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Abstract. 3-SAT is a class of NP-hard combinatorial optimization
problems that Ising machines have had difficulty solving successfully.
Solution success rate depends not only on the choice of Ising machine, but
crucially, also on the mapping from 3-SAT to Ising form. We evaluate the
performance of Oscillator Ising Machines (OIMs) on several existing 3-
SAT-to-Ising mappings, finding that they yield mediocre or poor results.
We propose two novel enhancements to logic-synthesis-based Ising map-
ping schemes that improve solution success rate significantly (from 0%
to about 56% on SATLIB’s uf20 problem set). We then propose a new
circuit- and clause-based 3-SAT-to-Ising mapping scheme that employs 3-
input OR gates. Using this mapping increases OIM’s success rate on uf20

to 95.9% we believe this is by far the best raw performance achieved on
any 3-SAT problem class by any Ising machine scheme. We also present
a comparison of OIM vs. simulated annealing on Ising-mapped 3-SAT
problems, revealing that OIM’s performance is significantly superior.

Keywords: Ising Machine · Oscillator Ising Machine · 3-SAT ·
Combinatorial Optimization · Ising Mapping

1 Introduction

In recent years, Ising machines (IMs) have emerged as promising hardware
solvers for finding optimal or near-optimal solutions to combinatorial optimiza-
tion (CO) problems [20]. Several IM schemes have been proposed, each leverag-
ing specialized hardware for addressing CO problems. Notable examples include
Quantum Annealers [3,14] that use qubits as spins, Coherent Ising Machines
[10,11] that use modulated optical pulses to represent spins, and various other
analog-based IMs [5,6]. Among these, Oscillator-based Ising Machines [25] stand
out due to their cost-effectiveness, low energy consumption, and the ability to
be fabricated on-chip using CMOS technologies. Importantly, they also produce
high-quality results on various combinatorial problems [21,22,25].
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In practice, CO problems require translation into Ising form to be imple-
mentable on Ising hardware. While some problem classes, such as MAX-CUT,
have straightforward Ising mappings, mappings of many other problems are com-
plex, requiring additional spins to represent the CO problem [17]. To fully lever-
age the advantages of analog Ising solvers, the CO problem class should feature
an efficient Ising mapping that remains scalable even as problem size increases,
while also adhering to hardware-related constraints such as sparsity and cou-
pling resolution. As we demonstrate in this paper, the optimization performance
of the IM is highly sensitive to the mapping used, underscoring the importance
of selecting an appropriate mapping.

In this paper, we will analyze IMs for solving the Boolean satisfiability (SAT)
problem. The SAT problem stands as one of the most fundamental and exten-
sively studied problems in computer science. SAT has far-reaching implications in
various fields, including formal verification, artificial intelligence, and optimiza-
tion. In this study, we mainly focus on the translation of 3-SAT problems to Ising
form and their solution by OIM, with comparisons against simulated annealing
(SA). Applying our proposed techniques to the uf20 benchmark sourced from
SATLIB [1], we achieve very good results, surpassing any other IM to the best of
our knowledge, while consuming similar hardware and computational resources
compared to other mappings.

The main contributions of this paper can be outlined as follows. First, we pro-
pose two techniques aimed at improving the performance of OIM on 3-SAT by
leveraging logic-synthesis-based Ising mapping methods [13,23]. These enhance-
ments result in a significant increase in the average success rate for uf20 problems,
rising from 0% to 55.6%. Secondly, we present a simple yet novel circuit-based
mapping approach utilizing 3-input OR Ising gates. As detailed in subsequent
sections, this mapping achieves the highest average success rate of 95.9% for uf20
problems among various mapping schemes documented in the literature. Lastly,
we conduct a comparative analysis between the performance of OIM and SA,
demonstrating the superiority of OIM in solving 3-SAT instances. Note that all
the results presented in the paper are based on simulations.

The remainder of the paper is organized as follows. Section 2.1 provides an
overview of the Ising model. Section 2.2 outlines the 3-SAT problem. Existing
methods for transforming a 3-SAT instance into an Ising network are discussed in
Sect. 3. Our novel approaches that yield improved results are presented in Sect. 4.
In Sect. 5, we discuss the proposed novel 3OR mapping technique. Finally, Sect.
6 contains a comparative analysis of our results with other mapping techniques.

