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Abstract—Oscillations and rhythmic activity are seen in natural and

man-made systems. Dynamics of oscillators can be compactly described

by phase domain models. Phase equations for periodic, single-frequency

oscillators have been developed and utilized in analyzing oscillation
phenomena that arise in electronic systems, circadian clocks, and the

nervous system. We consider quasi-periodic oscillators and present a

general phase model theory and numerical techniques for the construction
of phase equations for multi-frequency oscillators. We demonstrate the

utility of these phase equations in analyzing oscillators experiencing

perturbations.

I. INTRODUCTION

Autonomous rhythmic activity is observed everywhere in nature

and man-made systems, e.g., in celestial mechanics, biology, elec-

tronics [1], [2]. Oscillation phenomena are best analyzed through the

use of canonical phase domain models. Phase equations for periodic

(single-frequency) oscillators have been developed and heavily uti-

lized in analyzing weakly perturbed and coupled oscillators [1], [3]–

[7]. It appears that a phase equation for periodic oscillators has first

been derived by Malkin [3], [5] and re-discovered later by researchers

in various disciplines. On the other hand, oscillations seen in nature

and engineered systems are rarely perfectly periodic, but rather have

a quasi-periodic nature. Even though the phase equation theory for

periodic oscillators is well developed with abundant literature on the

topic, phase models for quasi-periodic oscillators do not seem to

have received much attention, with one notable exception: In [2],

Izhikevich uses phase models for coupled quasi-periodic oscillators in

order to investigate the mechanisms behind multiplexing in the brain.

However, the phase model theory presented in [2] is not constructive,

i.e., the form of the phase equations for a quasi-periodic oscillator

is established but no theory and/or numerical techniques are offered

for the construction of a phase model for a given oscillator. In [2],

Izhikevich is interested in arriving at general results on the properties

of coupled quasi-periodic oscillator networks based solely on the

form of the phase model, without determining the functions that

appear in the phase equations for a specific oscillator. Izhikevich [2]

verifies the analytical results he obtains based on the form of the

phase equations through time-domain, brute-force simulations of the

coupled quasi-periodic oscillator network. Malkin’s theory on the

reduction of weakly perturbed oscillators to their phase models [3], as

summarized by the Malkin theorem given in [5], is constructive and

rather general but does not seem to capture the case of quasi-periodic

oscillators.

In this paper, we present a general theory and numerical techniques

for the construction of phase models for quasi-periodic oscillators.

Unlike the phase model theory developed by Izhikevich in [2], our

treatment is constructive, i.e., we not only establish the form of the

phase equations but also describe exactly how one can compute and

normalize the functions that appear in the phase model for a given

oscillator. Our quasi-periodic phase model captures the previously

known periodic model as a special case.
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Quasi-periodic oscillators typically arise in the form of coupled

single-frequency oscillators as a composite system. As such, one

could construct a phase model for such an oscillator by simply

composing the phase models for the periodic oscillator components.

However, this requires the removal of the nonlinear coupling between

the periodic oscillator components, which is usually the reason behind

interesting dynamical behavior one may otherwise not observe in

periodic oscillators. The generalization of the phase model theory

from the periodic to the quasi-periodic case is non-trivial and requires

intricate theoretical machinery and numerical methods beyond that is

needed for periodic oscillators. Our treatment is general and applies

to any autonomous system of differential equations that possesses

a stable, quasi-periodic solution, i.e., the multi-frequency oscillator

need not be constructed as a coupled system of single-frequency

oscillators.

In Section II, we review the phase model theory for periodic oscil-

lators. In Section III, we present our novel results on the constructive

theory of phase equations for quasi-periodic oscillators. In Section IV,

we describe the numerical techniques we employ in constructing

a phase model for a quasi-periodic oscillator described by an au-

tonomous system of differential equations. Finally, in Section V, we

present results on two quasi-periodic oscillators, and demonstrate how

one can use, i.e., numerically solve, the phase equations constructed

in analyzing quasi-periodic oscillators experiencing perturbations.

II. REVIEW OF PHASE MODEL FOR PERIODIC OSCILLATORS

Let the system of ODEs

d

dt
x = f(x) (1)

where x ∈ R
N and f : R

N → R
N describe an autonomous

system. Let xs(t) be a periodic solution of (1) that corresponds to an

asymptotically orbitally stable limit cycle with the asymptotic phase

property [8]. Then, define

G(t) =
d f(x)

dx

˛

˛

˛

˛

x=xs(t)

(2)

and v(t) as the periodic solution of the adjoint variational equation

d

dt
z = −G

T (t) z (3)

satisfying the normalization condition

v
T (t)

d xs(t)

dt
= 1 (4)

v(t) is called the Perturbation Projection Vector (PPV) [9], entries

of which are the infinitesimal Phase Response Curves (PRCs) [6].

