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Abstract. Oscillator Ising Machines (OIMs) are networks of coupled
nonlinear oscillators that solve the NP-hard Ising problem heuristically.
Conventionally, the oscillators in an OIM are coupled using resistors.
However, the phase-domain properties of such couplers are unsatisfac-
tory; resistively-coupled OIMs do not realize the optimization perfor-
mance predicted by simulations of idealized OIMs. This has been a major
hurdle impeding the development of high quality analog OIMs on inte-
grated circuits. In this paper, we present a novel coupling scheme, the
sampling coupler, that addresses this issue theoretically and practically.
Essentially, a sampling coupler injects a current that depends on the
phase difference between interacting oscillators. We prove analytically
that using sampling couplers leads to idealized OIMs, abstracting away
the waveforms and innate phase sensitivities of the oscillators. We evalu-
ate sampling-coupler OIMs (using simulation) on a practically-important
digital wireless communication problem and show that the performance
is near-optimal. Sampling couplers therefore open up a way to implement
practically feasible, high-performance analog OIMs using virtually any
oscillator.

1 Introduction

Ising machines are hardware solvers for the Ising problem, a general mathe-
matical formulation involving an energy-like quantity (the Ising Hamiltonian, a
quadratic function of binary problem variables called spins). They have been a
focus of research in recent years (e.g., [1,5,11,24,26,27,29]), on account of their
ability to solve combinatorial optimization (CO) problems using novel analog
mechanisms. Virtually all CO problems can be mapped into Ising form [16],
making them amenable to solution using Ising machines, which offer the promise
of speed, energy efficiency and miniaturisability.

Oscillator Ising Machines (OIMs), a scheme based on the dynamics of
suitably-designed networks of coupled oscillators, have shown particular promise
for high-quality optimization [27,28]. Achieving this promise in hardware is cur-
rently an important research thrust. So far, OIMs with idealized phase-domain
functions (Fc(·), described below) have shown excellent optimization charac-
teristics, in both simulation [23,27,28] and a custom digital IC emulator [22].
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However, integrated circuit realizations of OIMs that employ real analog oscilla-
tors to deliver high-quality optimizations on practically-important problems have
not been demonstrated yet. Beyond the intrinsic scientific value of such a demon-
stration, high-quality analog OIM implementations can offer important practi-
cal advantages over simulation and digital emulation, such as significantly lower
energy-to-solution.

In this paper, we identify a fundamental difficulty in designing high-quality
analog OIMs using prior schemes, and present a new OIM scheme that over-
comes it. Existing OIM schemes rely on resistive couplings.1 An OIM’s over-
all mathematical model (the generalized Kuramoto model, explained below)
is obtained by combining the resistive coupling equation with the oscillators’
nonlinear phase-sensitivity function (the PPV, see below2). This combination
results in the generalized-Kuramoto function Fc(·), the precise nature of which
crucially determines how well the OIM solves optimization problems. A key prob-
lem with resistive coupling is that the resulting Fc(·) function essentially mirrors
the oscillator’s PPV function which makes it very difficult, indeed practically
impossible, to tailor its shape to improve the OIM’s optimization performance.
As a result, practical analog OIM hardware designs often do not match results
from simulations/emulations, which use idealized Fc(·) functions that result in
high-quality optimization performance.

Although it is difficult/impossible to alter oscillator designs to yield a desired
Fc(·) shape with resistive coupling, an alternative possibility is to change the cou-
pling mechanism to reach the same goal. We show here that this is not only possi-
ble, but easy to achieve in practice using simple circuitry. The new scheme is highly
effective in enabling excellent OIM optimization performance using standard ana-
log oscillator designs which do not perform well with resistive coupling.

The essential difference from resistive coupling is that the coupling signal
injected into a target oscillator by a source oscillator depends not only on the
source oscillator’s waveform, but also on the target oscillator’s waveform, in a
multiplicative manner. In other words, multiplicative feedback from the target
oscillator modifies the injection from the source oscillator. Because multiplication
captures phase differences, the effect in the phase domain is an injection that is
dependent on the phase difference between the target and source oscillators in
contrast to resistive coupling, where the injection depends only on the source
oscillator’s phase.

