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Abstract

Transient simulation of lossy lines with high frequency nonide-
alities (such as skin effect) is usually performed by convolution,
which involves computation quadratic in the number of time-points
in the simulation. In this paper, a linear time simulation technique
is described in which each impulse response is decomposed into
two terms, with widely separated rates of decay. One term corre-
spondsto a “simple lossy” line (a line with frequency-independent
electrical parameters), while the other represents the contribution
of the high frequency nonideality. The latter term can decay to in-
significant levels in an interval much shorter than simulation times
of interest, making truncation possible and leading to computation
in linear time. The former term usually decays over much longer
intervals, so truncation is not generally feasible. However, this
term is also computed in linear time by a recursive procedure that
involves no approximation of impulse responses. Experimental re-
sults verify the linear complexity of the new technique and demon-
strate computational advantage for simulations of 5 or more cycles,
with speedups of more than 10 times for long simulations.

1 Introduction

Efficient transient simulation of lossy transmission lines within
nonlinear circuits has recently become a prominent problem. A

major application is in the simulation of multi-chip modules (MCMs),

high-performance packages that contain long thin interconnections
connecting chips. At the high operating speeds of MCMs, inter-
connections exhibit transmission line effects like reflection, atten-
uation and dispersion, which can seriously degrade signal quality.

For many applications, transmission lines characterized by con-
stant resistance, inductance, and capacitance (R, Ly and Cy) per
unit length (“simple lossy lines”) are adequate for accurate sim-
ulation. At very fast rise times, however, it can be necessary to
model these parameters as varying with frequency to account for
nonideal effects (“frequency-varying models™). For several non-
ideal effects, the parameters differ from Ry, Liy and Cyy only at high
frequencies (hence the term “high frequency nonidealities”). The
most important phenomenon requiring frequency-varying models
is skin effect, a high frequency nonideality that causes current to
concentrate near the surface of the interconnect at high frequen-
cies, thereby increasing the effective resistance. Skin effect can
become significant in typical MCM interconnect at rise times less
than Ins’, rounding off rising and falling edges (skin effect induced
dispersion [1]).

Many techniques exist for the simulation of ransmission line
models within nonlinear circuits (see Section 2 for a brief review).
The most accurate time domain technique for the simulation of
lines with high frequency nonidealities is direct convolution, but
this requires computation that rises quadratically with the number
of time-points in the simulation. Existing schemes that reduce the
complexity to linear rely on assuming specific forms for impulse
responses (such as sums of exponentials in the time domain, or
rational functions in the frequency domain).

* This research was supported by AT&T Bell Laboratories, IBM, Raytheon and the
Califomia State MICRO program.

! Other high frequency nonidealities such as dielectric loss [1] can usually be ig-
nored for typical MCM packages.

In this work, the impulse responses of frequency-varying lines
are first decomposed into two parts, one the response of a simple
lossy line, the other the contribution of the nonideality. Second,
the fact that the physical mechanisms of high frequency nonideal-
ities operate in time scales that are short relative to time scales of
interest in practical MCM applications is exploited. This translates
to quickly decaying responses for the nonideal part, making trun-
cation, and hence computation in linear time, possible. Truncation
is not generally feasible for the responses of the simple lossy line
part which can decay slowly. It is shown that the convolution op-
erations involved in the simple lossy part of the computation can
be avoided, replaced by a linear time recursive computation which
involves no approximation of impulse responses. The validity of
the recursive procedure does not follow immediately from our ear-
lier work [2] (the state-based method)?. The addition of nonideal

terms changes relationships between waveforms that were part of

the basis of the recursive formulation for the simple lossy case.

Apart from linear complexity, this technique has the advantage
of not assuming specific forms for the nonideal responses. Models
of differing levels of sophistication exist for nonideal behaviour
[3, 1, 4, 5], with responses that differ in the details but share the
same time scale. The approach presented here is capable of simu-
lating any such model, including empirically measured data char-
acterising nonidealities. Detailed knowledge of internal physical
mechanisms is not required; phenomena such as skin effect that
arise from non-uniform current or voltage distributions along the
transverse dimensions of the line can be simulated without keeping
track of the transverse variation. The price paid for this general-
ity is convolution with the nonideal response; however, exploit-
ing the short time scale of the phenomena generating this response
makes computation in linear time possible. For the impulse re-
sponses of the simple lossy line, the time scale is not short; for this
part, knowledge of the internal mechanism is exploited for effi-
cient simulation, through the recursive state-based technique. This
is not restrictive because this internal mechanism is fundamental
to all models of transmission lines. All features of the state-based
technique for simple lossy lines, like dynamic allocation of sam-
ple points for the state (see {2]), apply fully to the the recursive
computation part of the nonideal line.