Consider a perturbed version of the autonomous oscillator equa-

tions in (1)
d

dt
x = f(x) + b(t) (5)

with b(t) = 0 for t < 0, where the perturbation b(t) is assumed

to be “small” enough so that the solution of (1) does not wander

off too far away from the limit cycle represented by xs(t). Our

goal is to approximately characterize the solution of the perturbed

equations in (5) with a phase equation. The form and meaning of

the phase equation is captured by the theorem below, stating that if



the perturbation in (5) is projected using the PPV v(t), then a phase-

shifted version of xs(t) characterizes the perturbed solution for the

oscillator:

Theorem 2.1 ([7],[6]): Let α ∈ R, a scalar phase shift, satisfy the

following nonlinear ODE

d

dt
α = v

T (t + α) b(t) (6)

with the initial condition α(t = 0) = 0. Then, the phase shifted

solution xs(t + α(t)) satisfies the perturbed oscillator equations

d

dt
x = f(x) +

h

v
T (t + α) b(t)

i

u(t + α) (7)

where u(t) = d xs(t)
dt

.

The scalar phase shift α and the nonlinear phase equation in (6) cap-

ture the deviations of the oscillator along the limit cycle. A perturbed

oscillator also exhibits orbital deviations. However, phase deviations

are deemed to be more important in applications, since they are

persistent, i.e., they do not decay to zero after the perturbations are

removed, whereas orbital deviations do. The scalar phase model for

an oscillator serves as the ultimate reduced-order model.

III. PHASE MODEL FOR QUASI-PERIODIC OSCILLATORS

A. Preliminaries

Let x(t) be a quasi-periodic solution of the autonomous system in

(1), expressed as follows

x(t) = x̆(ω1t, . . . , ωpt) (8)

where x̆(θ1, . . . , θp) : T
p → R

N is a torus function, that is, x̆

is defined on the p-dimensional square T
p = [0, 2π]p and it is

2π-periodic in each of its arguments θi, i = 1, . . . , p [10]–[13].

ωi for i = 1, . . . , p are the basic frequencies (assumed to be

incommensurate) of x(t) and the tuple ω = [ω1, . . . , ωp] is called the

frequency base. From now on, we will use the short hand notations

x̆(ω t) = x̆(ω1t, . . . , ωpt), x̆(θ) = x̆(θ1, . . . , θp) and θ = ω t

wherever appropriate.

We assume that the quasi-periodic solution x(t) is stable in the

following sense: When disturbed by a small amount, the solution

of (1) asymptotically returns to the torus represented by x̆(θ),
making it a normally hyperbolic invariant manifold for the flow

represented by (1) [14], [15]. In the case when p = 1, i.e., when the

solution is periodic, this stability notion reduces to asymptotic orbital

stability [8], and the invariant manifold becomes a limit cycle.

A torus function x̆(θ) that satisfies the nonlinear PDE

p
X

i=1

ωi
∂ x̆(θ)

∂θi

= f(x̆(θ)) (9)

in fact corresponds to a quasi-periodic solution x(t) = x̆(ω t) of

(1) [11]–[13]. The PDE above can be solved as a periodic boundary

value (BVP) problem using a spectral method based on Fourier series

representations for the dependence of x̆(θ) on each of θi (e.g., the

multi-tone harmonic balance (HB) method) [11], [13], or the multi-

time finite-difference time-domain (MTFDTD) technique [11], [12],

with appropriate phase conditions [12], [13]. Here, we note

d x(t)

dt
=

d x̆(ω t)

dt
=

p
X

i=1

ωi
∂ x̆(θ)

∂θi

˛

˛

˛

˛

θ=ω t

= f(x̆(ω t)) (10)

which follows from the total derivative of x̆(ω t) with respect to t.

B. Variational (Linearized) System

The variational (linearized) system associated with (1) and the

solution x(t) is given by

d

dt
y = G(t) y (11)

where G(t) is defined as in (2), but evaluated at x(t) instead. Since

G(t) is now quasi-periodic, we define the torus matrix function

Ğ(θ) =
d f(x)

dx

˛

˛

˛

˛

x=x̆(θ)

(12)

and hence G(t) = Ğ(ω t). The following result serves as the key in

deriving a phase model for a quasi-periodic oscillator:

Theorem 3.1 (Coppel [15] (page 84), Samoilenko [10] (page 72)):

Each and every one of the p partial derivatives (all quasi-periodic)

∂ x̆(θ)

∂θi

˛

˛

˛

˛

θ=ω t

, ui(t) , ŭi(ω t) (13)

is a solution of the homogeneous variational system in (11), where

ŭi is the torus function that corresponds to ui.