We present a simple circuit, which we dub the sampling coupler, that imple-
ments this new coupling scheme using early-late sampling. We prove that the
new coupling scheme translates mathematically to a generalized-Kuramoto Fc(·)
function that matches idealized ones that achieve excellent optimization quality

1 More precisely: independent of the actual hardware implementation (which can use,
e.g., active elements instead of resistors), an oscillator couples to another by injecting
a signal proportional to its voltage waveform.

2 PPV stands for Perturbation Projection Vector; it is a periodic function that com-
pletely captures the dynamics of an oscillator’s phase response to external inputs,
such as those from other oscillators via coupling [7].
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in simulation/emulation. We then simulate the generalized-Kuramoto model for
the new coupling scheme and show that it performs essentially-perfect optimiza-
tion, in contrast to resistive coupling, which yields poor results. The problem set
we use for validation is a large set of benchmarks for the MU-MIMO3 detection
problem, an important practical problem that arises in modern digital wireless
communications [20].

Our invention and validation of the sampling coupler constitutes a key
advance for enabling genuinely analog IC realizations of high-performance OIMs
in the short term. The concept may also have implications for other types of
Ising machines.

The remainder of the paper is organized as follows. We provide background on
OIMs and their mathematical models in Sect. 2. This is followed by development
of the sampling coupler (Sect. 3). It constitutes the core of this paper. In Sect.
4, we present simulation results evaluating a sampling-coupler based OIM on
MU-MIMO detection problems.

2 Background: OIM Mathematical Models

The Ising model is simply a weighted graph, i.e., a collection of nodes/vertices
and branches/edges between some pairs of nodes, with each branch having a
real-number weight. Each node (termed a “spin” in this context) is allowed to
take two values, either 1 or −1. Associated with this graph is an expression, the
Ising Hamiltonian, which multiplies the weight of each branch by the values
of the two spins it connects to, and sums over all branches, i.e.,

H = −1
2

∑

i,j
i�=j

Jijsisj , where si ∈ {−1, + 1} (1)

are the spins. The Ising Hamiltonian is sometimes interpreted as an “energy”
associated with a given configuration of the spins, although in many situations
they have no connection with energy in physics. The “Ising problem” is to find
spin configurations with the minimum possible energy.

In 2016, we proposed using networks of coupled oscillators to solve Ising
problems [26]. In our scheme, each of the N spins of an Ising problem is imple-
mented by an oscillator. The information needed to find a solution of the Ising
problem is encoded in the phase of each oscillator. This purely classical scheme
had a significant advantage over prior Ising machines: OIMs can potentially be
implemented entirely on chip in CMOS device technologies, with all the atten-
dant benefits of IC integration small physical size, low power consumption,
easy scalability to many spins and easy mass production at low cost.

A simple model of the phase dynamics of the oscillator network [7,13,26] is
the Kuramoto model, which takes the form

1
f0

d

dt
Δφi(t) = −Kc

N∑

j=1
j �=i

Jij sin(2π(Δφi(t) − Δφj(t))). (2)

3 MU-MIMO stands for Multi-User Multi-Input Multi-Output.
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Here, Δφi(t) is the phase change of the ith oscillator due to the influences of the
other oscillators via coupling, Kc is a positive constant, and f0 is the nominal
oscillation frequency, assumed the same for all the oscillators. Note that (2) is
repeated for each oscillator, resulting in a coupled system of nonlinear differential
equations describing the dynamics of the network.

This system is (as far as is known) impossible to solve analytically. However,
a key result that underpins OIMs has been established analytically [26]. The
result is that (2) can be equipped with a Lyapunov function [17], given by

E ({Δφk}) � −Kc

N∑

i=1

N∑

j=1
j �=i

Jij cos(2π(Δφi − Δφj)). (3)

The utility of a Lyapunov function is that it is non-increasing (i.e., it always
decreases, or remains constant) with time if the phases Δφi(t) obey (2). In
other words, the Lyapunov function always decreases (eventually settling to a
constant) as the oscillator system’s dynamics evolve. The minima of the Lya-
punov function correspond to stable equilibrium points (DC solutions) of (2),
i.e., the coupled oscillator system’s phases settle to values that mini-
mize (locally) the Lyapunov function.