In Section 2, previous approaches to lossy line simulation are
reviewed. Section 3 contains the mathematical details of the de-
composition and recursive computation. Experimental results are
presented in Section 4.

2Thestate-based methodis a lineartime ive proced
i.e., lines without nonidealities.

3If the transmission line equations are expressed in the mp or
hybrid representations (i.e., two of the port variables can be clearly identified as “out-
puts” and the other two as “inputs”), the validity of the recursive procedure follows

for simple lossy lines,

Ami i 4

diately from ourp work. Using these representations, however, results
in impul p for the nonideal term that are not eventually monotonically de-

ing, and ion is not possible. Another ingly workable approach is
top dition the port variables of a simple lossy line such that the preconditioned
system is equivalent to a frequency-varying line. This app h is not feasible in a
i pping simulator the p ditioning operation can invol |
tion with non-causal responses. This work (in Section 3) justifies recursion in the
scatteri ion (in which the impul p do decay mono-

8P P
tonically) with nonidealities.
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2 Previous Work

The convolution approach is the most accurate and general ap-

proach for the time domain simulation of nonideal lossy lines within
nonlinear circuits. ([6, 7] contain descriptions of other methods
for lossy line simulation.) Liu et al [8] were apparently first to use
convolution to simulate devices similar to lines, i.e., antennas, in
conjunction with nonlinear loads. Djordjevi¢ et al [9] applied the
technique to simulate lossy lines. That the lossy line is a linear two-

port was exploited by expressing the “outputs” of the two-port as

a convolution of the “inputs” with impulse responses (or Green’s

functions) characteristic of the line. In a comparison of techniques
for lossy line simulation [6], convolution was found slow and only

slightly more accurate than the approaches involving lumped ap-

proximations. In the early formuiation, the duration and nature of
the impulse responses was a limitation: for lossless lines, the im-

pulse responses were infinite in duration and consisted of periodic

sharp spikes; those of lossy lines diminished gradually while being

otherwise similar. Impulse responses that fall to negligible levels
after a short time are desirable for computational efficiency*. Aug-
menting the line with a quasi-matched load was attempted in [9]

to shorten the responses. Schutt-Aine et al [10, 11] reformulated

the convolution equations using a scattering parameter approach

that led to “well behaved” impulse responses®. Even though these

responses decreased monotonically, their effective duration (de-

pending on the values of R, L, G, and C) could be greater than the

total simulation time, leading to quadratic complexity. Approaches
reducing this complexity to linear have relied mainly on assuming

specific functional forms for the impulse responses. Semlyen et al

[12] have used sums of exponentials for time domain approxima-

tion, while frequency domain simplifications using rational func-
tion and Padé approximations [13, 14}, essentially translating to
exponentials in the time domain, are available. A different ap-
proach to linear complexity applicable only to simple lossy lines

(the state-based method, [Zt{) was proposed recently by the present
authors. This technique is equivalent to convolution in accuracy

and does not involve any approximation of impulse responses.

3 State-Based Formulation with Nonideal Convo-
lution Terms

For a frequency-varying transmission line with parameters R(s),

L(s), C(s) and G(s)°®, the constitutive equations are[15]:

[Yo Va(s)Hy (s) — a(s)]
- [Yo Vi(s)Hy (s)+ll(s)H7(s)] =0 (1)

[YoVa(s) Hr (5) + Ia(s) Hy(s)]
—[YoVi(s)Hy (s)~i(s)] =0 (2)
where V1 (s), Va(s), L1(s) and Ix(s) are the Laplace transforms of

the voltages and currents at the two ends of the line, which is of
length /, and

Yo = A , ﬁ, Hy(s) = &, Hr(s) = e—A(:)I 3)
Ly Yo /sC(s) + G(s)

Hﬂ (s) = Hy (s)H,(s), Y(S) = m (4)

Ms) = \/ (sC(5) + G(s)) (sL(s) + R(s)). &)

“If the responses remain significant for a period greater than the total simulation
time, convolution from time tp = 0 to ¢ = i, is necessary at every time-point t,.

