phases at which the waveforms lock stably.
FHIL is only one possible type of injection locking; interesting
synchronization behaviours also manifest when the injected
signal’s frequency is near an integral multiple of the oscillator’s
natural frequency ω0. For example, if the injection frequency is
close to twice the natural frequency, i.e., ωD ≃ 2ω0, frequency-
and phase-locking can also occur; this is called 2-SHIL (2nd

sub-harmonic injection locking). In 2-SHIL, the oscillator
changes its natural frequency to precisely half of ωD; the
resulting waveform is also phase locked to the injection signal,
as illustrated in Figure 3. A key difference between FHIL and
2-SHIL is that in the latter, there are two possible values of
relative phase between the injection and oscillation waveforms
at which (stable) lock can occur [25]; moreover, these two
phase locks are always separated by 180◦. In OIMs, the two
180◦-separated phase locks in 2-SHIL correspond to Ising spins
+1 and −1. FHIL and 2-SHIL are both crucial for making
networked oscillator systems function as Ising machines.
In an OIM system (such as Figure 1), the oscillators are coupled
to each other (for example, using resistors) with weights
obtained from the given Ising problem. If the frequencies of the
oscillators are close enough to each other, FHIL will force all
oscillators to lock to a common frequency [26]. An additional
common external signal, of fixed frequency set to about twice
that of the average natural frequency of the oscillators, is also
injected into each oscillator. This injection, termed SYNC, is
used to induce 2-SHIL, i.e., phase lock at one of two binary
values separated by 180◦.
A useful mathematical model for the coupled oscillator system
with SYNC injection is the Generalized Kuramoto (Gen-K)
equation [27],

1
ω0

dθi

dt
=−Ks Fs (2θi(t))−

N

∑
j=1

Ji j Fc (θi(t)−θ j(t)) , (5)

shown for the simplified case where all oscillators have the
same natural (angular) frequency ω0. N is the number of

oscillators in the system; θi(t) is the phase of the ith oscillator;
Fc(·) is a 2π-periodic function that captures the FHIL dynamics
of the system; similarly, Fs(·) is a function that captures 2-
SHIL dynamics (Ks represents the amplitude of the SYNC
signal); and Ji j is the coupling strength between the ith and jth

oscillator, the same as in (1).
If Fc(.) is odd and Ks is kept constant with time, it can be shown
that the phases in (5) always evolve to naturally minimize the
Lyapunov function

L(⃗θ)≜
1
2

N

∑
i=1

N

∑
k=1

Jik Ic(θi−θk)+
Ks

2 ∑
i=1

Is(2θi) (6)

where Is(·) and Ic(·) are integrals of Fs(·) and Fc(·), respectively
[27]. Crucially, it can be shown that when Ks is high, the
Lyapunov function approximates the Ising Hamiltonian. Note
that we vary Ks periodically to (heuristically) obtain lower
minima of the Lyapunov function. The coupled oscillator
system, with periodic variation of Ks, evolves to find good
solutions of the Ising problem.

C. Reformulating the MU-MIMO detection problem in
Ising form

A succinct development of the relation between the MU-MIMO
and Ising problems follows (a more detailed exposition can
be found in [19]). Given a BPSK MU-MIMO system with
Nt transmitters (users) and Nr receivers, define a vector of
transmitted symbols to be

x⃗ = [x1, · · · ,xNt ]
T
, (7)

where xi ∈ {±1} are Nt simultaneously transmitted symbols.
Define H ∈ RNr×Nt to be the channel transmission matrix, and
y⃗ ∈ RNr to be the vector of received signals. The vector of
received signals can be modeled as

y⃗ = Hx⃗+ w⃗, (8)
where w⃗ represents additive white Gaussian noise (AWGN).
The optimal solution of the MU-MIMO detection problem, i.e.,
the Maximum Likelihood (M.L.) solution, is the transmitted
symbol vector x⃗∗ that minimizes the error from the ideally-
received signal, i.e.

x⃗∗ = argmin
x⃗∈{±1}Nt

∥⃗y−Hx⃗∥2. (9)

To frame the MU-MIMO detection problem in Ising form, we
first augment the number of transmitted symbols by one to
define the spin vector

s⃗ ≜

[
x1︸︷︷︸
s1

, · · · , xNt︸︷︷︸
sNt

, 1︸︷︷︸
sNt+1

]T

=

[⃗
x
1

]
, (10)

where we use the terminology si≡ xi, i= 1, · · · ,Nt to emphasize
that the transmitted symbols serve as spins for the Ising version
of the problem. Note that the last spin of s⃗ (i.e., sNt+1) is fixed at
1. Next, define Ĥ ≜ [H,−⃗y]∈RNt×(Nt+1) and set J =−ĤT Ĥ ∈
R(Nt+1)×(Nt+1). With the above definitions, it is easy to see that
the ground state of the Ising Hamiltonian (1) is the same as
the M.L. solution from (9). Note that if a solution of the Ising
problem has sNt+1 = −1, it is easily converted to a solution
with sNt+1 =+1 by flipping all the spins (this does not change
the value of the Hamiltonian).
This concludes the section on prerequisite materials.