The Lyapunov function (3) looks very similar to the Ising Hamiltonian (1)
if the coupling weights are the same as (or a scaled version of) the Ising prob-
lem’s Jij . The main difference is that the Ising Hamiltonian contains sisj terms,
while the Lyapunov function has a cos(2π(Δφi − Δφj)) term. But if 2πΔφi and
2πΔφj were restricted to either 0 or π, with 0 defined as a spin value of 1
and π of −1, cos(2π(Δφi − Δφj)) would equal sisj , and the oscillator network’s
Lyapunov function would simply become a scaled version of the Ising Hamilto-
nian. In other words, the oscillator network’s dynamics would innately solve the
Ising problem, at least to the extent that it would find a local minimum of the
Lyapunov function, which is a continuized version of the Ising Hamiltonian – if
each oscillator’s phase could somehow be restricted to be either 0 or π.

In general, there is no guarantee that the oscillator’s phases will settle to
either 0 or π indeed, phases settle to steady-state values that range continu-
ously over [0, 2π]. In such cases, the oscillator network’s dynamics do not lead it
to solutions that correspond to minima of the Ising Hamiltonian. It is in this con-
text that “binarizing” the oscillator’s phases using a phenomenon called SHIL4

becomes important, since it restricts each oscillator’s phase to 0 or π. Modifying
the oscillator network with SHIL injection changes the Kuramoto equations to

4 SHIL is an abbreviation of Sub-Harmonic Injection Locking; it is a phenomenon
observed in nonlinear oscillators. In SHIL, the oscillator gets forced to oscillate in
either one of two stable phases separated by π radians when it is perturbed by an
external signal of a frequency that is twice the natural frequency of the oscillator
[2].
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1
f0

d

dt
Δφi(t) = −Kc

N∑

j=1
j �=i

Jij sin(2π(Δφi(t) − Δφj(t))) − Ks sin(4πΔφi(t)). (4)

The corresponding Lyapunov function becomes

E ({Δφk}) � −Kc

N∑

i=1

N∑

j=1
j �=i

Jij cos(2π(Δφi − Δφj)) − Ks

N∑

i=1

cos(4πΔφi), (5)

i.e., an additional term Ks

2

∑
cos(4πΔφi) appears, where Ks represents the

strength of the input for inducing SHIL (called henceforth as SYNC). Since
SHIL forces 2πΔφi to either 0 or π (approximately), this term represents simply
an addition of a constant offset to the Ising Hamiltonian, leaving the minima
unchanged. Thus, the coupled oscillator network with the addition of a
2nd harmonic SYNC input to induce SHIL naturally settles to phase
solutions that locally minimize the Lyapunov function.

This result is currently the best-known theoretical basis for oscillator Ising
machines.

The above result only guarantees that the oscillator network will find local
minima. To get the network out of local minima and guide it towards the global
minimum, additional steps are needed.5 An effective way to get the network out
of local minima is to relax or remove the SYNC signal (which binarizes each
oscillator’s phases through SHIL) and restore it again several times. Reducing
SYNC allows the oscillators to drift away from 0/π to continuous values; as
SYNC is ramped up again, the system tends to find its way to minima that are
lower than previous ones. Adding a moderate amount of noise to the system
helps with the Lyapunov minimization process.

