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Abstract

The problem of transient simulation of lossy transmission
lines is investigated in this paper. Two refinements are made
to the existing convolution approach for the case of a sin-
gle lossy line analytical formulae are derived for the line’s
impulse-responses, and an accurate numerical convolution

technique that utilises these formulae are devised. It is shown
that a special case of lossy multiconductor lines can be de-

composed into uncoupled lossy lines and linear memoryless

networks, leading to a simple simulation algorithm. Simu-

lation results on industrial circuits with single and mtdticon-

ductor lossy lines are presented and compared with results

obtained using lumped and pseudo-lumped approximations
of lossy lines. The comparison indicates that the convolution
technique with the above enhancements can be an order-of-
magnitude faster than lumped and pseudo-lumped segment-
ing techniques for equivalent or better accuracy.

1 Introduction

The need to consider interconnect in digital circuits as lossy
transmission lines has arisen in recent years, particularly for
multi-chip modules (MCMS) [1, 2, 3, 4]. Increasing lengths

of interconnect combined with the faster switching speeds
of modem logic [5] have created a situation where intercon-
nect time-of-flight (delay) have become comparable to sig-
nal transition times, giving rise to transmission-line effects

such as reflection and overshoot (see Fig. 1). Such phenom-
ena are capable of causing undesired switching. In addition,
the small cross-sectional areas of typical high-performance
interconnect (2pm x 1 lpm, [2]) give rise to series loss and

the additional phenomena of attenuation and dispersion (see

Fig. 2). Dispersion can increase rise and fall times, and at-
tenuation can drop signal levels into illegal regions. In sit-

uations where several interconnect run close together (as in

busses), capacitive and inductive coupling give rise to cou-

pling noise, a potential source of undesired switching. Mul-
ticonductor (or coupled) transmission-line models need to be
used to estimate coupling noise. The need for accurate and
efficient techniques to simulate lossy transmission lines in
conjunction with digital logic is addressed in this paper.

The simplest Iossy transmission-line model (the “simple
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lossy line”, henceforth) has constant resistance, capacitance
and inductance per unit length (R, L and C) uniformly dis-
tributed over the length of the line. Other more accurate and
complex models have R, L and C as changing functions of
frequency (“frequency-varying models”, henceforth). (Skin-
effect, an important phenomenon in which R increases with
frequency, requires frequency-varying models [6, 7].) While
the simulation of frequency-varying models is an important
problem, Deutsch et. al. [6] have shown that the simple lossy
line is an adequate model for most of today’s applications.
This paper is confined to the simple lossy line.
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Figure 1: Reflection and Overshoot
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Figure 2: Dispersion and Attenuation

In the next section, previous work in lossy line simulation
is briefly reviewed and the contributions of this paper stated.

preferring to the different propagation speeds of different frequency-

components, a phenomenon that creates RC-type decays in waveforms
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Sections 3,4, and 5 deal with an improved convolution tech-
nique, analytical impulse responses, and multiconductor de-
composition respectively. Simulation results on practical cir-
cuits are presented in Section 6, followed by concluding re-
marks and acknowledgments in Sections 7 and 8. Proofs and
derivations are omitted for brevity and may be found in [8].

2 Previous Work, and Our Contributions

Transient simulation techniques for lossless transmission lines
are well-known [9, 10, 11, 12, 13]. Several techniques exist
for the transient simulation of lossy lines within circuits. The
simplest and most prevalent is that of using segments to rep-
resent the line (“segmentation techniques”). In the lumped-
RLC method [14], each segment is represented as a lumped
RLC network, whereas in the pseudo-lumped method [15]
a lossless line in series with a resistor is used. The pseudo-
lumped method requires fewer segments than the lumped-
RLC method and avoids the spurious oscillations that can
appear in the latte~ however, for both methods, a conserva-
tive number of segments is usually taken to ensure accuracy,
and this can lead to large computation times. Fig. 3 shows
the effects of varying the number of segments representing a
lin~ computation time comparisons are presented in Section
6.
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Figure 3: Lumped-RLC method, varying no. of segments

Completely linear circuits with lossy lines can be simu-
lated entirely in the frequency domain [16, 7], using numer-
ical Fourier transformation to @ansform inputs and outputs
from and to the time domain. This technique is not applica-
ble to circuits with nonlinear devices such as logic gates.

Waveform relaxation [17] has recently been applied to
lossy-line simulation within nonlinear circuits. A mixed sys-
tem of time and frequency domain circuit equations is solved
by using each equation to update the waveform of one circuit
variable while keeping all other variables fixed. Numerical
Fourier transformation is used to switch between the time
and frequency domam representations of each cucult vari-
able. Speed and accuracy comparisons for this technique are
not currently available.