2 Background

2.1 The Ising Model

The Ising model is a physics-oriented formalism that was first devised for explain-
ing domain formation in ferro-magnets [12]. It comprises a group of discrete
variables {si}, referred to as spins, each taking a binary value ±1, such that an
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associated “energy function” known as the Ising Hamiltonian is minimized. The
Ising Hamiltonian is given by

H � −
∑

1≤i<j≤n

Jij · si · sj −
n∑

i=1

hi · si, (1)

where n is the number of spins; {Jij} and {hi} are real coefficients. To accommo-
date the second summation term (known as “magnetic field” or “Zeeman effect”
terms) within the first summation term (quadratic in spins), an extra spin can
be introduced with its value fixed at “+1”. We term this additional spin the
REF spin.

Finding the ground state1 of the Ising model is a classic example of a com-
binatorial optimization problem. All of Karp’s 21 NP-complete CO problems
can be mapped to the Ising model by assigning appropriate values to the coef-
ficients [15]. Physical systems that can directly minimize the Ising Hamiltonian
are termed Ising machines [3,10,11,14].

Oscillator Ising Machines (OIMs): When an oscillator with a natural fre-
quency f0 experiences a small periodic external input at a frequency f1 ≈ f0,
the oscillator’s response can lock on to the input in both frequency and phase
[2]. This phenomenon is called injection locking, or more precisely, fundamental
harmonic injection locking (FHIL). Sub-harmonic injection locking (SHIL) is a
related phenomenon in which an oscillator is perturbed by a periodic input at
approximately twice its natural frequency, say 2f1. This external signal, known
as a synchronization signal (SYNC), causes the oscillator to lock to exactly half
the frequency of SYNC, i.e., f1, and feature bistable phase locks separated by
180◦ [19]. Consequently, the oscillator functions as a logic latch capable of storing
a phase-based binary bit.

It has been shown in [25] that a network of coupled oscillators under SHIL can
function as an Ising machine. The dynamics of the network of coupled oscillators
with SYNC inputs to each oscillator are described by the generalized Kuramoto
equation [24]. However, in a simplified scenario where the oscillations are sinu-
soidal, and with other approximations, the dynamics can be modeled using the
Kuramoto model [24], i.e.,

d

dt
φi(t) = −Kc

∑

j

Jij · sin(φi(t) − φj(t)) − Ks · sin(2φi(t)) + Kn · ξi(t). (2)

In (2), {Jij} are the weights of oscillator couplings; the underlying combinatorial
optimization problem is encoded in these weights. The operation of oscillator-
based Ising machines modeled by (2) is controlled by several parameters: Kc,
a scalar representing the coupling strength; Ks, a scalar modeling the coupling
strength from SYNC; and Kn, a scalar representing the magnitude of noise ξi(t),
which is a Gaussian white noise with zero mean. While Kc, Ks, and Kn can all be
1 The term “ground state” means a state that achieves the minimum Hamiltonian.



272 V. P. S. Sikhakollu et al.

time-varying, resulting in various “annealing profiles”, our experiments indicate
that varying Ks significantly affects the performance of the OIM, whereas the
others do not have much impact.

Ks Parameter Cycling: A periodic square pulse is assumed for the Ks param-
eter, alternating between a positive high value and a negative low value over a
certain time period. It is important to note that if Ks is static at high positive
value, then the oscillator phases will settle to either 0 or π after a few oscillator
cycles [25]. Essentially, this means that for each cycle of Ks, we have one set
of settled phases. Due to dynamics and noise, the settled phases may not be
the same in the next Ks cycle. Therefore, after initializing the OIM, for N Ks

cycles, we obtain N samples. These samples are then utilized to evaluate whether
the OIM has effectively solved the underlying Ising problem, i.e., settled to the
minimum Hamiltonian or possibly a nearby value.

2.2 The Satisfiability Problem: 3-SAT

Given a Boolean formula, the goal of the satisfiability problem is to determine
whether there exists an assignment of truth values to variables that evaluates the
given Boolean formula to “true”. The SAT problem is a classically difficult NP-
Hard CO problem [15] with a wide variety of practical applications [18], and it
can be transformed into any other NP-complete problem through a polynomial-
time transformation [15].