The sinusoidal functions in the above equations, originally proposed by
Kuramoto [15], do not suffice for practical oscillators, which require the more
general form6

1
f0

d

dt
Δφi(t) =

n∑

j=1, j �=i

Jij Fc(Δφi(t) − Δφj(t)) + Fs(2Δφi(t)). (6)

The key difference from the basic Kuramoto equations (4) is that the sin(2π(·))
functions in (4) are replaced by Fc(·) and Fs(·) in (6). These functions can be
extracted from, e.g., the detailed circuit description of an oscillator provided
to circuit simulators for low-level electronic simulation [2,8]. Extracting Fc()

5 This is characteristic of all Ising machines, as well as of optimization algorithms like
simulated annealing.

6 There is a corresponding Lyapunov function [25] that generalizes (5).
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and Fs() from low-level circuit differential equations involves first finding an
abstraction known as the PPV phase-domain model [7,8] for the oscillator, i.e.,

1
f0

d

dt
Δφ(t) = vT (f0t + Δφ(t)) · b(t). (7)

In (7), the quantity v(t), called the PPV, represents a “nonlinear sensitivity” of
the oscillator’s phase response to input perturbations; it can be extracted from
the detailed differential equations of any oscillator using numerical techniques [8].
Furthermore, b(t) represents ‘small’ perturbations (inputs) to the oscillator, in
response to which the oscillator’s phase changes by Δφ(t) obtained by solving
(7). Note that the waveform of the perturbed oscillator (denoted by x(t)) is
given by

x(t) = xs(f0t + Δφ(t)), (8)

where xs(·) represents the 1-periodic steady-state waveform of the unperturbed
oscillator. Δφ(t) thus represents the additional phase shift due to the perturba-
tion.

Once (7) is available, an averaging or “Adlerization” process [2,4] is used to
extract Fc(·) and Fs(·). The derivation assumes that couplings between oscilla-
tors are resistive i.e., the injected signal into a target oscillator due to coupling
with other oscillators is proportional to the waveform of a source oscillator. Using
Fc(·) and Fs(·) in (6), OIM systems with many spins can be simulated quickly to
assess Lyapunov/Hamiltonian minimization performance.7 We refer the reader
to, e.g., [27,28] as a starting point for further information about OIMs and their
underlying mathematics.

3 Sampling Coupler

The precise nature of the 2π-periodic, typically non-sinusoidal, functions Fc(·)
and Fs(·) strongly influences Hamiltonian minimization performance of the OIM.
Unfortunately, function shapes that typically emerge from practical oscillator
designs do not lead to high-quality minimization performance. Moreover, it
is very difficult (indeed essentially impossible) to alter an oscillator design to
achieve desired shapes for Fc(·) or Fs(·). In this work, we circumvent this diffi-
culty by changing the coupling mechanism, and re-deriving (7) with this change
to achieve Fc(·) and Fs(·) functions that do produce high-quality optimization
performance in OIMs.

The new coupling scheme and corresponding circuit, termed the sampling
coupler, results in a near-ideal square-wave shape for Fc(·) or Fs(·).8 The square-
wave shape for Fc(·) is desirable because, empirically, we have observed that

7 Simulating a coupled system of “Un-Adlerized” PPV equations for the OIM network,
as we do to generate some of our results in this paper, provides more accurate results
than (6), though it requires somewhat greater computational effort.

8 For simplicity and brevity, we focus on Fc(·) in the following; the reasoning for Fs(·)
is very similar.
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Fig. 1. (Top) A plot of ideal ‘sharp’,
i.e., the desired Fc(Δφi − Δφj) denoted
by Fc,d (Δφi − Δφj). (Bottom) Example
waveforms of OSCi (black) and OSCj (blue
and red). The waveform in red is for the
case when 0 < Δφi − Δφj < 0.5, and
the waveform in blue is for the case when
−0.5 < Δφi − Δφj < 0. OSCj ’s wave-
form (red and blue) are sampled at the ris-
ing edges of OSCi’s waveform (black). The
samples (shown as bullets) directly provide
the values of Fc,d (Δφi − Δφj).

Fig. 2. Flip-flops to directly evaluate
Fc,d (·). DFFi,j samples the waveform
of OSCj at the rising edges of OSCi,
which gives us Fc,d (Δφi − Δφj). Sim-
ilarly, samples of DFFj,i provide
Fc,d (Δφj − Δφi).

it leads to very good optimization performance (e.g., see Fig. 6); other shapes,
e.g., those that emerge naturally for ring and other oscillators, lead to significant
performance degradation. Another significant practical advantage of a square-
wave Fc(·) is that simple circuit structures suffice for implementation.