In another approach (the “convolution approach), the
linearity of the lossy transmission line is exploited by express-
ing its outputs as a convolution of its inputs with impulse-
responses specific to the line. Djordjevi6 et. al. introduced
this approach [18] and compared its performance with other
methods [19], finding it slightly superior. Schutt-Aine and
Mittra [20, 21] used a scattering-parameter approach to re-

formulate the transmission-line equations to obtain impulse-
responses that died to zero rapidly.

Three components are crucial for the success of the con-
volution method setting up the transmission-line equations
properly, obtaining the line’s impulse-responses accurately,
and performing numerical convolution accurately within the
circuit simulator. Previous work has concentrated mainly

on the first component, using numerical FFTs2 to obtain im-
pulse responses and simple sample-and-sum approximations
for convolution. In this work, three enhancements are made
to the convolution approach:

1.

2.

3.

An accurate technique for numerical convolution in
the power series of the impulse-response is not trun-
cated is described. The technique is a generalisation
of the trapezoidal method for differential equations.

Exact analytical formulae are derived for the impulse-
responses of the simple lossy line.

The snecial case of multiconductor simde 10SSVlines
wher; all wires are electrically identical’and eac~ wire
coupled only to its adjacent wires is shown to be de-
composable into uncoupled simple lossy lines and lin-
ear memoryless networks. The decomposition leads
directly to an efficient algorithm for the special case.

Enhancements 1 and 2 improve the accuracy of the tech-
nique and eliminate the need for numerical Fourier inversion.
Enhancement 3 shows that solving a frequency-dependent
eigenproblem [21] is not required, implying greater speed
and accuracy of the proposed method for the special case.

In addition, a comparison of waveforms and simulation
speeds of the lumped-RLC, pseudo-lumped and convolution
methods is presented for typical industrial circuits and inter-
connect.

3 Numerical Convolution

In this section, an accurate method for performing convolu-
tion numerically is described. The convolution integral to be
calculated is the following:

J
t

y(t) = X(7-) h(t – r) c17- (1)
0

In Equation 1, z(r) is the input to the linear system de-
scribed by the equation, y(t) is the output and h(r) is the
impulse-response or the kernel of the system. h(~) is as-
sumed to be a const~t well.-knowq causal function of time
and may be finite or mfimte m duration. At any gwen time t,
Z(T)and g(r) are assumed to be known over the half-open
interval [0, t). It should be noted that in a circuit context,
z(~) and y(r) are usually also related by a relation other than
Equation 1; one maybe a function or a causal functional of
the other.

The problem of numerical convolution is the following:

Given x(t) and y(t) related by Equation 1,
and z(t)known only at a discrete number of time-
points O, tl , tz, . . .. tn, with t~ < t~+l, find
y(tn ). h(t) is assumed to be well-known for all
t.

2Fast Fourier Transform
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Knowledge of the values of z(t) at a discrete number
of points is not sufficient to specify y(t) uniquely by Equa-
tion 1. It is necessary to make assumptions about the nature
of c(t) such that its values at a discrete set of points suf-
fice to specify y(t) uniquely. In deriving linear multistep
methods for differential equations [22, 23], the assumption
that z(t) is piecewise-linear results in the well-known trape-
zoidal method which is widely used in circuit simulators. The
same assumption is made, and the numerical integration for-
mula (Equation 2) is derived (see [8] for the derivation).

/

tfi F(tn –tn-l)
~(~) /t(t. – T) dr N Zn

o tn –tn-l

n—1

[

F(tn–ti_l) – F(tn– t,)
+~zi

ti–ti-l
i=l

I?(tn-ti) – F(tn –ti+l)
—

ti+l–ti 1(2)

Here ~i=z(ti). l’(.) is defined as follows:

tr
F(t)=

H
h(r’) dr’ dt-

00
(3)

Strict equality holds in Equation 2 if the assumption that
z(t) is piecewise linear is valid, if not, the integration for-
mula has an error term. This error is proportional to the sec-
ond derivative of z(t).

The stability of the numerical integration method depends
on the nature of the kernel function h(r) (more specifically,
on F(r)). A theoretical proof of the stability of the numer-
ical method for the impulse-responses of lossy transmission
lines has not been found yet. The results of Section 6 indicate
however that the numerical procedure is indeed stable.