SAT problems are often expressed in Conjunctive Normal Form (CNF), where
the Boolean formula is given as a conjunction of multiple clauses, with each
clause representing a disjunction of k literals or their negations. This formulation
is known as k-SAT, and in the case where k=3, it is specifically referred to as
3-SAT. A Boolean function f() expressed in CNF form with 3 literals in each
clause takes the form

f(x1, x2, · · · , xn) = C1 ∧ C2 ∧ · · · ∧ Cm,

with Ci = xp ∨ xq ∨ xr; p, q, r ∈ [1, n], 1 ≤ i ≤ m,
(3)

where n is the number of input variables, m is the number of clauses,
Ci represents the ith clause, and xp represents the pth input variable. f is
deemed satisfiable if there exists a set of input assignments from {0,1}n such
that f(x1, x2, · · · , xn) evaluates to 1. The 3-SAT problem can be formulated in
Ising form using various formulations, as described in the Sect. 3.

3 SAT to Ising Transformation

In this section, we discuss several prior 3SAT-to-Ising formulations. SAT-to-Ising
transformations can be broadly categorized into two types: circuit-based trans-
formations and generic transformations. A circuit-based transformation directly
maps the structure of the Boolean circuit representing the SAT problem onto
an Ising model, preserving the logical relationships and dependencies inherent
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to the circuit. Unlike generic transformations, which operate at the clause level,
circuit-based transformations can map any SAT expression, not just those in
CNF form. The MIS-based [8] and Chancellor [7] formulation can be considered
generic mappings, while logic-synthesis-based mappings [23] are circuit-based.

3.1 MIS3m -Based Formulation

The maximal independent set (MIS) formulation, also known as the Choi for-
mulation [8], provides a translation of 3-SAT to Ising by assigning one Ising
spin for each literal. For a 3-SAT instance with m clauses and n variables, the
Choi formulation requires a total of 3m spins, excluding the REF spin. In this
formulation, the literals within each clause are interconnected in a triangular
configuration. Additionally, conflicting edges are established between two liter-
als that represent negated versions of the same variable. The triangular structure
aims to satisfy the SAT condition, while the conflicting edges penalize dissimilar
assignments for the same variable.

It is worth noting that in the context of the OIM, if different values are
assigned to spins copies representing the same variable, conventionally this would
be considered illegitimate. However, to achieve more effective results, we relaxed
this condition by adopting a majority vote approach among spins to assign the
variable value [9].

3.2 The Chancellorn+m Mapping

The Chancellor formulation [7] maps an n-variable m-clause instance using n+m
Ising spins, excluding the REF spin. The formulation establishes a 1-1 correspon-
dence between the n SAT variables and the first n Ising spins and introduces
one additional Ising spin for each of the m clauses.

3.3 Logic-Synthesis-Based Mapping

A detailed logic-synthesis-based SAT to Ising mapping is described in [13], which
is inspired by [23]; a concise summary is provided in this section. Logic-synthesis-
based transformation is circuit based and follows the flow shown in Fig. 1. First,
the given 3-SAT problem in CNF is converted to a Boolean circuit using logic
synthesis. Subsequently, the Boolean circuit is transformed into an Ising network
by replacing each Boolean gate in the circuit with its Ising equivalent.

Logic synthesis is the process of converting a high-level (e.g., CNF, RTL)
description of a digital circuit into a lower-level representation composed of logic
gates, such as AND, OR, and NOT gates, optimizing factors like performance,
area, and power consumption. Widely available logic-synthesis tools (such as
ABC [4]) utilize a user-specified gate library to synthesize a Boolean circuit
for a given CNF. There is ample room for optimization at the synthesis stage,
where, depending on the problem, one can control the number of gates, the
gate depth, the fan-ins/outs of the gates, etc., in the resulting Boolean network.
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Fig. 1. Converting a CNF instance to an Ising instance.

These optimizations can be useful for hardware feasibility (e.g., fan-ins/outs
affect connection sparsity), but at the same time, can significantly impact the
performance of the Ising machine.

After synthesis, each logic gate is converted into Ising form using its corre-
sponding Ising equivalent network. In this network, the inputs and the output
of each logic gate are represented by Ising spins. Coupling weights between the
spins are carefully chosen to correspond to the specific type of logic gate in
question (e.g., see Fig. 2). The crucial property of these Ising equivalent gates
is that if the gate’s input-output spins satisfy the corresponding Boolean rela-
tionship, then the Hamiltonian of the Ising equivalent network reaches its global
minimum. For any other spin combination, the Hamiltonian is strictly above the
global minimum. Importantly, this property extends to arbitrary interconnec-
tions of these Ising equivalent gates. Thus, the Hamiltonian of the synthesized
network achieves its global minimum if, and only if, the logical relationships of
all the gates in the network are satisfied.