Figure 1 introduces the concept and explains the choice of the term “sampling
coupler”. The upper figure depicts the above-mentioned desired square-wave
shape of Fc(·), which we refer to as Fc,d (·) henceforth,9 to distinguish it from
the actually-achieved Fc(·) for a given OIM scheme. Because of this shape, note
that any term Fc,d (Δφi − Δφj) in (6) takes only 2 values, ±1. If Δφi − Δφj is
restricted to a single period [−0.5, 0.5], Fc,d (Δφi − Δφj) is −1 if Δφi > Δφj ,
and +1 if Δφi < Δφj . In other words, the value of the term depends only on
whether one phase is ahead of, or behind, the other.

Recall that Δφi and Δφj are the phases of oscillatory waveforms. If these
are square as well,10 as shown in the lower part of Fig. 1, then simply looking
at (or sampling) the value of one waveform at the transition edge of the other
suffices to determine if the phase of one is ahead of, or behind, the other. This

9 The ‘d’ stands for ‘desired’.
10 It is easy in practice to turn most waveforms into square ones using a simple thresh-

olding circuit.
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Fig. 3. A two oscillator OIM with sampling couplers. OSCi couples to OSCj as follows:
the lower flip-flop samples the square-wave output of OSCi at the transition edge of
OSCj ; the resulting sampled value of ±1 is weighted by the Ising coupling weight
Jj,i and injected into OSCj . The upper flip-flop couples OSCj to OSCi in the same
manner. Note that Jj,i = Ji,j for the Ising model to be valid.

is called early-late sampling ; we have just established that it achieves evaluating
Fc,d (Δφi − Δφj). A block-level circuit implementing this using D flip-flops is
shown in Fig. 2; the outputs Q produce Fc,d (Δφi − Δφj).

Now consider the following scheme. Ignoring the provenance of the circuit
of Fig. 2 as explained above, suppose we use its outputs Q to couple oscillators,
as shown in Fig. 3. Coupling from a source oscillator j to a target oscillator i is
effected by sampling the source oscillator’s square-wave signal at the transition of
the target oscillator’s square-wave output; then, weighting the ±1 sampled value
(which is equal to Fc,d (Δφi − Δφj)) by the Ising coupling weight Jij ; and finally,
injecting a current equal to this value into the target oscillator. Generalization
to a system of N coupled oscillators (Fig. 4) is straightforward.

It now remains to understand what an OIM with such a coupling scheme can
achieve. Indeed, is the generalized Kuramoto model (6) still applicable to this
scheme? If so, what does Fc(·) in (6) turn out to be?

Our key result is that (6) is still valid, with an Fc(·) function that is a
scaled version of the desired Fc(·) illustrated in Fig. 1, i.e., Fc(·) = Kc · Fc,d (·)
for some constant Kc. Crucially, the square-wave shape of the achieved Fc(·)
essentially does not depend on the oscillator’s PPV v(·) in (7), except for the
scaling factor Kc. This feature is in stark contrast to the resistive/proportional
coupling scenario, where the shape of Fc(·) is determined to a great extent by
that of v(·) leading to sub-optimal Hamiltonian minimization performance.
The derivation/proof of these results, essentially a specialized version of the
Adlerization/averaging procedure of [2], is provided in Appendix A.
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Fig. 4. An N oscillator OIM that employs sampling couplers. Note that (for every i)
a sampling coupler that couples the ith oscillator to itself does not exist.

4 Results

Fig. 5. An illustration of a Multiple
User Multiple In Multiple Out (MU-
MIMO) setup. Multiple users trans-
mit their data, x, to a receiver with
multiple antennæ, where the signal
y is measured. Transmission occurs
over several paths, characterized by
the channel matrix H.