III. Simulation of OIMs
As stated in the introduction (Sec. I), we evaluate OIMs on
MU-MIMO problems (Sec. II). The test problems consist of 11
sets; a set corresponds to a specific SNR (signal-to-noise ratio)
at the receiving antennae. Each set contains 1000 different
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channel matrices H, and for each channel there exist 50 pairs
of transmitted and received signal vectors (⃗x and y⃗ respectively).
Thus, there are a total of 11×1000×50 = 550000 problems
in the database. Note that Nt = 16 and Nr = 64, and QPSK
(Quadrature Phase Shift Keying, [28]) modulation was used.
Since there are 2 bits per symbol in QPSK, this translates to
a size-33 Ising problem (Sec. II). Note that QPSK encoding
needs to be taken into account in the calculation of symbol
error rates (SER), i.e., any change to a symbol (a single or
double bit error) should be counted as a single “symbol error”.
The channel matrices H (generated as described in [29, Section
IV-A]) capture correlations between users in a fading environ-
ment more realistically than the commonly-used independent,
identically distributed (i.i.d.) Rayleigh fading model in the
literature—in essence, [29] takes into account the fact that users
closer to one another tend to have more-correlated channels
than further-away users.
We simulate OIMs by numerically solving (5) using a method
known as Forward Euler (FE) [21]. Given an initial value θ⃗(0)
and a time step parameter h, θ⃗((n+1)h) for n ∈ {0,1, . . .} are
calculated successively [21] using

dθi(nh)
dt

≈ θi((n+1)h)−θi(nh)
h

=

−
N

∑
j=1

Ji, j ·Fc(θi(nh)−θ j(nh))−KsFs(θi(nh)) ,
(11)

where i∈ {1, . . . ,N}. FE is an explicit method, i.e., θ⃗((n+1)h)
can be calculated from θ⃗(nh) in one single iteration as shown
above [21]. Note that the total number of time steps is given
by tstop/h, where [0, tstop] denotes the time interval of the
simulation. Example Fs(.) and Fc(.) are shown in Figure 4
and Figure 5. The results of the above simulations are plotted
in Figure 8. As shown, OIMs achieve near-optimal Symbol
Error Rates (SERs) over the entire dataset. Other heuristics
such as LMMSE and Zero-Forcing Equalization (ZF) [30] fail
to achieve this accuracy, and are up to 20× worse than the
M.L. solution.
As noted in the introduction, the coupling weights need to be
quantized for hardware implementations of OIMs. To this end,
we repeat the above simulations for many different coupling
resolutions. The results are summarized in Figure 10. As shown,
OIMs achieve near-optimal SERs when the coupling resolution
is greater than approximately 8-9 bits.
Finally, we note that the OIM simulations can be easily paral-
lelized. The ith phase of the next time step (i.e., θi((n+1)h) in
(11)) can be calculated independently of the other time steps.
Thus, (11) can be evaluated in N separate threads (which are
to be synchronized once per FE time step). The run-times of
various simulation methods are listed in Table I.
Next, we explore a technique to shorten the simulation times.

IV. The Event-Based Algorithm
In this section, we provide an event-based algorithm to
efficiently solve the Gen-K ODE (5).
We first choose Fc

(
θ
)
≜ Kc tanh

(
Gsin(2πθ)

)
and Fs

(
θ
)
≜

tanh
(
Gsin(2π ·2θ)

)
, where G is a positive real number. If G

is ‘large’, the above functions reduce to3

Fc
(
θ
)
=

{
+1 θ mod 1 < 0.5, (12a)
−1 θ mod 1≥ 0.5, (12b)

3Except at the crossover points such as θ = 0,0.5, etc.

and

Fs
(
θ
)
=

{
+1 θ mod 0.5 < 0.25, (13a)
−1 θ mod 0.5≥ 0.25. (13b)

Observe that the Fc
(
.
)

and the Fs
(
.
)

functions are constants
except at the crossover points. We exploit this property to find
time intervals during which Fc

(
.
)

and Fs
(
.
)

remain constant.