Fig. 2. Ising equivalent networks for 2-input Boolean gates; R is REF/+1 signal.

To enforce the SAT condition, the output spin in the Ising version of the
synthesized network is set to +1 (this is easy to implement in hardware). This
constraint ensures that the network’s minimum Hamiltonian solutions automat-



Circuit-Based 3-SAT Ising Mappings 275

ically correspond to SAT solutions. Unlike many other combinatorial optimiza-
tion problem mappings, for SAT, we already know what the minimum Hamil-
tonian is since each individual gate’s minimum Hamiltonian is known, and
these are simply summed to find the global minimum. We use this information
to determine whether the settled spin state is SAT or not. The Ising machine
(IM) assumes the problem is SAT and attempts to find the corresponding set
of inputs. If the Hamiltonian for the settled spins is not the same as the global
minimum, then the IM deems the problem as UNSAT. Therefore, if the IM
indicates that the problem is SAT, then it is indeed SAT. However, if
it indicates that the problem is UNSAT, then it may or may not be
UNSAT.

OIM with ABC Mapping: ABC is a widely used open-source tool for logic
synthesis and formal verification of digital circuits. It offers a suite of algo-
rithms and techniques for optimizing and verifying designs, making it a valuable
resource for hardware designers. ABC can directly process CNF files and syn-
thesize Boolean circuits based on user preferences, such as controlling the depth
of the Boolean circuit or limiting fan-in/out. Since we have utilized ABC for
logic-synthesis-based mapping, we refer to this mapping as the ABC mapping.

The performance of OIM with ABC-mapped 3-SAT problems is good for
very small-scale SAT problems. However, it encounters notable challenges with
larger instances, such as DIMACS uf-20 problems (see Sect. 6). To enhance per-
formance, the present work introduces two novel ideas, discussed in the following
sections.

Success Rate: A metric termed the success rate is important for assessing
OIM performance on SAT problems. To calculate the success rate of OIM on
a problem, we execute OIM on the problem many times with random initial
conditions and the fraction of runs resulting in success determines the success
rate. For a given Ising-mapped SAT instance, we begin the OIM simulation
with random initial conditions for oscillator phases. Following the procedure
outlined in Sect. 2.1, we cycle the Ks parameter. Throughout our simulations,
we maintain a standard of 100 cycles of Ks, ensuring consistency across all
reported experiments in this paper. This yields 100 sets of settled oscillator
phase samples per simulation. A simulation is considered successful if at least
one of these samples achieves the global minimum Hamiltonian or, equivalently,
satisfies the SAT condition.

4 Level-Based Gate Scaling (LGS)

As outlined in the previous section, the objective of an Ising machine is to
minimize the system’s “energy”, or more precisely the Hamiltonian, as defined
in (1). In the context of SAT, the problem is deemed satisfiable only if each Ising
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gate within the Ising equivalent network maintains a logically consistent input-
output pairing, which ensures that the Ising Hamiltonian of the Ising equivalent
network is the minimum possible.

In cases where the problem remains unsolved, indicating logically inconsis-
tent gates in the overall Ising network, we argue that it is preferable to have
these logically inconsistent gates closer to the inputs than to the output. To
understand why, consider two scenarios: one where the inconsistent gate is close
to the output and another where it is close to the primary inputs. If the gate is
closer to the inputs, then the number of primary inputs that affect the input-set
of the inconsistent gate is relatively small compared to the other case, i.e., when
the gate is far from the inputs. For example, in a “balanced” circuit with 2-input
gates, the number of primary inputs affecting the output of a gate that is at a
distance of m from the primary inputs is 2m; so, the smaller the m, the smaller
the number of critical primary inputs. Therefore, the Hamming distance (num-
ber of positions at which corresponding bits are different) from the actual SAT
solution can be expected to be less when the erring gate is closer to the inputs.
If the solution given by the OIM is close to the actual solution (smaller Ham-
ming distance), then we can potentially improve the OIM result by using local
search algorithms like single bit flip search. Hence, inconsistent gates closer to
the primary inputs lead to better solutions. However, the Hamiltonian achieved
by the OIM is the same regardless of where in the circuit the inconsistent gate
is located.