We omit the proof of this nontrivial result due to space constraints

but note that it can not be obtained by simply computing the time

derivatives of both sides of (1), resulting in (see also (10))

d

dt

"

p
X

i=1

ωi
∂ x̆(θ)

∂θi

˛

˛

˛

˛

θ=ω t

#

= Ğ(ω t)

p
X

i=1

ωi
∂ x̆(θ)

∂θi

˛

˛

˛

˛

θ=ω t

(14)

Based on the above, we can conclude that
Pp

i=1 ωi
∂ x̆(θ)

∂θi

˛

˛

θ=ω t
is

a solution of (11), but can not arrive at Theorem 3.1. On the other

hand, (14) is a simple corollary of Theorem 3.1, because any linear

combination of the solutions of (11) is also a solution.

We assume that the p quasi-periodic solutions of (11) characterized

by Theorem 3.1 are linearly independent [10], [15], which can be ob-

tained easily by (numerically) computing the partial derivatives once

the torus function x̆(θ) is computed. The quasi-periodic solutions

of (11) will all lie in the null space of the Jacobian of the (un-

augmented) set of nonlinear algebraic equations one solves in the

multi-tone HB or the MTFDTD method. With p linearly independent

solutions, these Jacobians have a p-dimensional null space, making it

necessary to augment the multi-tone HB and the MTFDTD equations

with p phase conditions in order to remove the freedom in the phases

of x̆(θ) and obtain a unique solution for (9) [12], [13].

A torus function ŭ(θ) representing a quasi-periodic solution u(t)
of (11) satisfies the linear PDE (with periodic boundary conditions)

p
X

i=1

ωi
∂ ŭ(θ)

∂θi

= Ğ(θ) ŭ(θ) (15)

similar to (9). Hence, the torus functions ŭi(θ) for i = 1, . . . , p

representing p quasi-periodic solutions of (11) lie in, and span, the

null space of the linear operator (with periodic boundary conditions)
"

p
X

i=1

ωi
∂ ·
∂θi

#

− Ğ(θ) (16)

which corresponds to the un-augmented Jacobian of the multi-tone

HB or the MTFDTD method.

C. Adjoint Variational (Linearized) System

We next consider the adjoint variational equation in (3). Based

on the null space argument above, (3) will also have p linearly

independent quasi-periodic solutions. Unfortunately, there is no sim-

ple procedure through which one can obtain these solutions for the

adjoint equation. One has to either solve an eigenvalue problem

(Section IV-B) or use another appropriate technique to compute a



p-dimensional basis set for the adjoint null space of the multi-tone

HB or the MTFDTD Jacobian. We denote the linearly independent

quasi-periodic solutions of the adjoint equation with

vi(t) , v̆i(ω t) (17)

for i = 1, . . . , p. The torus functions v̆i(θ) satisfy the adjoint of the

PDE in (15) and span the null space of the linear operator
"

p
X

i=1

ωi
∂ ·
∂θi

#

+ Ğ
T (θ) (18)

D. Solutions of Variational (Linearized) Systems

We note that not all of the solutions of the forward variational

equation in (11) and the adjoint equation in (3) are quasi-periodic.

The quasi-periodic solutions span a p-dimensional subspace, however,

the total solution space has dimension N > p. We assume that the

solutions of (11) that lie in the complementary N − p-dimensional

subspace are all decaying solutions which do not persist. This, among

other things, guarantees that the quasi-periodic solution x(t) of (1)

is stable in the sense discussed before. Based on Floquet theory for

quasi-periodic linear systems [15], [16], under some conditions, the

solutions of (11) and (3) can be represented in the following forms

y(t) = u(t) e
µ t

z(t) = v(t) e
−µ t

(19)

where u(t) and v(t) are quasi-periodic and µ is the Floquet exponent.

For a quasi-periodic solution, µ = 0, and for all of the other modes,

Re {µ} < 0. The (linearly independent) solutions of the variational

equations can be obtained by computing all of the eigenvalues and

eigenfunctions of the operators in (16) and (18).