For instance, consider the case when ∀t ≥ 0, dθ1(t)/dt ≜
−Ks Fs

(
θ1
)
. Let the initial value be θ1(0) ≜ 0.65 (dashed

vertical line at t = 0 in Figure 4). Applying (13a), we get
dθ1(t)/dt = −Ks at t = 0. Moreover, it remains constant at
−Ks until θ1 reaches a crossover point of Fs

(
θ1
)
, which is

equal to 0.5 in this case. Thus, the solution to the above ODE is
θ1(t) = θ1(0)−Kst for t ∈ [0,δ1,1], where δ1,1 ≜ 0.15/Ks (this
can be easily checked by solving the above example ODE). In
other words, the derivative of θ1(t) is constant until t reaches
δ1,1.
The above observation forms the core of the event-based
algorithm. As opposed to FE where ‘small’ time steps are
taken in each iteration, we can directly jump to the next event
of the ODE system. We define an event as follows. If an Fc

(
.
)

(or an Fs
(
.
)
) function remains constant for the next δ seconds

and changes its value immediately after, then an event is said
to occur in the Fc

(
.
)

(or the Fs
(
.
)
) function after a delay of

δ seconds. Concretely, we estimate the ‘δ ’ of an event as
follows.
The delay before an event occurs in the Fs

(
.
)

function of the
ith spin (denoted as δi,i) is defined as

δi,i ≜


θi mod 0.25
|dθi/dt|

dθi/dt < 0, (14a)

0.25−θi mod 0.25
|dθi/dt|

dθi/dt > 0, (14b)

∞ dθi/dt = 0. (14c)
Next, consider the example shown in Figure 5; this is a Gen-K
system with two negatively coupled oscillators. Let (θi(0)−
θ j(0)) = 0.1 (dashed vertical line at t = 0 in Figure 5), and
let d(θi(t)− θ j(t))/dt at t = 0 be positive. Note that δ1,2 is
the amount of time it takes for (θ1(t)− θ2(t)) to reach 0.5
(a crossover point of Fc

(
.
)
) starting from the initial condition

0.1. Thus, Fc
(
θ1(t)−θ2(t)

)
remains constant until δ1,2. (15)

merely extends this idea to the general case.

δi, j ≜



(θi−θ j) mod 0.5
|d(θi−θ j)/dt|

d(θi−θ j)/dt < 0, (15a)

0.5− (θi−θ j) mod 0.5
|d(θi−θ j)/dt|

d(θi−θ j)/dt > 0, (15b)

∞ d(θi−θ j)/dt = 0. (15c)
In the above equation, δi, j is the time delay before an event
occurs in the coupler connected between the ith and the jth

spins. Note that we ignore the case when i and j are the same
since Ji,i = 0 for all i.
We present the event-based algorithm in two parts. Sec. IV-A
contains a simple event-based algorithm. In Sec. IV-B, we
analyze a major drawback of this algorithm where two phases
‘lock’ to each other and cause tightly spaced events. We address
this issue by ‘merging’ the locked phases. In Sec. IV-C, we
provide the final event-based algorithm.
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Fig. 4: Example of an event in an Fs
(
.
)

function.
Fig. 5: Example of an event in an Fc

(
.
)

function.
Fig. 6: Example of locked phases.

A. Part-1 of the Event-Based Algorithm
Step-1 (1-10 in Alg. 1): Perform the following initialization
steps.

• Set Hmin←∞ (Hmin keeps track of the lowest H found).
• Create a coupling matrix J̃, and set J̃i, j = Ji, j for i, j ∈
{1, . . . ,N}. Note that we assume Ji,i = 0 for i∈ {1, . . . ,N}.

• Create A —a set of phases that are still ‘active’, and A ∁—
the complement of A . Initially, A = {1, . . . ,N}. Note
that A will not be modified until we perform ‘merge’
operations.

• Initialize every phase in A \{N} to a random number in
[0,1]; the Nth phase is set to 0.4 Note that the Nth phase
will be held constant at 0 throughout the simulation.

• Initialize L, B, and ‘mergedTo’ (explained in Step-5 and
Step-6).

• Set tsim, the time variable in the simulator to zero. Set
Ks (the constant used in Fs

(
.
)

functions) to zero. This is
carried out to allow parameter cycling of Ks. Specifically,
we first solve the ODE with Ks = 0, then set Ks to a
nonzero value to binarize the phases.