We now present results comparing the opti-
mization performance of OIM with resistive
coupling with that of OIM using the new
sampling coupler scheme. Result data for
OIM with the sampling coupler, and with
resistive coupling, was generated by simu-
lating a system of PPV equations (7) incor-
porating the appropriate coupling mecha-
nism. Using the PPV equations for simulat-
ing the sampling-coupler and resistor based
OIMs is closer in terms of fidelity to actual
circuit implementations compared to gener-
alized Kuramoto models. For comparison,
the generalized Kuramoto model (6) using
the ideal square-wave desired Fc,d (·) was
also simulated.11

A large set of benchmarks (550,000
problems, [20,22,23]) for MU-MIMO detec-
tion [10,14], an important practical problem in wireless telecommunications, was
used to evaluate performance. We first describe the MU-MIMO detection prob-
lem before presenting our simulation results.

Modern wireless communication settings involve multiple users with sin-
gle/multiple transmit antennæ, using the same resources (time and frequency)

11 The simulations used the Forward Euler technique for numerical solution of ordinary
differential equations, as noted in [26].
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to transmit to a receiver equipped with multiple receive antennæ (see Fig. 5).12

As a result, each received signal consists of a noisy superposition of several users’
transmitted symbols; the influence on each receiving antenna of each transmit-
ting antenna is captured mathematically using a channel matrix, H. Recovering
the originally-sent symbols from received signals involves solving a hard combi-
natorial optimization problem (the MU-MIMO detection problem [6,14]) to infer
the most likely set of transmitted symbols, given the set of signals received. Solv-
ing exactly for the most likely transmitted symbols, i.e., the M.L. (Maximum
Likelihood) solution, is too computationally expensive to be practical. In prac-
tical 4G/5G/6G systems, it is necessary to meet real-time performance require-
ments during detection. Therefore, heuristic methods that use much less compu-
tation than M.L., such as LMMSE (“linear minimum mean-square error”) or ZF
(“Zero Forcing”) [19], are universally employed even though they do not recover
transmitted symbols as accurately as M.L.. However, even though impractically
expensive in practice, results from M.L. serve as the gold standard for perfor-
mance, i.e., they represent the best SER (symbol error rate) achievable, via
optimal detection.

Fig. 6. SER vs SNR plot of a resistive coupler
OIM and a sampling coupler OIM compared
against the idealized OIM and other heuristic
detection schemes. As can be seen, the per-
formance of the resistive coupler OIM is very
poor when compared to the optimal decoder
(Sphere). The sampling coupler OIM matches
the SER of the Sphere decoder.

The MU-MIMO detection prob-
lem can be cast as an Ising
(Hamiltonian minimization) prob-
lem, making it possible for Ising
machines, such as OIMs, to solve
it. If the number of transmit
antennæ is denoted by Nt, it can
be shown ([20, Section 4], [14])
that the equivalent Ising prob-
lem in the form (1) requires Nt +
1 spins. The coupling coefficients
Jij are typically all non-zero, i.e.,
every spin is non-trivially cou-
pled to every other spin; such all-
to-all coupling is termed dense.
Finding the global minimum of
the Ising version of the prob-
lem corresponds exactly to find-
ing the set of transmit symbols
most likely to result in a given
observed set of received signals,
i.e., the M.L. solution. A sub-optimal solution is typically characterized by a
larger number of symbol errors than in the optimal solution. The fidelity of any
detection scheme can be judged by the SER it achieves, compared to the optimal
SER achieved by M.L..

12 Doing so greatly increases data rate and reliability compared to single-antenna sys-
tems.
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Figure 6 depicts SER results from detection using several different schemes:
M.L. (using an efficient implementation known as Sphere Decoding [9,12,18]),
LMMSE and ZF, OIM with resistive coupling, and OIM with our new sam-
pling coupler. The benchmark set used for our simulations consists of 11 sets of
test problems. Each set corresponds to a specific SNR (signal-to-noise ratio)
at the receiving antennæ; the 11 sets of problems have SNR (in dB, i.e.,
10 log10(actual SNR)) varying from −1 dB to 9 dB, shown on the horizontal axis
of Fig. 6. For each SNR value, the test problem set consists of 1000 different
channel matrices H, for each of which 50 pairs of transmitted symbol vectors
x and received signal vectors y are available. Thus, there are 50,000 decoding
problems for each SNR value, or a total of 550,000 problems in all. The vertical
axis represents (also on a logarithmic scale) the SERs achieved by each detection
scheme across all 50,000 problems for each value of SNR. As can be seen, prob-
lem sets with higher SNRs generally have fewer symbol errors; those with lower
SNRs have more. This is intuitive because more noise leads (probabilistically)
to more bit/symbol upsets.