To address this problem, we propose scaling the Hamiltonian contribution
of gates in the network based on their “proximity” from the primary inputs,
or alternatively, their proximity to the output. Higher priorities are assigned
to gates closer to the output. While traditionally, the digital design literature
measures levels from the primary inputs, we adopt a perspective where levels are
measured from the output. The gate attached to the global output is assigned
level 0. A gate is assigned level n if its output net serves as an input to a gate
of level (n − 1). In cases where a gate is connected to multiple gates, priority is
given to the one closest to the output. For example, in Fig. 3, gate G1’s output
net is connected to a level-1 gate, hence G1 is considered a level-2 gate. Gate
G2’s output net is connected to gates at level-2 and level-3 ; therefore, G2 is
considered a level-3 gate because level-2 is closer to the output and receives
priority.

We use the term sizing2 to refer to scaling all the edge weights within the Ising
equivalent network of a particular gate. In Fig. 4b, a size-K OR gate is depicted.
Scaling an Ising equivalent gate by a factor of K implies that the Hamiltonian
contribution of that Ising gate is also scaled by K. For example, the minimum
Hamiltonian for an unscaled 2-input OR gate is -3 ; if scaled by K=3, the mini-
mum Hamiltonian become −9. As discussed in Sect. 2.1, the dynamics of OIM
tend to minimize the Hamiltonian of the network. Therefore, OIM will tend to
solve the scaled gates correctly, even at the expense of the unscaled ones. This
stems from the fact that resolution of scaled gates yields a more significant reduc-

2 Note that sizing in this context does not mean physical scaling.
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Fig. 3. An example network depicting the concept of gate level.

tion in the Hamiltonian, compared to unscaled/weakly-scaled ones. Therefore,
by applying a scaling function that decreases monotonically with the
gate’s level, we encourage OIM to solve gates at the nth level, even if it necessi-
tates not satisfying those at (n+1)th level. As a result, this mechanism facilitates
the migration of logically inconsistent gates towards inputs, since gates closer to
the inputs have smaller scales, thus leading to solutions closer to SAT in terms
of Hamming distance.

Fig. 4. Ising representation of 2-input OR gates; R represents the REF/+1 signal.

4.1 Iterative Gate Scaling (IGS)

The integration of OIM with ABC mapping using the level-based gate scal-
ing (LGS) above suggests an iterative approach for solving SAT problems. As
discussed previously, simply scaling a gate to be larger relative to the others
effectively drives the scaled gate towards the correct input-output state. If we
can identify the gates that are prone to failure, we can up-size these gates to
potentially improve the success rate (defined in Sect. 3.3) of OIM on a particular
problem. To find gates prone to failure, we simply use OIM and detect which
gates are not logically consistent.

We start with an unscaled Ising network and run OIM on this network to
identify the failed gates. Then, we up-size these gates and rerun OIM on the
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modified network. We repeat this process iteratively for a few iterations, expect-
ing an improvement in the success rate. Pseudo-code for IGS is provided in
Algorithm 1.

Algorithm 1. Pseudocode for Iterative Gate Scaling (IGS)
iter ← 1, Niter ← 100 � Iteration count
parallel runs(NS,est) ← 100 � #runs for estimating the success rate
failed gates ← {} � list of failed gates
current Ising network ← unscaled network
while iter ≤ Niter do

run OIM on current Ising network NS,est times
failed gates ← {collection of all failed gates in this iteration across runs}
for gate in failed gates do

gate.scale ← gate.scale + K · (1 - S) · Pf , gate
� S : success rate; Pf : failure rate

end for
current Ising network ← network with updated gate scale

end while

Gate-Scale Update Step: The update step in Algorithm 1 involves two quan-
tities: the success rate of the network (S) and the failure rate of the gate (Pf,gate).
The failure rate of a gate G is equal to the fraction of runs (used to estimate the
success rate) in which the gate G is faulty. We will increase the scale of the gate
if the failure rate is high. However, if the success rate is already high, there is no
point in scaling the gate further. Therefore, the update quantity is proportional
to (1 − S) · Pf,gate.