Step-2 (12-13 in Alg. 1): Evaluate the derivatives. Calculate
dθi(tsim)/dt using (5) for i ∈A \{N}. Note that we use (12)
and (13) to evaluate Fc

(
.
)

and Fs
(
.
)

(respectively).
Step-3 (14-23 in Alg. 1): Find the next event. Calculate δi, j
(and δi,i, if Ks ̸= 0) for i ∈A \{N} and j ∈A \{i}. Find the
minimum over the above δi, j (and δi,i, if Ks ̸= 0) and denote
it as δmin.
Let (im, jm) be an ordered pair such that δim, jm = δmin. In other
words, (im, jm) are the phases whose coupling function’s event
is the nearest in the future. If there are multiple such (im, jm),
choose any. We call (im, jm) as the bottleneck causing ordered
pair, and regard im as the phase that caused the bottleneck. 5

Step-4 (24-33 in Alg. 1): Integrate the phases if δmin is finite.

(a) δmin is infinite and Ks = 0. This means that no Fc
(
.
)

function
changes value in the future. We set Ks to a nonzero value6

and restart from Step-2.
(b) δmin is infinite and Ks ̸= 0. Here too, no Fc

(
.
)

or Fs
(
.
)

changes value in the future. We merely exit and go to Step-
9.

(c) δmin is finite. By construction of δmin, the derivatives of all
the phases in A \{N} remain constant until tsim increases
by δmin. Therefore, we analytically integrate the phases in

4A \B denotes the set obtained by subtracting set B from set A .
5Note that if δmin was due to the Fs

(
.
)

function of the ith phase, we
approximate the ordered pair to be (im,N).

6Usually we choose Kc = Ks = 1, assuming maxi, j |Ji j|= 1.

A \{N}. First, increment δmin by a small number to step
over the discontinuous Fc

(
.
)

and Fs
(
.
)

functions, i.e., δmin←
δmin + tsmall . Then, integrate the phases according to θi←
θi + δmin · dθi(tsim)/dt, where i ∈ A \ {N}. Update tsim to
reflect the progress.

At this stage of the simulator, we could repeat the above
procedure starting from Step-2 until all the phases settle to
steady state values7 or until tsim reaches a predetermined value.
However, such a strategy has a major drawback, which is
analyzed next.
B. The issue of ‘locked’ phases
Let Ci denote the total number of iterations during the
simulation where the ith phase caused the bottleneck (see Step-
3 for terminology). Figure 6 shows the top four phases of
an example Gen-K model whose Ci counts are the highest.
Consider the following two pairs of phases (θ15,θ30) and
(θ18,θ22) plotted in this figure. We observe the following.

• The two phases in a pair have approximately the same
phase difference starting from some time point. For ex-
ample, (θ15−θ30)≈ 0 for t ≥ 0.11, and (θ18−θ22)≈ 0.5
for t ≥ 0.6.

• The derivatives of the two phases in a pair are also
approximately the same starting from some time point.

We consider such phases to be locked to each other. To
summarize, two variables in the Gen-K ODE system may
lock to each other in phase and evolve with approximately
the same derivative starting from some time point. We have
observed (in simulations) that such locked phases cause δmin
to be unnecessarily small, slowing down the event-based
simulator. We fix this issue by merging the two offending
phases. Essentially, we regard the locked phases as a single
phase, and solve a modified ODE system that has one less
phase variable. This is explained in the next subsection.
C. Part-2 of the Event-Based Algorithm
Recall that in Steps 1-4, we initialized variables, calculated
the derivatives, estimated the time delay before the next event
occurs, jumped to the earliest event and integrated the phases.
Step-5 (34-43 in Alg. 1): Detect locked phases.
Let the locked phases in Figure 6 be θa and θb (for example,
a = 15 and b = 30). Observe that θa and θb lock such that the
phase difference is 0.5k for some k ∈ Z. We do not have a
proof that this always occurs in the Gen-K model; however,
we will assume that it holds true. In other words, if θa and θb
lock at t∗, we assume that ∀t ≥ t∗, (θa(t)−θb(t)) = 0.5 · ka,b