The performances of the different detection techniques are clustered into 3
groups, as can be seen. The lowest cluster comprises 3 traces: the Sphere Decoder
(representing optimal SER performance), OIM using the sampling coupler (sim-
ulated using the more detailed PPV equations (7), as noted earlier), and OIM
simulated at the generalized Kuramoto level (6) using the ideal square-wave
Fc,d (·) this was the starting point of our development of the sampling coupler
in Sect. 3. The SER performance of both OIM simulations are essentially iden-
tical to the optimal one from the Sphere Decoder/M.L., i.e., sampling-coupler-
based OIM delivers the best possible SER performance on these problems.

The two traces in the middle show the SER performances of LMMSE and
ZF. It is apparent that they are significantly inferior to the three methods above.
The uppermost trace shows the SER performance of a typical OIM with resistive
coupling, also simulated at the more-accurate PPV level. Its SER performance
is inferior even with respect to LMMSE and ZF, and far inferior to that of
OIM with the sampling coupler. These results underscore the potential impact
of using the sampling coupler for practical OIM designs.13

5 Conclusion

Virtually all current OIM schemes use resistors to couple oscillators. However,
due to their strong dependence on oscillator waveforms and PPVs, their char-
acteristic coupling functions Fc(·) tend to be smooth and skewed. These shapes
impact the performance of resistively-coupled OIMs, which often is significantly
inferior to that of OIMs with idealized square-wave Fc(·)s. In this paper, we
have presented a novel coupling scheme, the sampling coupler, which directly
injects a current that is a function of the idealized square-wave Fc,d (·). More-
over, we have shown a simple flip-flop based circuit structure that implements
13 Note, however, that resistive coupling in OIMs with specially designed oscillators

can produce good results for some problems, such as MAX-CUT [21].
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the sampling coupler. We have proved analytically that the actual Fc(·) achieved
by this coupling circuit/scheme is equal to a scaled version of the desired ideal
square-wave Fc,d (·); the impact of the oscillators’ waveforms and the PPVs
is reduced to a mere scaling factor. Furthermore, using simulations, we have
shown that sampling-coupler based OIMs perform near-optimally on practically
relevant MU-MIMO detection problems. Sampling couplers thus constitute an
important technology for realizing practically feasible high-performance analog
OIMs that are insensitive to details of oscillator implementation.
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A Sampling-Coupler Based OIMs Achieve Fc,d(·)
Here, we prove that the actual Fc(·) of the sampling coupler is in fact equal
to a scaled version of the ideal Fc,d(·). We start from the PPV equation ((7),
repeated here):

1
f0

d

dt
Δφ(t) = vT (f0t + Δφ(t)) · b(t). (9)

Here, Δφ(t) is the phase change of the oscillator, vT (·) is its vector of 1-periodic
PPVs, and b(t) is the vector of inputs applied to the oscillator.

Applying the above PPV model to the two oscillators coupled via sampling
couplers, we get

1
f0

d

dt
Δφi(t) = vT (f0t + Δφi(t)) · bi(t),

1
f0

d

dt
Δφj(t) = vT (f0t + Δφj(t)) · bj(t),

(10)

where bi(t) and bj(t) represent the inputs into each oscillator from the other
via the sampling couplers in Fig. 3. Note that vector PPVs and inputs (i.e.,
v(·) and b(t) respectively) have been replaced by scalars; this is a simplification
(for exposition) assuming a single scalar input, i.e., b has only one nonzero
component.14

14 In (10), v(·) and bi(t) are the PPV and the input (respectively) of the node xi,in in
Fig. 3.
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We now focus on OSCi and derive its actual Fc(·). The input bi(t), repre-
sented in Fig. 3 by Isrc,i,j , has the form

bi(t) = Ji,j · Fc,d (Δφi(t) − Δφj(t)) · w
(
Δφi(t) + f0t

)
, (11)

where:

– Ji,j is the Ising coupling coefficient (from (1)) between the ith and the jth

oscillator.
– Fc,d (Δφi(t) − Δφj(t)) is the value of the sample held by DFFi,j in Fig. 3,

as established in Sect. 3. Note that Δφi and Δφj in (11) now change with
time as the system evolves. However, the flip-flops in Fig. 3 hold the value
at the last sampling instant until the next sample; this is not captured by
Fc,d (Δφi(t) − Δφj(t)).

– The w(·) term captures the sampling aspect of the flip-flop. Note that the flip-
flop DFFi,j samples at transitions of xi(t), i.e., its sampling instant is timed
using the phase f0t+Δφi(t) of OSCi. Ideal sampling would be captured by a
weighted delta function of this phase, i.e., Cw(f0t + Δφi(t) + θ), where w(·)
is a unit impulse train with period 1, C is a weight, and θ is a constant phase
offset, useful for adjusting the sampling instant within each cycle and/or
to model clock-to-Q delay in the flip-flop.15 However, w(·) can in fact be
almost any 1-periodic function for the scheme to work, as we show below;
incorporating C into, and using a θ-shifted version of, a given w(·) simplifies
the expression to w(f0t + Δφi(t)).

Substituting bi(t) in (10), we obtain

Δφ̇i(t) = f0 · v
(
Δφi(t) + f0t

) · Ji,j

· Fc,d (Δφi(t) − Δφj(t)) · w
(
Δφi(t) + f0t

)
.

(12)

Now, we assume that the phases Δφi(t) and Δφj(t) vary ‘slowly’ this is a
standard assumption for averaging or “Adlerization”; [2,4]. With this assump-
tion, the Adlerization of (12) is

Δφ̇i(t) ≈ f0

φ=1∫

φ=0

v
(
Δφi(t) + φ

) · Ji,j

· Fc,d (Δφi(t) − Δφj(t)) · w
(
Δφi(t) + φ

) · dφ,

(13)

15 The flip-flop can have a nonzero clock-to-Q delay, but we assume it is designed to
avoid metastability, i.e., such delays will not be indefinitely long.
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where φ represents the nominal oscillator phase, f0t. Simplifying the above leads
to

Δφ̇i(t) = f0 · Ji,j · Fc,d (Δφi(t) − Δφj(t)) ·
φ=1∫

φ=0

v
(
Δφi(t) + φ

) · w
(
Δφi(t) + φ

) · dφ

= f0 · Ji,j · Fc,d (Δφi(t) − Δφj(t))

ψ=1+Δφi(t)∫

ψ=Δφi(t)

v(ψ) · w(ψ) · dψ

= f0 · Ji,j · Fc,d (Δφi(t) − Δφj(t))

ψ=1∫

ψ=0

v(ψ) · w(ψ) · dψ,

(14)

where ψ � Δφi(t) + φ. For the last step, we used the fact that the integral
remains the same over any interval of length 1 since both v(·) and w(·) are
1-periodic.

It is convenient, though not necessary,16 to assume that

Kc �
φ=1∫

φ=0

v(φ) · w(φ) · dφ > 0. (15)

Using this definition of Kc in (14), we get

Δφ̇i(t) = f0 · Ji,j · Kc Fc,d (Δφi(t) − Δφj(t)) . (16)

Comparing (16) to (6), we have shown that the actual Fc(·) from using sampling
couplers is indeed equal to a scaled version of Fc,d (θ).

The above generalizes straightforwardly to the case of N coupled oscillators,
resulting in

∀i, Δφ̇i(t) = f0

j=N∑

j=1,j �=i

Ji,j · Kc Fc,d (Δφi(t) − Δφj(t)) . (17)

16 If Kc is negative, then the signs of the coupling coefficients get reversed. The improb-
able case of Kc being zero or very small can be remedied by shifting w(·) by some
delay.
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