E. Perturbation Projection Vectors (PPVs) and Normalization

The p linearly independent quasi-periodic solutions of the adjoint

equation serve as the perturbation projection vectors (PPVs) for the

p phases of the quasi-periodic oscillator. In order for the perturbation

projection operations to be correct, the following bi-orthogonality

relationships (i.e., normalization conditions)

v
T
i (t) uj(t) = δij (20)

among solutions of the forward and adjoint equation need to be

satisfied at all t and for i, j = 1, . . . , p. When the solutions of

the adjoint equation are computed as a basis set for the null space

of the operator in (18), they do not necessarily satisfy the above

normalization conditions. These normalization conditions need to be

explicitly enforced. We note here that any solution y(t) of the forward

variational equation in (11) and a solution z(t) of the adjoint equation

in (3) satisfy
d

dt

h

z
T (t) y(t)

i

= 0 (21)

As such, if we enforce the bi-orthogonality conditions in (20) at

some chosen t∗, then they are guaranteed to hold at all other t

due to (21). We enforce the bi-orthogonality conditions not directly

on the quasi-periodic solutions uj(t) and vi(t) but rather on the

corresponding torus functions ŭj(θ) and v̆i(θ). We use the multi-

argument torus functions to compactly represent the quasi-periodic

solutions, as there is no compact representation for a quasi-periodic

solution as a function of time. In order to attain a simple condition

that will be directly enforced on the torus functions, we make use

of the following fact: The domain of the torus functions, i.e., the

p-dimensional square T
p, is densely covered by θ = ω t: For

every θ
∗ in the p-dimensional square T

p, there exists a t∗ such

that θ
∗ = ω t∗ mod 2π, since the basic frequencies in ω are

incommensurate. Similarly, the torus that is represented by x̆(θ) is

densely covered by the quasi-periodic solution x(t) [13]. Thus, we

can choose to enforce the bi-orthogonality conditions at any θ
∗ in

the p-dimensional square T
p. Then they will also hold at all other

points in T
p = [0, 2π]p, due to (21). However, instead of enforcing

the normalization conditions at a chosen θ
∗, we enforce them on an

average taken over all θ ∈ T
p. Even though the two are equivalent

in exact arithmetic, the latter will have better numerical properties.

In order to enforce (20) as such, we first compute the torus functions
´̆vi(θ) for i = 1, . . . , p, by computing a basis set for the null space of

the operator in (18). We then compute the average (over T
p) of the

p× p matrix formed by the inner products of ´̆vi(θ) for i = 1, . . . , p

and ŭj(θ) = ∂ x̆(θ)
∂θj

for j = 1, . . . , p. Making use of the QR

decomposition of this inner product matrix, we compute a new set

of v̆i(θ) as a linear combination of ´̆vi(θ). The new v̆i(θ) not only

satisfy (20) but also represent p linearly independent quasi-periodic

solutions for the adjoint equation.

We note here that the orthogonality of v̆i(ω t) for i = 1, . . . , p

to all of the decaying modes of the forward variational equation

is also required but need not be enforced explicitly. The decaying

modes of the variational equation are the eigenfunctions of the

operator in (16) that correspond to nonzero eigenvalues. v̆i(ω t) for

i = 1, . . . , p are the eigenfunctions of the adjoint of this operator

in (18) that correspond to zero eigenvalues. An operator and its

adjoint have the same eigenvalues, and their eigenfunctions that

correspond to different eigenvalues are always orthogonal to each

other. Thus, v̆i(ω t) are guaranteed to be orthogonal to all of the

decaying modes of the forward variational equation. However, the

above property does not hold for the eigenfunctions that correspond

to the same eigenvalue. In particular, if an eigenvalue is repeated, the

corresponding eigenfunctions of the operator and its adjoint are not

guaranteed to be bi-orthogonal, hence all the trouble we had to go

through above.

F. Phase Equations for Quasi-Periodic Oscillators

We now consider a perturbed quasi-periodic oscillator. Our goal

is again to approximately characterize the solution of (5), as in

Section II, but with a generalized phase model that is valid for quasi-

periodic oscillators. We next reveal the form of the phase equations

for a quasi-periodic oscillator and show that a (multi) phase shifted

version of the quasi-periodic solution x(t) satisfies the oscillator

equations in (5) with the perturbation projected onto the persistent

quasi-periodic modes of the variational equation. The theorem below

captures the main result of this paper and is the generalization of

Theorem 2.1 to the quasi-periodic case:

Theorem 3.2: Let αi ∈ R for i = 1, . . . , p be the p phase shifts

and satisfy the following set of coupled nonlinear ODEs

d

dt
αi =

1

ωi

v̆
T
i (ω1(t + α1), . . . , ωp(t + αp)) b(t) (22)

with initial conditions αi(t = 0) = 0, written compactly as

d

dt
αi =

1

ωi

v̆
T
i (ω.(t + α)) b(t) (23)

where α = [α1, . . . , αp] and t+α = [t + α1, . . . , t + αp]. Then, the

(multi) phase shifted quantity x̆(ω.(t + α)) satisfies the perturbed

oscillator equations

d

dt
x = f(x) +

p
X

i=1

h

v̆
T
i (ω.(t + α)) b(t)

i

ŭi(ω.(t + α)) (24)

Above, x̆(ω (t)) without the phase shifts represents the quasi-periodic

solution of the unperturbed oscillator equations in (1).

We omit the proof of the above theorem due to space constraints.



IV. NUMERICAL METHODS

A. Computing Quasi-Periodic Solution of the Oscillator

In order to construct the phase model for a quasi-periodic oscillator,

we need to first compute its large-signal quasi-periodic solution. We

use the MTFDTD [11], [12] method in solving the system of PDEs

in (9) along with periodic boundary conditions in p phases in order

to obtain a discretized version of the torus function in (8), where

the partial derivatives in (9) are approximated with finite-difference

formulas. In particular, we use the 2nd to 6th order central finite-

difference schemes given in Schilder et.al. [12]. For simplicity, we

discretize the torus function in (8) using a uniform grid in each phase

variable, with Mi equidistant points for θi between 0 and 2π Mi−1
Mi

,

noting that the torus function is 2π-periodic in θi for i = 1, . . . , p.

Thus, we end up with N
Qp

i=1 Mi unknowns at the mesh points.

With the finite-difference discretization of the PDE in (9) evaluated

at each one of the mesh points, we obtain N
Qp

i=1 Mi nonlinear

algebraic equations. However, the p frequencies ωi in (9) also need

to be included among the unknowns. Usually, p phase conditions

are employed to augment the equations obtained in order to obtain

a square system of nonlinear algebraic equations [12]. These phase

conditions remove the freedom in the p phases of the autonomous

quasi-periodic system and result in a unique solution. The square

system of nonlinear algebraic equations are then usually solved with

Newton’s method.

1) Phase conditions versus least-squares solution: In our im-

plementation, we follow Schilder et.al. [13] and do not employ

phase conditions. Instead, we form a rectangular system of equa-

tions with p + N
Qp

i=1 Mi unknowns, including the p unknown

frequencies, and the N
Qp

i=1 Mi equations obtained from finite-

difference discretization. We use the Newton’s method in order to

solve this rectangular system of nonlinear algebraic equations. At

every iteration of Newton’s method, we solve the under-determined,

rectangular system of linear(ized) equations using a least-squares

approach that is equivalent to using the Moore-Penrose pseudo-

inverse of the rectangular Jacobian matrix. In order to exploit the

sparsity of the Jacobian matrix, we use an iterative least-squares

linear system solution technique, namely LSQR [17] as implemented

in Matlab. LSQR is a conjugate-gradient type method for solving

sparse linear equations and sparse least-squares problems of the form

A x = b, based on minimizing ||A x − b||2 + d2||x||2 where d is

a damping parameter [17]. We note here that the under-determined,

rectangular linear system of equations that we solve at every Newton

iteration has a solution but not unique. When we solve this equation

in the least-squares sense with LSQR, we are computing the solution

that has the smallest Euclidean norm. In this under-determined case,

the “least-squares” refers to the norm of the solution instead of

the norm of the residual that would have made sense for an over-

determined system. The minimum norm solution makes sense in the

context of Newton’s method, since the Newton increment should

converge to the zero vector as the Newton iterates converge to the

solution of the nonlinear equations. The least-squares solution of the

linearized equations at every Newton iteration and the initial guess

provided for Newton’s method, in effect, correspond to enforcing

phase conditions and yield one of the infinitely many quasi-periodic

solutions for the autonomous oscillator.