7Use a suitably chosen criterion for detecting if a phase has settled; this
is not discussed for brevity.
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for some ka,b ∈ Z.
The criterion for detecting locked phases is as follows. Given
the above assumption, we consider θa to be locked to θb if
(θa−θb) remained ‘close’ to 0.5ka,b (for some ka,b ∈ Z) for
the last r iterations where (a,b) was the bottleneck-causing
ordered pair.8 Note that the above r iterations need not be
consecutive. Moreover, if there are less than r iterations where
(a,b) was the bottleneck, we consider θa and θb to not be
locked by default.
This criterion is implemented using matrices L and B. L stores
the ‘limiting’ phase differences, i.e., L stores 0.5ki, j for each
possible ordered pair (i, j). B keeps track of the number of
iterations where the locking criterion described above was
satisfied. In other words, Bi, j is the number of iterations where
(i, j) was the bottleneck and (θi − θ j) remained ‘close’ to
0.5ki, j. Note that in each iteration, there is only one bottleneck
causing ordered pair (im, jm) (by definition). Thus, in each
iteration, we need only check if θim has locked to θ jm .

Step-6 (45-48): Merge θim to θ jm . We move θim to A ∁, i.e.,
mark θim as inactive. From now on, θim stores the offset of
the ithm phase w.r.t. the jth

m phase. Since (θim −θ jm) = 0.5kim, jm ,
we set θim ← 0.5kim, jm . In addition, we also keep track of
the index of the phase to which im has been merged. This is
implemented using the array ‘mergedTo’. Since im is merged
to jm, we set mergedTo(im)← jm. Moreover, we update the
offsets and the ‘mergedTo’ entries of the phases which were
merged to im. Note that (θp−θ jm) = (θp−θim)− (θim −θ jm).
Thus, we update the offsets as θp← θp +0.5kim, jm where p is
a phase which was originally merged to im.
Step-7 (49-52): Update J̃. We update the coefficients of the
coupling matrix J̃ to reflect the merge operation as explained
below. An example is shown in Figure 7. Here, θ2 is being
merged to θ4 (i.e., im = 2 and jm = 4), and A ∁ = {3}. Consider
the Gen-K equation of the qth phase (where q ∈A ), repeated
below for reference. Note that im ̸= jm (by construction), and
let q ∈A be distinct from im and jm.

dθq(t)
dt

=− J̃q,im ·Fc
(
θq(t)−θim(t)

)
− J̃q, jm ·Fc

(
θq(t)−θ jm(t)

)
−Fs

(
θq(t)

)
− ∑

p∈A \{im, jm}
J̃q,p ·Fc

(
θq(t)−θp(t)

)
,

(16)

where the terms coupling θq to θim and θ jm are explicitly
written out. Replacing θim by (θ jm +0.5 · kim, jm) and applying
(12), we see that

Fc
(
θq−θim

)
=

{
+Fc

(
θq−θ jm

)
kim, jm is even, (17a)

−Fc
(
θq−θ jm

)
kim, jm is odd . (17b)

In other words, for any value of θq(t), Fc
(
θq(t)−θim(t)

)
is

the same as Fc
(
θq(t)− θ jm(t)

)
except possibly for the sign.

Therefore, the first two terms in the RHS of (16) can be
combined.
Thus, we set (q ∈A \{im, jm,N})

J̃q, jm ←
{

J̃q, jm + J̃q,im if kim, jm is even, (18a)
J̃q, jm − J̃q,im if kim, jm is odd. (18b)

Note that the ithm phase is marked as inactive; thus, the coupling
term between q and im will be ignored starting from the next
iteration. Examples of coefficient updates carried out according
to (18) are highlighted as blue arrows in Figure 7 where
q ∈ {1,5}.

8r is a tunable parameter; for example, r = 3.

Next, we edit the coefficients of the jth
m phase (i.e., the jth

m row
of J̃). As stated previously, the phases im and jm evolve with
approximately the same derivative when locked. Thus, we set
the derivative of the jth

m phase to the average of the ithm and the
jth
m derivatives (and ignore the ithm phase starting from the next

iteration).
Concretely, we use

dθ jm(t)
dt

≜− ∑
p∈A
p̸=im
p̸= jm

(
J̃ jm,p ·Fc

(
θ jm(t)−θp(t)

)
+

J̃im,p ·Fc
(
θim(t)−θp(t)

))/2

−
(

Fs
(
θ jm(t)

)
+Fs

(
θim(t)

))
/2

(19)

The above equation can be simplified as follows.
Note that Fs

(
.
)

is 0.5-periodic, which implies Fs
(
θ jm(t)

)
=

Fs
(
θim(t)

)
since θim(t) = (θ jm(t) + 0.5 · kim, jm). Thus, the

average of Fs
(
θ jm(t)

)
and Fs

(
θim(t)