4 Formulae for Impulse-Responses

In this section, the time-domain convolutive constitutive re-
lationships for an uncoupled simple Iossy line are derived.
Analytical time-domain expressions for the voltage wave-
form in a lossy line with a step input have been presented
in [1] when the far-end of the line is open, and in [24] for
the tenr!jnated and infinite-1.ti.e cases. .Our contribution in
this secbon 1sto present exphclt expressions for the unpulse-
responses of a simple Iossy line in a form suitable for direct
application in the convolution algorithm described in Section
3.

The Telegrapher Equations for a lossy line are[21]:

: = -(’E’Ri)
& ()(%)

z= – C71V

(4)

(5)

In the above, the transmission line stretches from z co-
ordinates O to /; V(Z, t) is the voltage at point z at time t;
i(z,f)is the current in the +ve x direction at z at timet. (The
parallel conductance G is assumed to be zero for simplicity;
all of the following continues to hold with minor modifica-
tions if it is nonzero.)

The boundary and initial conditions for Equations 4 and
5 are

V(o, t) = q(i), V(I1 t) = Vz(t) (6)

i(o, t) = ii(t), i(l, t) = –iZ(t) (7)

V(z, o) = VI)(x), i(z, o) = io(z) (8)

The object of the following is to establish time-domain
relationships between V1, V2, il and i2 so that if any two are
specified, the other two may be determined. Without loss
of generality, it will be assumed that VI(t), v2(t),i1 (t) and
i2(t) are zero for all t < 0, and that Vo(x) and io(x) are
identically zero. The assumption is made that all variables
in Equations 4 and 5 Me Laplace transformable in the time-
domain and their Laplace transforms are taken to transform
them into a pair of coupled ordinary differential equations in
x ands (the Laplace vtiable). The coupling is removed by
fug.her differentiation and identical second-order ODES ob-
tained for the Laplace transforms of v and i. These equations
are solved, and the boundary and initial conditions (Equa-
tions 6- 8) applied to arrive at two equations relating the
Laplace transforms of il, V1, i2 and V2; these are in turn re-
formulated using a scattering-parameter approach to arrive
at equations that are more suitable for numerical convolu-
tion. Finally, inverse Laplace transforms are taken to arrive
at the time-domain equations. The details are presented in
[8]. The time-domain convolution equations (constitutivere-
lationships) finally obtained for the simple lossy line are the
following:

V1(t) * by(t) – i~(t) = Vz(t) * h7y (t) + iz(t) * h7(t) (9)

Vz(t) * by(t) – iz(t) = Vi(t) * h7Y(t) + i(t) * h(t) (10

where *is the convolution operator. hy (t), hv (t)and hvy (t)
are the three impulse-responses associated with the lossy trans-
mission line. The expressions for these impulse-responses
are:

by(t)= Ye-pt [~ {I~(@)- Io(/3t)}+ 6(t)] (11)

(12)

(13)

(14)

10 and 11 are the modified Bessel functions of zeroth and
first order, and & and w are the unit delta and unit step func-
tions.

5 Multiconductor Lossy Lines

A Iossy multiconductor system of n wires is considered. If
a TEM (transverse electromagnetic) mode of wave propaga-
tion is assumed, the Telegrapher Equations[lO, 11]

:Hl=-1: Wi[H+[II WU05)
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describe the voltages v and currents i along the line. z and t
denote distance along the line and time, respectively. L and
C are the symmetric inductance and capacitance matrices of
the multiconductor system; R is a diagonal matrix represent-
ing loss in the wires. The Laplace transform of Equation 15

is taken with respect to time and the following equation

:[%’:)]+s%‘LtRl[il’:q ’16)
where v and i are functions of z ands. the Lar)lace variable.,
is obtained.

A change of basis is needed in order to uncouple vari-
ables. Define:

V(Z, S) = Mvvd(z, $), i(~, S) = M1id(Z, S) (17)

where Mv and MI are invertible matrices.
This results in the equation

where

Z n MV-l(SL+ R) MI, Y = M1-l(sC)MV (19)

In order that the basis transformation (Equations 17) un-
couple the system, it is necessary to find Mv and MI so
that Z and Y are diagonal matrices. For arbitrary multicon-
ductor systems, the members of the diagonal matrices Z and
Y maybe nonlinear functions of the Laplace variables. In

order that the uncoupled problem consist of a set of n single-
conductor lossy lines, it is necessary for the matrices Z and
Y to be linear ins, i.e., of the form:

Z= SL’+ R’, Y’=sd (20)

where L’, R’, and C’ are diagonal numeric matrices, i.e.,
they are independent ofs.