Ry = R(0), Ly=L(0) (6)
Cy =C(0), Gy=G(0) O]

Inverse Laplace transformation yields the time domain consti-
tutive equations:

[Yo va(t) * hy (1) — iz(t)]
= [Yovi(9) * hy () +ir (1)xhy(1)] =0 (8)

[Yo va(t) * hyy (1) + i2(1t) * hr(t)]
— Yo (1) + by (1) —ia (1)) =0 9)

where * is the convolution operator’, vy (£), va(2), i1 (t), i2(f) are the
port variables of the line, and hy (2), hy(1) and hyy (1) are the inverse
Laplace transforms of Hy (s), Hy(s) and Hy (s), respectively.

The above convolution formulation can be used directly to
simulate the frequency-varying line. However, it is convenient to
rewrite Equations 1 and 2 in the following equivalent form for the
purposes of the decomposition mentioned in Section 1:

[YoVa(s) HY (s) — Ia(5)]
~[YoVi(s) HY (L )+ (s) HI(L, s)]+Ui(s) = 0 (10)

[YoVa(s) HY (1,5) + L(s) HY (L, 5)]
—[YoVi(s) HE (s)=P ()] +Ua(s) =0 (11)

where:
i
H;I(S) — YY(S) , H;/(x, s) = e—l’(:)x (12)
()
i Sle + Glf
HY (x,5) = H{(s)H] (x,5), Y"(s)= \/ Lyt Ry (13)
#(s) =/ (Cy + Gy) (sLy + Ry) )

Uh(s) and U(s) represent the contribution of the frequency-
varying part of the line:
Ur(s) = [YoVa(s) AHy (s)]
~[YoVi(s) AHpx (s)+1(s) AHL(s)] (15)

Ua(s) = [YoVa(s) AHw (s) + Ia(s) AH(s)]
— [YoVi(s) AHy (s)] (16)

where:
AHy (s) = Hy (s) — HY(s), AH,(s) = H/{s)—HY(Ls) (AT
AHy (s) = Hy (s) = Hy (L's) (18)
Laplace inversion of Equations 10 and 11 yields the time do-
main formulation:
[Yova(t) + KL (1) — i2(1)]
—[Yovi(r) * A (L) +ir())=hY(L0)] +m()) = 0 (19)

[Yova(e) + Al (1,1) + ia(s) + (L, )]
— [Yowa(t) * BY(8) —ir ()] +ua(s) = 0 (20)

where Y (1), K (x,1) and h'{, (x, 1)® are the inverse Laplace trans-
forms of HY(s), H;’ (x,5) and H;f, (x, s) respectively. wu;(t) and
uz(t), the inverse transforms of Ui (s) and Uz(s), are given by:

This op P prop 1t0 n, resulting in total comp

proportional to N (quadratic time complexity) in a simulation with N time-points.
5The “well behaved” impul p for a lossless line is a single Dirac delta

function at the line delay; for lossy lines, the impul! p d ymptoti-

cally and monotonically to zero.
§5 denotes the Laplace variable (= j27f for the Fourier transform).
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Ta(t) * (1) = j:n(‘t)b(l ~ 1)dr.

8 Analytic expressions for these are given later in this section.



ui(t) = [Yova(t) * Dhy (1)]
—[Yovi() « Dby (1) +ir(1) s Ahy(1)] (21)

w(t) = [Yova(t) x Dby (8) + ia(t) + Dhy(1)]
~ [Yowi(1) x Ahy (1)] (22)

where
Ahy(6) = he (1) = B (1), Dhylt) = ht) — HE(1,0) (23)
Dby (1) = hyy (1) = K (1,1) (24)

Equations 19 and 20 are equivalent to Equations 8 and9. The
motivation behind rewriting the latter equations as the former stems
from that all terms except u; and u; can be computed recursively,
as shown later in this section. Calculating u;(#) and u»(t) (accord-
ing to Equations 21 and 22) requires convolution; if, however, the
responses Ahy, Ahyand Ahy can be truncated with insignificant
loss of accuracy (as in the high frequency nonidealities being con-
sidered), convolution transforms into an integral with fixed limits.