)
in (19) can be simplified

to merely Fs
(
θ jm(t)

)
. Moreover, the coupling functions satisfy

a relation analogous to (17) (omitted for brevity). Therefore,
we set (p ∈A \{im, jm})

J̃ jm,p←

{(
J̃ jm,p + J̃im,p

)
/2 if kim, jm is even, (20a)(

J̃ jm,p− J̃im,p
)
/2 if kim, jm is odd. (20b)

Note that the ithm phase is moved to A ∁; thus, the ithm row of
J̃ is ignored starting from the next iteration. In Figure 7, the
coefficient updates carried out according to (20) are highlighted
using red arrows (p ∈ {1,5,6}). Note that J̃ jm, jm remains
unchanged at 0.

0

0

0

0

0

0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

2 = im

3 ∈A ∁

4 = jm

6 = N

2
=

i m

3
∈

A
∁

4
=

j m

Nth row

A ∁

im

jm

Eq. (18)

Eq. (20)

J̃
Fig. 7: An example of merging. Phase-2 is being merged to phase-4
(i.e., im = 2 and jm = 4), and A ∁ = {3}.
Step-8 (11-52 in Alg. 1): Repeat until A = {N} (i.e., |A |= 1)
or until tsim reaches a predetermined value.
Step-9 (53-57 in Alg. 1): If i ∈A ∁, θi is the offset of the ith

phase w.r.t. to mergedTo(i). Thus, we calculate the actual value
of the ith phase using θi← θi +θmergedTo(i). We then map the
phases to spins (+1—even multiple of 0.5, -1—odd multiple of
0.5) and evaluate the Hamiltonian using the original coupling
matrix J. Repeat the above procedure by choosing different
random initial conditions for θ⃗ to find better minima. Note
that one can also add noise to the existing θ⃗ values instead
of generating completely different noise values (not shown in
Alg. 1 for brevity).
We also note that the algorithm in Alg. 1 can be parallelized
using Nt −1 threads (explanation is omitted for brevity). This
concludes the ‘event-based’ algorithm. We relegate the results
of this simulation technique to Sec. VI. Next, we summarize
a simulation technique [22] that is of interest particularly to
digital hardware implementations of OIMs.
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Algorithm 1: The event-based Gen-K ODE solver
// Step-1: Initialization.
Hmin← ∞, s⃗opt ← rand

(
N−1

)
; // Heuristic ground state of H .1

for ntrial = {1,2, . . . ,3} do // For example, repeat 3 times.2
J̃← J ; // J̃ is a copy of the connectivity matrix J.3
{θ1, . . . ,θN−1}← rand

(
N−1

)
, {dθdti, . . . ,dθdtN−1}← 0 ;4

θN ← 0, dθdtN ← 0 ; // The N th phase is held constant at 0.5
A = {1, . . . ,N}, A ∁ = /0, ; // A is the set of active phases.6
// L and B initialized below are used for detecting locked phases.
L← rand

(
N−1,N

)
; // (N−1)×N matrix of limiting values.7

B← 0 ; // (N−1)×N matrix of bottleneck counters.8
// mergedTo(i) = j implies θi is merged to θ j .
mergedTo←{1, . . . ,(N−1)} ; // Default is mergedTo(i)← i.9
tsim← 0, Ks← 0 ; // Other miscellaneous variables.10
while (|A |> 1) AND (tsim < tstop) do // Choose suitable tstop.11

// Step-2: Calculate the derivatives.
for i ∈A \{N} do12

dθdti←−∑ j∈A J̃i, j ·Fc
(
θi−θ j

)
−Fs

(
θi
)

13

// Step-3: Estimate the next event.
δmin← ∞, im = N, jm = N ;14
for i ∈A \{N} do15

for j ∈A \{i} do16
Calculate δi, j according to (15) ;17
if δi, j < δmin then18

δmin← δi, j , im← i, jm← j19

if Ks ̸= 0 then20
Calculate δi,i according to (14) ;21
if δi,i < δmin then22

δmin← δi,i, im← i, jm← N23

// Step-4: Integrate the phases if δmin is finite.
if δmin = ∞ then24

if Ks = 0 then25
Ks← 1 ;26
continue // Restart from Step-2.27

else28
break // Nothing much we can do, exit the loop.29

else30
tsim← tsim +δmin + tsmall , δmin← δmin + tsmall ;31
for i ∈A \{N} do32

θi← θi +dθdti ·δmin33

// Step-5: Check for locked phases.
θdi f f ← (θim −θ jm ) ; // Phase difference.34
ρdi f f ← round

(
θdi f f ,0.5

)
; // Round to 0.5k, k ∈ Z.35

µ ← false ; // To merge or not to merge, this is the question.36
if |ρdi f f −θdi f f |< ε AND |Lim , jm −ρdi f f |< ε then // ε is a small37
number.