We tested IGS on the uf20-02 3-SAT problem; the results are shown in Fig. 5.
Initially, in Fig. 5a, all gates in the ABC-mapped network are of unit size. After
80 iterations, as depicted in Fig. 5b, we observe that the sizes of gates closer to
the output are larger, which is consistent with the discussion in Sect. 4. Note
that, in Fig. 5c, the success rate improves and eventually saturates at close to
90% with iterations.

While IGS appears valuable for increasing the success rate, note that one
needs to run the problem several times, updating the weights in between. From
a hardware implementation standpoint, the time and overall energy consump-
tion for solving the problem scale with the product of the number of iterations
(Niter) and the number of times the problem is executed to estimate success rate
(NS,est). Nevertheless, this approach can be a valuable addition to the repertoire
of mappings to solve SAT problems.

5 3OR-Based Ising Mapping

In this section, we present 3ORn+m, a 3SAT-to-Ising transformation technique
that requires n+m spins, excluding the REF spin. The number of spins required
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Fig. 5. IGS: evolution of gate sizes and success rate for uf-02 problem.

is the same as that for Chancellorn+m mapping. However, the new 3OR mapping
yields superior results with OIM (see Sect. 6). For each Boolean variable xi,
0 ≤ i ≤ n − 1, occurring in the 3-SAT instance, we use one spin to encode its
Boolean value. Additionally, we need one more spin for every clause in the 3-SAT
instance.

Typically, 3-SAT problems are provided in Conjunctive Normal Form (CNF),
where each clause consists of the OR of three literals. These clauses collectively
feed into an m-input AND gate, where m represents the total number of clauses.
This Boolean circuit structure, utilizing 3-input OR gates, provides a natural
mapping for the CNF format. To translate the CNF problem into Ising form,
this Boolean circuit representation is directly leveraged. Similar to Choi and
Chancellor, the 3OR transformation preserves the notion of clauses even on the
hardware.
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3OR Gate Construction: A 3-input OR gate is constructed by cascading two
2-input Ising OR networks, as illustrated in Fig. 6a. To accommodate negated
literals within the clauses, the weights of edges connected to the respective nodes
in the Ising network can be inverted, as shown in Fig. 6b. Consequently, all nodes
in the Ising formulation correspond to the positive literals. It must be noted that
although Fig. 6a contains 5 spins (not including the REF/+1 signal), as discussed
in Sect. 3.3, to solve the SAT problem, the output node is forced to “+1”, making
the output node the same as the REF signal. Thus, the output spin and the REF
signal can be merged. Indeed, every +1 node can be merged into a single node.

Fig. 6. 3OR Ising formulations

Table 1 contains the weights of the coupling at each spin of the 3OR gate’s
Ising equivalent. Symbols sa, sb, sc in Table 1 are Ising spins that correspond
to the literals a, b, and c in the clause (a ∨ b ∨ c), and sm is the additional
spin required by the 3OR mapping. The diagonal entries represent the coupling
between the spin and the REF/+1 signal, whereas the upper triangular entries,
Wij , represent the weights of coupling between the spins si and sj . To handle
negative literals, the sign() function is used as follows:

sign(x) =

{
1, if x is a positive literal, e.g ., a,

−1, if x is a negative literal, e.g ., ā.
(4)

For this Ising network, the minimum Hamiltonian is −4, irrespective of the signs
of the literals.

Table 1. Coupling weights for different types of clauses (a ∨ b ∨ c); H = −4

sa sb sc sm

sa sign(a) sign(a)·sign(b) 0 −2·sign(a)

sb sign(b) 0 −2·sign(b)

sc −sign(c) sign(c)

sm −3

The output node not only serves as the output of the SAT network but also
represents the output of the m-input AND gate. Consequently, ensuring the
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output remains +1 mandates that each input of the AND gate be set to +1.
Thus, constraining every clause’s output to be +1 is equivalent to implement-
ing an m-input AND gate with the output fixed at +1, making the m-AND
implementation redundant.

6 Results

To evaluate the performance of OIM with the various mappings discussed earlier,
we used the uf20 dataset of 3-SAT problems from SATLIB [1]. This dataset
comprises 1000 randomly generated problems, with each problem referred to as
a “3-SAT instance”. Each 3-SAT instance consists of 20 variables and contains
91 clauses. We analyze the performance of different mappings using the following
criteria.