Romeo and Santomauro [11] have shown that there ex-
ists a specm.1case of coupled los.dess lines for which Mv z

MI = M and Z and Y can be expressed explicitly in k%ns
of the entries of L and C. Extending their approach, the fol-
lowing assumptions are made:

Assumption 5.1 The capacitance and inductance matrices
L and C are tridiagonal, equivalent to restricting coupling to
between adjacent wires only.

Assumption 5.2 The lines are identical, equally spaced, and
edge-effects are negligible. This is eqw”valent to saying that
the self-capacitance, self-inductance, series resistance, par-
allel conductance, capacitive and inductive coupling are the
same for all wires of the line.

It can be shown [8] that if the preceding two assumptions
hold, a numeric matrix M = MI = Mv exists such that Y

and Z assume the form in Equations 20. M is independent
of the entries of R, L and C, depending only on the number
of wires n. Moreover R’ = R, and the diagonal elements
L;; ond C(i of L’ and C’ ore given by:

L;i =L, +piLm, C;i = C, +pi Cm, i= 1,..., n(2l)

,U~=-2COS~ “–l, . . ..n.,2—
n+l

(22)

where L< (C:) and LA (CL ) are the diagonal and off-diagonal
elements of L (C) respectively. M is given by:

n

7: = ~ (4%-l(lq))2

(23)

(24)

‘i=l

@k($) = ~dk-1(~) - #rk-2(Lz), #0($) = 1, 41(Z)= x(25)

Each diagonal entry of L, R and C represents an uncou-
pled simple lossy line, and the matrix M represents a lin-
ear memoryless 2n-port network (see Fig. 4). A key differ-
ence between lossless and lossy multi conductor lines is that
whereas the lossless case can always be decomposed into
uncoupled lossless lines (even when assumptions 5.1 and5.2
above do not hold), lossy multiconductor lines cannot in gen-
eral be decomposed into uniform constant-parameter uncou-
pled simple lossy lines.

Coupled simple lossy linee

I
,

M ,–-EM

Uncoupled simple lossy lines

Figure 4: Multiconductor Decomposition

6 Experimental Results

The techniques described in the preceding sections were im-
plemented in the circuit simulator SPICE3 version 3C.1 [25]:
Waveform and computation speed comparisons with the seg-
mentation methods are presented here for six circuits.

The circuits use digital BJT drivers with output rise-times
of 500ps-2ns, connected by 10SSYinterconnect to diode re-
ceivers or other BJT drivers. raytheonl has one fan-out,
raytheon2 has branching interconnect to three fan-outs, and
raytheon3 has a 2-wire multiconductor lin~ all three use

3. Interconnect parametersidentical interconnect parameters
for honeywell and mosaic were taken from [2], and those for
mcnc from [7]; these three circuits have one fan-out each.
The number of segments used for the segmentation methods
was kept small while ensuring reasonable accuracy. Table 1
compares execution times, and Figs. 5 – 7 are sample output
waveforms. Figure 8 shows the variation of execution time
vs. interconnect length for the three methods.

3These circuits were provided by Raytheon Co.
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aCPU times on a DEC 5400 running Ultrix 4.0

Table 1: Comparison of Execution Times
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Figure 5: raytheonl receiver-end voltage
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Figure 6: raytheon3 far-end crosstalk
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Figure 8: mosaic, honeywell: execution-time vs line-length

7 Conclusion

It can be seen from Table 1 and Figs. 5 – 8 that the enhanced
convolution method performs favorably compared to the
lumped-RLC and pseudo-lumped methods. That accuracy
of results is maintained for all R, L and C is a direct con-
sequence of using the improved convolution technique and
explicit impulse-response formulae. For long lines, order-of-
magnitude speedups are observed for some circuits. As line
lengths become shorter, the speedups reduce because fewer
segments are used by the segmentation techniques. An un-
desirable feature of the convolution approach is its quadratic
time-complexity, i.e., the computation time required for sim-

ulation upto time T is proportional to approximately T 2, or
more exactly, the square of the number of time-points during
the simulation. This leads to disproportionately long simu-
lation times when small timesteps are used - as seen in Fig.
8 for short lines (small line-delays force small timesteps).
We are currently investigating approaches to reduce the time-
complexity to approximately linear.

In conclusion, the convolution approach has been enhanc-
ed by using analytical formulae for simple lossy lines, along
with acc~ate numerical convolution formulae. Simulation
of a specml case of 10SSYn-wwe mulaconductor lines has
been shown to be equivalent to simulating n uncoupled sim-
ple lossy lines. Results of the technique on practical cir-
cuits with large nonlinearities show that it can be an order-
of-magnitude faster than segmentation techniques for equiv-
alent or better accuracy.

Figure 7: mosaic receiver-end voltage
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