Bim , jm ← Bim , jm +1 ;38
if Bim , jm ≥ r then // For example, r = 3.39

µ ← true ; // Enable phase merging.40

else41
Lim , jm ← ρdi f f ; // Update Lim , jm .42
Bim , jm ← 0 ; // Reset Bim , jm .43

if µ then44
// Step-6: Merge θim to θjm .
// From now on, θim stores the offset of im w.r.t. jm.
Move im to A ∁, θim ← ρdi f f , mergedTo(im)← jm ;45
for i ∈A ∁ do // Update the inactive phases.46

if mergedTo(i) = im then47
mergedTo(i)← jm, θi← θi +ρdi f f48

// Step-7: Update the coupling matrix J̃.
for q ∈A \{N} do // Update the jth

m column of J̃49
Update J̃q, jm according to (18).50

for p ∈A \{ jm} do // Update the jth
m row of J̃51

Update J̃ jm ,p according to (20).52

// Step-8: Repeat until |A = 1| or until tsim ≥ tstop

// Step-9: Calculate the (heuristic) ground state of H .
for i ∈A ∁ do // Calculate the actual phase values.53

θi← θi +θmergedTo(i)54

Map θ⃗ to s⃗, calculate H according to (1) ;55
if H < Hmin then56

Hmin←H , s⃗opt ← s⃗ ; // Store the results.57

V. Efficiently Solving Gen-K ODE Systems Using
Fixed Point Operations

In this section, we outline how fixed point arithmetic can be
exploited to accelerate OIM simulations. Note that the following
was implemented in our publication [22] on a OIM emulator
IC.
Recall that the phases of the oscillators in OIMs can be modeled
as Gen-K ODE systems (Sec. II). We assume that Fc(.) and
Fs(.) are as defined in (12) and (13). The above functions can
be evaluated efficiently by applying fixed point formats [31]
as described below.
We utilize a fixed point format of the form 0•b1b2 . . .bn to store
the θi in (11). Note that the decimal equivalent of the above
form is ∑

n
i=1 bi2−i, which ranges from 0 (when ∀i, bi = 0) to

≈ 1 (when ∀i, bi = 1). Hence, the above fixed point format
stores (θi mod 1) with n bits of precision.
Consider Fc(θdi f f ≜ θi − θ j). As stated in (12), Fc(θdi f f )
depends only upon the modulo-1 value of θdi f f . Moreover,
θdi f f mod 1 is simply the fixed point subtraction of the
two phases since θdi f f mod 1 = (θi− θ j) mod 1 = ((θi mod
1)− (θ j mod 1)) mod 1. Thus, Fc(θdi f f ) can be efficiently
evaluated using the MSB of θdi f f since Fc

(
θdi f f

)
= +1 if

MSB(θdi f f ) = 0, and −1 if MSB(θdi f f ) = 1.
The above can be extended to Fs

(
.
)

as well. Denoting the
penultimate MSB of θ as b2(θ), we have Fs

(
θ
)
= +1 if

b2(θ)= 0, and +1 if b2(θ)= 1. We can thus efficiently evaluate
the RHS of (11) using a fixed point format.
The above idea was demonstrated in a digital OIM emulator
with 33 spins and all-to-all programmable connectivity [22].
More details of this prototype IC can be found in [22]; its
results are summarized in Sec. VI.

VI. Results
A. Performance of OIMs on practical MU-MIMO detection

problems

Fig. 8: Detection performance of OIM vs. other methods. The symbol
error rate (SER) is shown as a function of signal-to-noise ratio (SNR)
for M.L., LMMSE, ZF, and OIM detectors.
Figure 8 shows the average SER (over all problems in each
SNR set) from ML, LMMSE, ZF, and OIM. Note that M.L.
detection was carried out using a Sphere decoder [32]. As
stated in Sec. III, SER numbers for OIMs were obtained by
numerical simulations of the generalized Kuramoto equations
(5).
Examining the data reveals several interesting features:

1) The SER of M.L. for high SNR values is very low; for
example, the SER is 2.5e-6 at SNR=9 dB. Thus, high-SNR
cases are much more challenging than low-SNR cases.
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2) The performance of LMMSE varies from about 16% worse
than M.L. at SNR −1 dB, to almost 20× worse for the
SNR=9 set.