The existing formulation of the state-based method [2] is ap-
plicable only to the dc-parameter case, for which the constitutive
equations are (Equations 19 and 20 with u;(f) = u(¢) = 0):

[Yo va(t) * (1) — iZ(’)]
= [Yova(0) + By (L) +is () +AY (4,1)] = 0 (25)

(Yova(t) + Ky (L,1) + iale) + HY(1,1)]
~[Yowi(e) x L () —is ()] = 0 (26)

The state-based method, as derived in [2], asserts that Equa-
tions 25 and 26 are equivalent to a different set of equations that
do not use convolution but involve an intemnal state term. Thus
the expressions on the LHS of Equations 25 and 26 are in essence
computed in a recursive manner, without using past values of v,
va, iv and iy, Implicit in this procedure is the assumption that vy (1),
va(t), ir(t) and iz(t) are constrained to obey Equations 25 and 26
at any t. If this assumption does not hold (as in Equations 19 and
20 with nonzero ui(t) and uy(t)), then it does not automatically
follow from [2] that the recursive procedure is still equivalent to
the LHS of Equations 25 and 26.

In this work, it is proved that the recursive computation of the
state-based procedure is always equivalent to the LHS of Equations
25 and 26, i.e., for arbitrary vfz%, va(2), ii(2) and ix(1). A set of
partial differential equations (PDEs) are constructed such that their
solution yields Equations 19 and 20. An alternative solution pro-
cedure that replaces all terms except u,(¢) and u>(1) by arecursive
computation is developed. Then the fact that the PDEs must have
a unique solution given a unique set of external influences is used
to assert the equivalence of the recursive procedure and the LHS of
Equations 25 and 26. The key difference between this procedure
and the one in [2} is the addition of terms w; and w5 (see Equations
27 and 28 in the next paragraph) that are contributed by the non-
ideality. While these terms do not admit of any obvious physical
interpretation, their inclusion leads to both the nonideal convolu-
tion equations (Equations 19 and 20) and the recursive technique
for the simple lossy line part. As mentioned earlier, attempts to
introduce the nonideal term through the port variables and formu-
lations other than the scattering-parameter one lead to noncausal
situations or destroy the quickly decaying property of the purely
nonideal responses.

Let wi(x, 1) and w(x, ) be two arbitrary functions defined on
[0,1] x [0, 00). Consider the following (the familiar Telegrapher
Equations [11] with “inputs”® w; and w»):

AN (L,fgf+R,fi) +w

- 27
ox @n
®Not to be confused with the port variables.
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0

3% (28)

av

(le at

The above equations hold for x varying between 0 and /, the

length of the transmission line. v(x, ) and i(x, t) are the voltage

and current at the point x in the line at time ¢, respectively. It is
assumed that the simulation starts from time 0.

The circuitinteracts with the transmission line through the port
variables vy (¢) = v(0,1), i(£) = i(0, 1), vo(f) = v(L, 1) and iz(go—
—i(1,1). These four port variables specify the boundary conditions
of Equations 27 and 28.

In addition to wy, w2, and the port variables, the internal state
of the transmission line also determines the future behaviour of
the line. This internal state is stored in the energy-storing dis-
tributed inductance and capacitance and is specified by the volt-
ages and currents in the line’s interior at time 0, vo(x) = v(x, 0)
and ig(x) = i(x,0). vo(x) and io(x) are the initial conditions for
Equations 27 and 28. The combination of the Telegrapher Equa-
tions, the boundary and initial conditions and the “inputs” w; and
wy specify the future behaviour of the line uniquely.

Equations 27 and 28 are solved to obtain time domain rela-
tions between wy, wy, v(x, 1), i(x,t) and the internal state vo(x),
io(x). (The derivation is omitted for brevity; see [16] for the de-
tails.) In the process, w, and w, are chosen as functions of #, and
uz (of Equations 21 and 22). Moreover, the state vo(x), io(x) is
represented by samples vq;, ig; at points x;, j = 1, ..., n, inside the
line. n is the total number of state samples; the index of a sample
point at x is denoted by n,, with np = 1. The time domain equa-
tions finally obtained for the nonideal line, valid at any x € [0, {],
are:

[Yov(x, 1) * KY (1) + i(x, )]
= [Yov(0,4) + Ky (x,1) + (0, 1) + K (x,0)] + wi(t) 2(x— 1)

