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Abstract 
We present a theory for reduced-order modelling of linear time-varying sys- 
tems, together with efficient numerical methods for application to large systems. 
The technique, called TVP (Time-Varying Padk), is applicable to deterministic 
as well as noise analysis of many types of communication subsystems, such as 
mixers and switched-capacitor filters, for which existing model reduction tech- 
niques cannot be used. TVP is therefore suitable for hierarchical verification of 
entire communication systems. We present practical applications in which TVP 
generates macromodels which are more than two orders of magnitude smaller, 
but still replicate the input-output behaviour of the original systems accurately. 
The size reduction results in a speedup of more than 500. 

1 Introduction 
An important task in communication system design is hierarchical ver- 
ification of functionality at different levels, starting from individual 
circuits up to block representations of full systems. A key step in this 
process is the creation of small macromodels that abstract, to a given 
accuracy, the behaviour of much bigger subsystems. For systems with 
“nonlinear” blocks like mixers and switched-capacitor filters, this is 
typically achieved by using results from detailed nonlinear simulations 
to construct macromodels manually. This process has disadvantages. 
Nonlinear simulation does not provide parameters of interest (such as 
poles and zeros) directly; to obtain them by inspection, frequency- 
response plots with many points are often computed. This can be 
very time-consuming for large subsystems, since nonlinear blocks re- 
quire a steady-state solution at each point. Also, the macromodelling 
step, critical for reliable verification, is heuristic, time-consuming and 
highly reliant on detailed internal knowledge of the system under con- 
sideration. 

In this paper, we present an algorithmic technique for abstracting 
small macromodels fram detailed descriptions of many kinds of “non- 
linear” subsystems encountered in communication systems. Named 
TVP (Time-Varying PadC), the method reduces a large linear time- 
varying (LTV) system to a small one. The LTV model is adequate 
for many apparently nonlinear systems, like mixers and switched- 
capacitor filters, where the signal path is designed to be linear, even 
though other inputs (e.g., local oscillators, clocks) may cause “non- 
linear” parametric changes to the system. TVP can also produce cy- 
lostationary noise macromodels of time-varying systems. Extensions 
of TVP for macromodelling signal path nonlinearities and autonomous 
systems have been devised and will be described separately. 

Reduced-order modelling is well established for circuit applica- 
tions (e.g., AWE [PR90], PVL [FF95a, FF971, PRIMA [OCP97]), but 
to the best of our knowledge, existing methods are applicable only 
to linear time-invariant (LTI) systems. Hence they are inadequate for 
communication blocks with properties like frequency translation, that 
cannot be represented by LTI models. LTV descriptions of a system, on 
the other hand, can capture frequency translation and mixinghwitching 
behaviour. 

LTV transfer functions are often computed in the context of RF 
simulation (e.g., plotting frequency-responses or calculating cyclo- 
stationary noise [TKW96, Len97, RLF98]), but a formulation suit- 
able for model reduction has not been available. The basic dif- 
ficulty in generalizing LTI model-reduction techniques to the LTV 
case has been the interference of system time variations with in- 
put time variations. A key step in this work is to separate the two 
time-scales, using recent concepts of multiple time variables and the 
MPDE [BWLBG96, Roy97a, Roy98a1, resulting in forms for the LTV 
transfer function that are suitable for model reduction. Pad6 approxi- 
mation of this transfer function results in a smaller system, any desired 
number of moments of which match those of the original system. 

TVP has several useful features. The computatiodmemory re- 

quirements of the method scale almost linearly with circuit size, thanks 
to the use of factored-matrix computations and iterative linear alge- 
bra [RA92, MFR95, RLF981. TVP provides the reduced model as a 
LTI system followed by a memoryless mixing operation; this makes 
it easy to incorporate the macromodel in existing circuit and system 
level simulators. TVP itself can be implemented easily in a number 
of existing simulation tools, including nonlinear time-domain simula- 
tors like SPICE, nonlinear frequency-domain domain simulators us- 
ing harmonic balance, as well as linear time-varying simulators like 
SWITCAP and SIMPLIS. Time-domain computations, moreover, do 
not necessarily require obtaining or using a steady state of the sys- 
tem. Existing LTI model reduction codes can be used as black boxes 
in TVP’s implementation. Like its LTI counterparts, TVP based on 
Krylov methods (see Section 3.2) is numerically well-conditioned and 
can directly produce dominant poles and residues. 