2) Robust convergence for Newton’s method and generating an

initial guess: In order to obtain robust convergence in Newton’s

method, we try to supply a good initial guess for the solution and/or

use a continuation scheme. We generate an initial guess for the

torus function by first performing a “long” transient, time-domain

numerical simulation. We then perform NAFF (Numerical Analysis

of Fundamental Frequencies) [18] analysis (as implemented in the

SDDS toolkit from Argonne National Laboratory [19]) on the time

series data from time-domain simulation in order to extract a quasi-

periodic approximation to be used in constructing an initial guess

for the torus function. NAFF [18], which was developed in order to

analyze time series data in galactic dynamics, extracts the frequencies

and the corresponding complex amplitudes iteratively, one at a time,

by deflating the frequency components already extracted and perform-

ing orthogonal projections. NAFF [18] had been proved to be more

accurate than using simple FFTs: The accuracy of the frequencies

obtained by NAFF improves with the fourth power of the length

of the time series data. NAFF provides only a set of frequencies

with corresponding complex amplitudes for the waveforms produced

by transient analysis. This data is then post-processed in order to

extract the fundamental frequencies and form a discretized form of

the torus function in (8) to be used as an initial guess for Newton’s

method. When the initial guess generated as such is not good

enough in achieving robust convergence we employ a problem, i.e.,

oscillator, specific continuation scheme. Globally convergent, robust

and automatic techniques for computing quasi-periodic solutions of

autonomous dynamical systems is an open problem and beyond the

scope of this paper.

B. Computing the Quasi-Periodic Perturbation Projection Vectors

In order to compute and correctly normalize the PPVs that are

needed in constructing the phase model, we follow the procedure

that was outlined in Section III-E. The partial derivatives of the torus

function are computed using the same finite-difference formula that

was employed in discretizing the PDEs in (9). In order to compute

the un-normalized PPVs, we compute p basis vectors for the null

space of the transpose of the MTFDTD Jacobian. The MTFDTD

Jacobian we use here is a square matrix with dimension N
Qp

i=1 Mi,

obtained by removing the extra p columns (that correspond to the

unknown frequencies) from the rectangular Jacobian matrix that was

used during Newton iterations.

For a set of basis vectors for the null space of the transpose of the

sparse Jacobian matrix, we perform a partial eigen-decomposition

using the eigs routine in Matlab in order to compute the p smallest

magnitude eigenvalues (which are theoretically equal to zero) and

the corresponding eigenvectors. eigs in Matlab is based on ARPACK

(for Arnoldi Package) [20] which uses implicitly-restarted Arnoldi

iterations in computing several eigenvalues and eigenvectors in large-

scale eigenvalue problems. Arnoldi iterations tend to converge most

rapidly to the extremal eigenvalues with the largest magnitude. In

order to instead obtain the eigenvalues with the smallest magnitude,

Arnoldi iterations are performed on the inverse of the matrix (without

computing the inverse, using sparse Gaussian elimination for matrix-

vector products). If the smallest eigenvalues are indeed equal to

zero, this would of course run into numerical problems. However,

the smallest eigenvalues are not exactly zero as a result of various

numerical inaccuracies mostly due to finite-difference discretization

of the operator in (18) and in computing the large-signal steady-state

solution. As a result, Arnoldi iterations on the inverse of the Jacobian

matrix proceeds without numerical problems. In cases where the

smallest eigenvalues are small enough to cause numerical problems,

one can use either a shift-and-invert scheme or a generalization of the

matrix augmentation technique described in [9] to compute a set of

basis vectors for the null space. After the raw PPVs are computed as

described above, we follow the procedure described in Section III-E

in order to normalize them.

C. Computing the Solution of the Phase Equations

With the numerically computed and properly normalized torus

functions for the PPVs in hand, we have all we need in order to

solve the phase equations in (22), which are a set of p coupled

nonlinear ODEs for the p phase variables αi for i = 1, . . . , p. Given

a perturbation b(t) waveform, we compute the solution of these
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Fig. 1. Torus for coupled Van der Pol oscillators

coupled ODEs using explicit Runge-Kutta formulas as implemented

in ode23 and ode45 routines of Matlab. In the case when stiffness

in solving these equations becomes an issue, one can use an implicit

technique. We note here that the PPVs are not available analytically,

they have been computed on a finite-difference mesh on the p-

dimensional square T
p. When we solve the phase equations, we use

p-dimensional cubic interpolation to evaluate the torus functions for

the PPVs at points not exactly on the finite-difference mesh points.