-’rGl/V) + wy

ny ioj [hs,«y (x—xj, t) —hsyy (x—x,-_l,t)] +
=3 29)
yan Yo v [hsy(x—xj,1)—hs,(x—x,~_1,t)]
(Yov(l 1) * Ay (l=x,1) — i(1, 1) » Kl (1-x,1)]
— [Yov(x ) + K (1) - i(x,0)] + walt) x(x)
| i [Bsyr (xamx, D) —hsyr (xi-x,1)]
= Z (30
— -Yo Vo; [hsy(x,q—x, t)—hs,,(x,-—x,l)]
where:
hy (1) = [8(1) + a{li () — Io(on)}] e™# @31
hylx, 1) = | 8(t — px)
ayex 1 (a\/ 7 — (mx)z)
+u(t ~ px) e 7 (32)
Vit — (x)?
hyy (x, 1) = | 8(t — wx) + u(t — wx) a x
th (a\/ﬂ - (%x)l)
- \/r2— 2 —B
W 10 (a I (}{)X) > e (33)
hsy(x,1) = u(t — wx) I <a 27— (nx)z) e P (34)
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hsyy(x,8) = u(t — yox) e

' s I (a\/ 72 — ()ox)z)
) V7 — (o

In the above, u(-) and &(-) denote the unit step and delta functions,

respectively. x(x) is defined to be 1 if x = 0, 0 otherwise.

The equations obtained by substituting x = / in Equation 29
and x = 0 in Equation 30 are of special interest:

[Yovy(e) + Y (1) — ia(0)]
tyo vi(t) = B, (L) + () + KL 8] + w(D)
_ Z"': {io,- (hsyy (-x3,1) —hsyy (I35, 8)) +

+opx dr| e * (35)

nx

Yo vo; [hsr(l—x,', t)—hsy{l-x;1, t)] @6
[Yova(e) » Ay (1) + ia(6) = Y (1,0)]
— [Yow (1) » h’,{([t) —ir ()] + ua(t) |
I~ )iy [Asyr (xi-1, O)—hsyr (%, 1)
- 37
,-2:1: { ~Yovo; [hsy(xi1, 8)—hsy(x;, 1)) } en

The above are the equations of the convolution technique with
an additional RHS term from the initial state. At the start of the
simulation, the initial state is assumed zero'®. The RHS then be-
comes zero, and the two equations become identical to Equations
19 and 20, which, by construction, are equivalent to Equations 8
and 9. These equations may be used directly for simulation by con-
volution: at time-point &, each convolution on the LHS is carried
out from & = O to ;, using stored values of v, v2, i) and iz aty; for
all j, 0 < j < i. The computation required at each ¢; is proportional
1o i, leading to the quadratic complexity property.

The fact that Equations 36 and 37 are derived from a system
of PDEs makes it possible to solve them in another way: at time
1, (the first time-point after 4 = 0), the procedure is identical to
the convolution method, with convolution over the interval [to, 1],
and initial state zero. The new state of the line at time # is calcu-
lated next, using Equations 29 and 30 for each x chosen to sample
the internal state. At the next time-point &, the newly calculated,
nonzero internal state at f; is used as vo(x) and io(x), instead of
the zero internal state at time f, in Equations 29, 30, 36 and 37.
In other words, the time-invariance property of the Telegrapher
Equations is used. Thus the convolution operation at time #» starts
from the previous time-point f;, i.e., the time at which the internal
state is used in the above equations, instead of from #o as in the
convolution method. The intemnal state at ¢, is then calculated, and
this internal state is used as the initial state at time ¢3, and so on.
This procedure is the basis of the recursive computation; informa-
tion from the port variables’ history, which keeps increasing in size
as the simulation progresses, is condensed into the state, which is
of constant size. The key feature leading to linear complexity in
this technique is that the computation at time ¢; is independent of
t[', sincci convolution is always performed over only one interval,

ti—1, 4]

This recursive procedure is valid for arbitrary :(2) and uz(¢),
not just the particular choices of Equations 21 and 22. The validity
of the recursion in computing the LHS of Equations 25 and 26 for
arbitrary vi(¢), v2(¢), i1(2) and iz(¢) follows immediately.

4 Experimental Results

The techniques outlined in the previous section were implemented
in the circuit simulator SPICE3 version 3el [17]. Results on an

191f the circuit is at a nonzero DC initial state, a simple reformulation exploiting
the linearity of the transmission line yields a system with zero initial state.
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example circuit with typical MCM interconnect are presented in
this section.