Most importantly, by providing an algorithmic means of generating 
reduced-order models to any desired accuracy, TVP enables macro- 
models of communication subsystems to be coupled to detailed real- 
izations much more tightly and quickly than previously possible. This 
can significantly reduce the number of iterations it takes to settle on a 
final &sign. 

The remainder of the paper is organized as follows. In Section 2, 
the MPDE is used to obtain the LTV transfer function in forms useful 
for model reduction. In Section 3, Pad6 approximation and reduced- 
order modelling of the LTV transfer function is presented. Applica- 
tions of TVP are presented in Section 4. 
2 The LTV transfer function 
We consider a nonlinear system driven by a large signal bl(t) and a 
small input signal u ( t ) ,  to produce an output z r ( t )  (for simplicity, we 
take both U ( ? )  and z ( f )  to be scalars; the generalization to the vector 
case is straightforward). The nonlinear system is modelled using vec- 
tor differential-algebraic equations (DAEs), a description adequate for 
circuits [CL751 and many other applications: 

In the circuit context, y ( r )  is a vector of node voltages and branch cur- 
rents; q ( )  and f() are nonlinear functions describing the charge/flux 
and resistive terms, respectively, in the circuit. b and d are vectors that 
link the input and output to the rest of the system. 

We now move to the MPDE (multirate partial differential equa- 
tion [BWLBG96, Roy97a, Roy98al) form of (1). Doing so enables the 
input and system time-scales to be separated and, as will become ap- 
parent, leads to a form of the LTV transfer function useful for reduced- 
order modelling. The move to the MPDE (2), below, is justified by the 
fact (proved in, e.g., [Roy98a]) that (1) is exactly equivalent to (2 ) .  

i r ( t l , t 2 )  = d r j ( t t , t 2 ) ,  z r ( r )  = i f ( r , t )  
The hatted variables in ( 2 )  are bivariate (i.e., two-time) forms of the 
corresponding variables in (1). 

To obtain the output component linear in U ,  we perform a lineariza- 
tion around the solution of (2) when u(t2) = 0. Let this solution be 
j * ( t l )  (note that we can always select 8’ to be independent of t2). Lin- 
earization about 8’ yields the linear MPDE: 
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In (3), the quantities P, 2 and z are the small-signal versions of 9, 2t 

and Z r ,  respectively; C(tl ) = 1 and G(tl = are 
By putting the expressions (9) in (8) and equating coefficients of ej%'I, 
i t  can be verified that the following block-matrix equation holds: 

(1 1) 
I . f ' ( t l )  . e . ( t l )  

time-varying matrices. [SCFD + - ( G F D  + RcFD)] @FD(s) = BFD 
Note that the bi-variate output i(tl,t2) is linear in the input u(t2), 

but that the relationship is time-varying because of the presence of t i .  
To obtain the time-varying transfer function from U to 2, we Laplace 

where denote this by J F ~ )  

CFD = toeplitz(." ,C2,C1,CoIC-1 ,C- 2 , . . . ) ,  

transform (3) with respect to t2: GFD = toeplitz(. .. ,G2,Gl ,Go,G-l ,G-2,. ..), and (12) 

and obtain an operator form of the time-varying transfer function Hence we can rewrite (14) in a Fourier series: 
H(t1,s): m 

, - 1  H ( t l  ,s) = H;(s)ejiootl, H;(s) = dTET [SCFD + J F D ] - ]  ~ F D  (16) 

Finally, the frequency-domain relation between the output z ( t )  and its 
bi-variate form 2 is: 

where Z(s) is the Laplace transform of z ( t )  and &(SI ,s2) the two- 
dimensional Laplace transform of i ( t1 ,  rz), or equivalently, the Laplace 
transform of Z(t l  ,sz) with respect to tl . 