Spin Count and Connectivity: In the context of solving the problem on
hardware, especially IC implementations, an important feature of an efficient
mapping is that the mapped Ising problem should use fewer resources, i.e., fewer
hardware spins and couplings. In Fig. 7, we show the number of spins and cou-
plings required for uf20 problems with different 3-SAT-Ising mappings. From
Fig. 7a, we observe that both Chancellor and 3OR require the minimum number
of spins to represent the 3-SAT problem in Ising form. Additionally, Fig. 7b shows
that 3OR requires fewer couplings compared to the other mappings. Therefore,
of all the mappings, the 3OR mapping consumes fewer hardware resources to
represent the same 3-SAT problem in Ising form.

Fig. 7. Comparison of spins and couplings needed to map uf20 problems into Ising
form.
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Comparing Mapping Techniques: In this experiment, we assess the effec-
tiveness of various mapping techniques in terms of how easily the OIM can solve
a given 3-SAT problem. We primarily consider two criteria to measure the effec-
tiveness of the mappings: the fraction of solved instances and the success rate.
To calculate the success rate of an instance, we execute the OIM on the instance
100 times with random initial conditions and record the fraction of runs that
result in success, i.e., a SAT solution is found. If the OIM fails to solve the
problem in any of these 100 runs, we consider that instance to have failed. In
the uf20 dataset, there are 1000 instances. We compute the success rate for all
instances and report statistical quantities such as the mean and median for each
mapping.

Table 2. Comparison between different mappings.

Total
Instances

Solved
Instances

Fraction of
Solved
Instances

Mean
Success
Rate

Median
Success
Rate

ABC (no LGS) 1000 0 0 0 0

ABC (LGS) 1000 999 0.999 0.556 0.58

Choi 1000 990 0.99 0.393 0.29

Chancellor 1000 936 0.936 0.879 1

3OR 1000 1000 1 0.959 1

From Table 2, it is evident that level-based gate scaling (LGS, Sect. 4) sig-
nificantly improves the performance of OIM on ABC-mapped 3-SAT instances,
with the mean success rate increasing from 0 to 0.556. Overall, 3OR produced
the best results, with a mean success rate of 0.959, which is notably higher
than other mappings. Considering its requirement of fewer resources and excel-
lent performance with OIM, the 3OR mapping emerges as the ideal choice for
3SAT-Ising mapping.

Table 3. Comparison between hardware solvers.

Benchmark Solver Total
Instances

Solved
Instances

Fraction of
Solved
Instances

Mean
Success
Rate

Median
Success
Rate

uf20 SA 1000 1000 1 0.587 0.59

uf20 OIM 1000 1000 1 0.959 1

uf50 SA 1000 920 0.92 0.109 0.07

uf50 OIM 1000 984 0.984 0.501 0.48
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Fig. 8. SATLIB benchmark results with 3-OR Ising mapping.

Comparing OIM and SA Using 3OR Mapping: We now compare the
effectiveness of the OIM by comparing it to simulated annealing (SA) [16], a
well-known method widely used for solving many combinatorial optimization
problems. We solve 3OR-mapped uf20 and uf50 SAT problems with both OIM
and SA, measure success rates for each problem, and plot a histogram of these
in Fig. 8.

From Fig. 8a and 8b, it is evident that the histogram of OIM success rates is
heavily weighted towards the right, implying that many uf20/uf50 instances have
high success rates. With SA, however, the success rates are very low for most of
the problems. As shown in Table 3, OIM achieves much better success rates and
was able to solve greater number of instances compared to SA. This indicates
that OIM outperforms SA by a significant margin, highlighting its potential for
solving practical and significant combinatorial optimization problems.

7 Conclusion

In this paper, we introduced two novel techniques to improve the performance
of OIM for logic-synthesis-based 3SAT-to-Ising mappings. Additionally, we pre-
sented a new circuit-based 3-SAT translation method called 3OR. Despite requir-
ing the same number of spins and a similar number of couplings as the current
state-of-the-art Chancellor mapping, we demonstrated that the success rate of
OIM is higher with 3OR than with Chancellor. We also showed that OIM out-
performs SA when it comes to solving Ising-translated 3-SAT instances.

Why one Ising mapping scheme performs better than another, not only in
OIM but in other IM schemes, is poorly understood currently it is an impor-
tant direction for further exploration. We hope that empirical results, such as
those presented here, will aid in unraveling this central question.
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