The physical parameters of the aluminium interconnect (taken
from [18]) are: width = 11um, thickness = 2um, height above
ground plane = 10um, SiO; dielectric, length of line = 10cm, Ry =
12 ohms/cm, Ly = 8.79 nH/cm, Cy = 1 pF/cm. Dielectric loss
(parallel conductance G) is assumed to be zero at all frequencies.
Skin effect is accounted for with the following model [1]:

R >
R ={ §T 12f 68)
_ Lew + foT
L(f)—{ L, 5? fefr (39)

C(f) is assumed constant at Cy; fr, the transition frequency
after which skin effect becomes significant, is taken to be 1 GHz
from [1]; L. the inductance external to the wire and less than Ly,
is assumed to be 4 nH/cm. From these, Ro and Lo are calculated to
be 3.7947 x 10~ and 1.5147 x 10~* respectively. The ideal delay
T = Iy/Ly Cy is 09375 ns.

The impulse responses of the pure nonideality Ahy, Ah, and
Ahy contain impulse (delta function) components which are first
separated out. Ahy, Akl and Ahjy , the components without im-
pulses, were calculated by numerical inversion of the Fourier trans-

form, and are shown in Figs. 1, 2 and 3. The following relations
hold:

a.00 200.00

Tiee £ 1012
«00.00 #00.00

Figure 1: Ahy (1)

H
1

Lor

of

0.00 2.00 300 .00 s.00

Figure 2: Ah)(f)
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Figure 3: Ahy (1)

Ahy()) = My 8(t) + Ahy (2) 40)
Ahyft) = My8(t—T)+ Ak 41
Dhy(t) = My 8(t—T)+ Dhy(2) (42)

For this example, My = 0.420210266, M, = —0.5326360212,
and My = —0.5160118569. In order to obtain a quantitative esti-

mate of the error caused by truncation, the functions fo‘ Ahy (1) dr.
J, Aky(7) dz, and f] Ahy () d7 are useful. Plots of these func-

tions for this example are shown in Figs. 4, 5 and 6; the point after
which these functions achieve a steady value is the effective length
of the response.

g
8
s ul

Thae k 10112
0.00 200.00 400.00 «00.00 800.00

Figure 4: fo’ Ahy (7)dT

For this example, the effective durations of Ahy, Ahy, and
Ahy were 600ps, 3ns and 3ns respectively, as seen from the plots
of their integrals. Convolution was performed using the numerical
formula in [15].

The circuit consisted of a nonlinear load of two clamping diodes
driven by a voltage source with a series resistance through the lossy
line. Rise times of 10ps and 1ns were used.

Fig. 7 illustrates the voltage at the load end for the 10ps rise-
time case. Simulation by pure convolution and the state-based/conv.
technique of this paper are seen to yield identical results. Also
shown is the result of simulation without skin effect, i.e., with only
DC losses considered. The rise time degradation caused by skin
effect, and the rounding of edges, can be seen clearly.
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1.00 2.00 3.00 4.00

Figure 5: fo‘ Ah(1)dt
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Figure 6: [J Akl (1) dt
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Figure 7: Load voltage, 10ps rise time
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Fig. 8 shows the load voltage for a rise time of 1ns. It is seen
that skin effect makes virtually no difference to the waveform in
this case.

Vokage
ss0
z /
o

e

. / \

0s0 / \

o0 A
-1.00

Time x 10

000 100 200 300 400 500

Figure 8: Load voltage, 1ns rise time

Table 1 and Fig. 9 show computation time as a function of
total simulation length for the state-based and the pure convolu-
tion techniques. The linear and quadratic complexities of the two
methods are apparent from the figure.

Computation Time (s) x 10°
600
550
500
450
400
350
300
250 A
200
150
100
050
000 -

Simulation Leogth (as)
000 600.00

Figure 9: Execution time vs. simulation length

Acknowledgments

Gerry Marino’s encouragement and support of this work is greatly
appreciated. Technical discussions with Albert Ruehli and Jacob
White were very helpful. Thanks are due to Sally Liu and Ta-
Fang Fang for encouragement and to Chris Lennard for assistance
during implementation and for suggesting the title of this paper.
Administrative help from Kia Cooper is very much appreciated.