V. RESULTS

A. Coupled Van der Pol Oscillators

The following represents two coupled Van der Pol oscillators [13]

ẍ − ε
`
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2´
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2
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2
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2´

ẋ
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`
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2
´
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2
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`

αx
2
´

ẏ
(25)

where δ and ε control the strength of nonlinear coupling and the

degree of nonlinearity in the two oscillators. For δ = ε = 0, they

become decoupled and degenerate into two linear harmonic oscilla-

tors. We set δ = ε = 1 and γ1 = 1, γ2 =
√

2, a = 0.2, α = 0.4,

and rewrite (25) above as a system of four, first-order differential

equations. In order to compute the torus function x̆(θ1, θ2) that

corresponds to the quasi-periodic solution of this oscillator system,

we discretize the 2-dimensional square T
2 with a uniform grid of

M × M = 100 × 100 points resulting in a total of 40, 000 grid

unknowns. The two fundamental frequencies ω1 and ω2 are also

unknown. In approximating the partial derivatives in (9), we use a

6th order central finite difference scheme [12] with periodic boundary

conditions. For Newton’s method, we supply an initial guess based

on the analytical solution of the oscillator system when δ = ε = 0.

With this initial guess, we obtain robust, quadratic convergence in

Newton’s method without the need for a continuation scheme, with

the residual norm reaching 10−13 in 8 iterations. The fundamental

frequencies computed are ω1 ≈ 0.97155 and ω2 ≈ 1.37287.

The function x̆(θ1, θ2) computed represents a torus in 4-D for this

oscillator system. In Figure 1, this torus is shown in 3-D for three

(out of four) state variables of this oscillator. In Figure 2, the torus

function x̆(θ1, θ2) computed for one of the state variables can be

seen. Next, we compute the torus functions for the PPVs v̆i(θ1, θ2)
for i = 1, 2 using the partial eigen-decomposition and normalization

scheme described in Section IV-B. Then, we perform a perturbation

analysis for the coupled Van der Pol oscillators with a perturbation

b(t) = 10−3[1 + cos (ω2 t) + sin (ω1 t)] (26)

injected as an additive term to one of the differential equations.

The phase shifts α1(t) and α2(t) for this perturbation that were

computed by solving the phase equations in (22) as described in

Section IV-C are shown in Figure 3. As it can be observed in this

figure, the perturbation described above is on for 0 ≤ t ≤ 2000
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Fig. 2. Torus function for coupled Van der Pol oscillators
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Fig. 3. Multi-time phase shifts for coupled Van der Pol oscillators

and turns of at t = 2000 and thereon the phase shifts remain

constant. The waveforms for the phase shifts α1(t), α2(t) and

the torus function x̆(θ1, θ2) for the steady-state solution can be

used to construct the perturbed oscillator waveforms simply as

x̆(ω1(t + α1(t)), ω2(t + α2(t))). In Figure 4, the waveform con-

structed as such for one of the state variables is shown along with

the waveform x̆(ω1t, ω2t) constructed for an unperturbed oscillator.

In this figure, there are two more waveforms obtained with full

transient, time-domain simulation of the oscillator equations, one

for the perturbed and the other for the unperturbed case. For these

simulations, we choose the initial condition x̆(0, 0) so that these

waveforms can be compared with the ones constructed directly from

the torus function x̆(θ1, θ2). In Figure 4, the waveforms obtained

with full time-domain simulation are in fact indistinguishable from

the ones directly constructed. In Figure 5, the difference between the

simulated and constructed waveforms are shown in a semi-log scale

as the curves below the 10−2-level. The curves above the 10−2-level

represent the difference between the waveforms of the perturbed and
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unperturbed oscillator and are given for reference. As seen, the total

phase shifts due to the perturbation are significant enough to result

in a large difference between the waveforms of the perturbed and

unperturbed oscillator. However, the waveforms constructed for the

perturbed oscillator based on the solutions of the phase equations

match very well with the waveforms obtained with full numerical

simulations. This result serves as a verification for the correctness

of our theory and numerical methods for phase equations of quasi-

periodic oscillators.

B. Wilson-Cowan Oscillators

The following represents two (for i = 1, 2) coupled neural

oscillators of the Wilson-Cowan type [2] that are used in brain

modeling
ẋi = −xi + S(ρi + axi − byi + Ei)

ẏi = −yi + S(ρy + cxi − dyi)
(27)

with

S(ρ) =
1

1 + e−ρ
(28)

E1 = x2 E2 = x1 (29)

where the Ei term represents the coupling. For a = b = c = 10,

d = −2, ρy = −6, ρ1 = −2 and ρ2 = 2, the above oscillator system

exhibits multi-frequency oscillations [2].