3) In contrast, SER numbers from OIMs are very close to M.L.
for all SNR sets, i.e., not more than 4% over M.L., which
is significantly better than LMMSE for every SNR set. Note
that OIMs tends to match the SER of M.L. at higher SNRs
(which are more challenging).

B. Effect of coupling quantization on OIM performance
Figure 9 shows the absolute values of the 33× 33 coupling
matrices for an example problem from the SNR=9 dB set. As
can be seen, the entries in the last row and column (which
stem from the “external magnetic field” terms −HT y⃗), are
about a factor of 4 larger than the other values in the matrix.
Similar patterns are seen in the coupling matrices of all the
problems. This suggests that from an accuracy standpoint, it
is advantageous to use one set of quantized values for the
last row and column, and another set for the remainder of the
matrix—this is easy to implement in IC hardware.
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Fig. 9: Absolute value of an example coupling matrix used in the
detection (for SNR 9; all the other SNR sets are virtually identical
in pattern). The terms in the last row and column are approximately
4× larger than the rest of the terms.
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Effect of quantizing OIM couplings on SER
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Fig. 10: Symbol error rate as a function of signal-to-noise ratio for
different quantizations of the OIM coupling weights, compared to
OIM with coupling weights in double precision, LMMSE and M.L.
OIM with 9-bit through 6-bit quantizations yields SERs from near-
optimal to acceptable. Detection performance deteriorates quickly
below 6 bits of quantization.
Figure 10 shows OIMs’ performance with quantized couplings;
B—the number of bits used for quantization is varied from 9
down to 4. It can be seen that SER performance degradation
(over Maximum Likelihood with no quantization) is essentially
negligible for 9 and 8 bits of quantization. Using 6 bits of

quantization still yields significant improvements over LMMSE
across all the problems, while B = 5 remains competitive
against LMMSE. These results, indicating that implementing
OIM in IC hardware is practical, can help guide design
tradeoffs.
C. Performance of the event-based simulator, and the

digital OIM emulator prototype IC
The SER numbers of the event-based algorithm (Sec. IV) and
the digital OIM emulator IC (Sec. V and [22]) are plotted in
Figure 8. As shown, both the event-based algorithm and the
emulator achieve near-optimal SERs over all the signal to noise
ratios.
The time taken by various algorithms and the OIM emulator
IC are listed in Table I. As expected, the OIM emulator is
the fastest since it is a specialized hardware. Furthermore, the
event-based algorithm achieves up to 6× speed up as compared
to the ‘plain’ OIM simulator while maintaining a near-optimal
detection accuracy.
Finally, Table I also lists estimated energy spent per detection
problem. Note that ZF, LMMMSE, and Sphere were run on
a general purpose computer that consumes 100 W; Gen-K FE
and Gen-K event-based OIM simulations were run on a general
purpose Graphics Processing Unit (GPU) that consumes a total
of 200 W when using 4864 threads. As before, the specialized
hardware consumes the least amount of energy.

TABLE I: Performances of various MIMO detection schemes.

Algorithm Runtime Throughput Energy
ZF 0.16 ms 200 Kbps 16 mJ
LMMSE 1.7 ms 18 Kbps 170 mJ
Sphere decoder 2.3 ms 14 Kbps 230 mJ
Gen-K FE (Nt threads) 50 ms 0.64 Kbps 66 mJ
Gen-K event-based (Nt
threads)

8 ms 4 Kbps 11 mJ

OIM emulator IC 1 ms 32 Kbps 250 µJ

VII. Conclusion
In this paper, we applied OIMs to (heuristically) solve the
MU-MIMO detection problem. CPU and GPU simulations of
OIMs indicate that they achieve near-optimal accuracy, whereas
other detectors such as LMMSE and ZF are up to 20× worse.
Note that simulation times of OIMs can be shortened by a
novel ‘event-based’ ODE solver presented in this paper. It
can achieve up to 6× speed ups while maintaining the same
near-optimal accuracy. The next natural step to CPU and GPU
simulations is hardware implementation. A major hurdle in
implementing analog OIMs is the variability of components.
As demonstrated in [22], this issue can be circumvented by
emulating OIMs in digital hardware. Note that fixed point
operations can be utilized to design efficient digital OIMs
emulators. The preliminary simulations and the digital OIM
emulator set up a performance baseline for future analog OIMs
for MU-MIMO detection.
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