References

[1] A. Deutsch et al. High-speed signal propagation on lossy

- transmission lines. IBM J. Res. Dev., 34(4):601-615, July
1990.

[2] J.S. Roychowdhury et al. An Impulse-Response Based Lin-

ear Time-Complexity Algorithm for Lossy Interconnect Sim-

ulation. In Proc. IEEE International Conference on Com-

puter Aided Design, pages 62-65, Santa Clara, CA, Novem-

ber 1991.

H.A. Wheeler. Formulas for the skin effect. Proc. IRE,

30:412-424, 1942.

W. Wlodarczyk and V. Besch. Skin-Effect Losses of Inter-

connect Lines in Frequency and Time-Domain. Elec. Let.,

26(16):1237-1238, 2nd August 1990.

B3]
[4]

Paper 6.1

80

Simulation Length Execution Time”
tate-based/conv. | Convolution only
10 ns 6.82s 490s
20 ns 1345 12.83 s
40ns 26.72s 3826s
60 ns 40.35s 758's
80 ns 33.39s 126s
100 ns 70.16's 186.2s
200 ns 12078 's 695 s
300 ns 2538s 16195s
400 ns 302.4s 2635.1s
ns 3835s 4110.6s

600 ns 473.2s 5839.9's

2CPU times on a DEC 5000/200 running Ultrix 4.2.

Table 1: Comparison of Execution Times

[5] R.A. Sainati and T.J. Moravec. Estimating High Speed
Circuit Interconnect Performance. IEEE Trans. Ckts. Sys.,
36(4):533-541, April 1990.

(6] A.R. Djordjevi¢ et al. Time-Domain Response of Multi-
conductor Transmission Lines. Proc. IEEE, 75(6):743, June

1987.

[7} 1.S. Roychowdhury, A. R. Newton, and D.O. Pederson. Al-
gorithms for the Transient Simulation of Lossy Interconnect.
Submitted to IEEE Trans. CAD.

[8] T.K.LiuandF. M. Tesche. Analysis of antennas and scatter-
ers with nonlinear loads. /EEE Trans. Antennas Propagat.,
AP-24:131, March 1976.

[9] A.R. Djordjevi¢ et al. Analysis of Lossy Transmission Lines

with Arbitrary Nonlinear Terminal Networks. IEEE Trans.

Microwave Th. Tech., MTT-34(6):660, June 1986.

J.E. Schutt-Aine and R. Mittra. Scattering Parameter Tran-

sient Analysis of Transmission Lines loaded with Nonlin-

ear Terminations. /EEE Trans. Microwave Th. Tech., MTT-

36:529-536, 1988.

J.E. Schutt-Aine and R. Mittra. Nonlinear Transient Analy-

sis of Coupled Transmission Lines. /EEE Trans. Ckts. Sys.,

36(7), July 1989.

A. Semlyen and A. Dabuleanu. Fast and Accurate Switching

Transient Calculations on Transmission Lines with Ground
Return Using Recursive Convolution. IEEE Trans. Power

App. Sys., PAS-94:561-571, 1975.

[13] F.Y.Chang. Waveform Relaxation Analysis of RLCG Trans-
mission Lines. IEEE Trans. Ckts. Sys., 37(11):1394-1415,
November 1990.

S. Lin and E.S. Kuh. Padé Approximation Applied to
Transient Simulation of Lossy Coupled Transmission Lines.
In IEEE Multi-Chip Module Conference, Santa Cruz, CA,
March 1992. To appear.

J.S. Roychowdhury and D.O. Pederson. Efficient Transient
Simulation of Lossy Interconnect. In Proc. IEEE Design Au-
tomation Conference, pages 740-745, San Francisco, CA,
June 1991.

J.S. Roychowdhury, A. R. Newton, and D.O. Pederson. Sim-
ulating Lossy Interconnect with High Frequency Nonideali-
ties in Linear Time. To be submitted to IEEE Trans. CAD.
T.L. Quarles. Analysis of Performance and Convergence Is-
sues for Circuit Simulation. PhD thesis, EECS Dept., Univ.
Calif., Berkeley, Elec. Res. Lab., April 1989. Memorandum
no. UCB/ERL M89/42.

C.A. Neugebauer et al. High Performance Interconnections
between VLSI Chips. Solid State Tech., June 1988.

(10]

[11)

[12]

(14]

[15]

(16]

(17}

(18]