We compute the torus function x̆(θ1, θ2) that corresponds to the

quasi-periodic solution of this oscillator system, again on a mesh with

100 × 100 grid points and using a 6th order scheme. For Newton’s

method, we generate an initial guess with a transient simulation

followed with NAFF analysis as described in Section IV-A, and

obtain robust, quadratic convergence with the residual norm reaching

10−13 in 6 iterations. The fundamental frequencies computed are

ω1 ≈ 1.03650 and ω2 ≈ 1.36820. In Figure 6, we present

perturbation analysis results similar to the ones presented in Figure 4

for a perturbation in the same form as in (26) but that turns off

at t = 500 and with frequencies different from the fundamental

frequencies of the oscillator system. As we observe in Figure 6,

the multi-phase shifted waveform for a quasi-periodic oscillator can

not be obtained by simply time-shifting the unperturbed waveforms.

For single-frequency oscillators, phase shift translates directly into

a time shift, but not for multi-frequency oscillators. The waveforms

constructed for the perturbed oscillator based on the solutions of the

phase equations again match very well with the waveforms obtained

from full numerical simulations.

VI. CONCLUSION

We have presented a general phase model theory and numerical

techniques for the construction of phase equations for quasi-periodic

oscillators. We have demonstrated the utility of these phase equations
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Fig. 6. Perturbed waveforms for Wilson-Cowan oscillators

in analyzing quasi-periodic oscillators experiencing perturbations.

The waveforms constructed for a perturbed multi-frequency oscillator

based on the solutions of only several coupled phase equations can

form an accurate depiction of the waveforms that would otherwise

be obtained with full numerical simulations. The phase equations

can serve as the ultimate reduced-order, compact model for multi-

frequency oscillators.

REFERENCES

[1] Arthur T. Winfree. The Geometry of Biological Time. Springer, 2001.
[2] Eugene M. Izhikevich. Weakly connected quasi-periodic oscillators, FM

interactions, and multiplexing in the brain. SIAM Journal on Applied
Mathematics, 59(6):2193–2223, 1999.

[3] I.G. Malkin. Methods of Poincare and Liapunov in theory of non-linear
oscillations. Gostexizdat, Moscow, 1949.

[4] Y. Kuramato. Chemical Oscillations, Waves, and Turbulence. Springer-
Verlag, New York, 1984.

[5] F. C. Hoppensteadt and Eugene M. Izhikevich. Weakly Connected Neural
Networks. Springer, 1997.

[6] E.M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. Chapter 10. MIT Press, 2007.

[7] A. Demir, A. Mehrotra, and J. Roychowdhury. Phase noise in oscil-
lators: A unifying theory and numerical methods for characterisation.
IEEE Transactions on Circuits and Systems-I: Fundamental Theory and
Applications, 47(5):655–674, May 2000.

[8] M. Farkas. Periodic Motions. Springer-Verlag, 1994.
[9] A. Demir and J. Roychowdhury. A reliable and efficient procedure for

oscillator PPV computation, with phase noise macromodelling applica-
tions. IEEE Tran. on CAD of ICs and Systems, 22(2):188–197, Feb
2003.

[10] A.M. Samoilenko. Elements of the Mathematical Theory of Multi-
Frequency Oscillations. Kluwer Academic Publishers, 1991.

[11] J. Roychowdhury. Analyzing circuits with widely separated time scales
using numerical PDE methods. IEEE Transactions on Circuits and
Systems: Fundamental Theory and Applications,, 48(5):578 –594, May
2001.

[12] Frank Schilder, Hinke M. Osinga, and Werner Vogt. Continuation
of quasi-periodic invariant tori. SIAM Journal on Applied Dynamical
Systems, 4:459–488, 2005.

[13] Frank Schilder, Werner Vogt, Stephan Schreiber, and Hinke M. Osinga.
Fourier methods for quasi-periodic oscillations. International Journal
for Numerical Methods in Engineering, 67(5):629–671, 2006.

[14] Stephen Wiggins. Normally Hyperbolic Invariant Manifolds in Dynam-
ical Systems. Springer, 1994.

[15] W.A. Coppel. Dichotomies in Stability Theory. Springer, 1978.
[16] L. Zhen-sheng. The Floquet theory for quasi-periodic linear systems.

Applied Mathematics and Mechanics, 3(3):365–381, June 1982.
[17] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear

equations and sparse least squares. TOMS, 8(1):43–71, 1982.
[18] Jacques Laskar. Introduction to frequency map analysis. In Carlos Simo,

editor, Hamiltonian systems with three or more degrees of freedom, pages
134–150. Kluwer Academic Publishers, 1999.

[19] M. Borl, L. Emery, H. Shang, and R. Soliday. Users Guide for SDDS
Toolkit version 1.30, 2005.

[20] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods. SIAM Publications, 1998.