The operator form (6) is already useful for reduced-order mod- 
elling. We can proceed further, however, by expanding the t i  depen- 
dence in a basis. This leads to matrix forms of the transfer function, 
to which existing model reduction codes can be applied - a very de- 
sirable feature for implementation. Frequency-domain basis functions, 
considered in Section 2.1, are natural for applications with relatively 
sinusoidal variations, while time-domain ones are better suited to sys- 
tems with switching behaviour and for those that are not periodic. 

2.1 Frequency-domain matrix form 
Assume C(t1) and G(r1) to be periodic with angular frequency WO. 
Define W(t1 ,s) to be the operator-inverse in (6): 

Assume W(t1 ,s) also to be in periodic steady-state in t l ,  and expand 
C(tl , G(tl), and W(t1 ,s) in Fourier series with coefficients Ci, G;, and 
w,(s], respectively: 

m m m 

C(tl) = ~ C i e j i ~ ' l ,  G(tl) =xG;eji"l, ~ ( t l  ,s) =xw,(s)ejiY)'I (9) 

Now define the following long vectors of Fourier coefficients: follows: 

,=--oo t=--m i=-m 

I=-= 

(16) implies that any linear periodic time-varying system can be de- 
composed into LTI systems followed by memoryless multiplications 
with eJl*'. Hence the above constitutes an alternative derivation of 
Floquet theory ([Gri90]). In fact, it will be proved in (26) that (16) is 
equivalent to a much more compact representation, consisting of only 
one LTI block followed by a memoryless multiplication'. The quanti- 
ties H;(s) will be called baseband-referred transferfunctions. 

Define: 

BFD(S) = [... ,H-2(s),H-i (s),Hg(s),Hi(s),H2(~) , . . . I T  (17) 
Then, 

f i , ~ ~ ( s )  D r [ S C F D + j J F D ] - 1 8 F D ,  D=diag( . . .  ,d ,d ,d; . . )  (18) 

(18) is a block matrix equation for a single-input multi-output transfer 
function. If the size of the LTV system (3) is n, and N harmonics of 
the LTV system are considered in practice, then ~ F D  is a vector of 
size Nn x I ,  CFD and JFD are square matrices of size Nn x Nn,  D is a 
rectangular matrix of size Nn x N ,  and f i , ~ ~ ( s )  is a vector of size N.  
3 Pad6 approximation of the LTV transfer function 
The forms for the LTV transfer function (6) and (18) can be expensive 
to evaluate, since the dimension of the full system can be large in prac- 
tice. In this section, methods are presented for approximating H ( t l  ,s) 
using quantities of much smaller dimension. 

The underlying principle is that of Pad6 approximation, i.e., for 
any of the forms of the LTV transfer function, to obtain a smaller 
form of size q whose first several moments match those of the orig- 
inal large system. This can be achieved in two broad ways, with 
correspondences in existing LTI model-reduction methods. TVP-E 
(TVP-Explicit), roughly analogous to AWE [PR90, CN94J for LTI 
systems, involves calculating moments of the large system explic- 
itly and building the reduced order model from these moments. The 
method is outlined in Section 3. I .  Another procedure, TVP-K (TVP- 
Krylov) replaces the large system directly with a smaller one, achiev- 
ing moment-matching implicitly. This uses Krylov-subspace meth- 
ods and is analogous to LTI model-reduction techniques based on the 
Lanczos- and Amoldi-based processes (e.g., PVL [FF95a], operator- 
Lanczos methods [CC97], PRIMA [OCP97] and others). As in the 
LTI methods, TVP based on Krylov subspaces has several advan- 
tages over explicit moment matching, and is presented in Section 3.2. 
Operator- or matrix-based techniques can be applied to both explicit 
and Krylov-based TVP; Section 3.1 describes an operator-based pro- 
cedure and Section 3.2 a matrix-based one. 

'This is a new specialized form of the Floquet theorem. 
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3.1 TVP-E: TVP using explicit moment matching 
Either of the forms (6) and ( 1  8) can be used for explicit moment match- 
ing. Here, we illustrate an operator procedure using (6). Rewrite 
H(6l ,s) from (6) as: 

H ( r l , s )  = d T  (Iu+sL[I)- '  [ r ( t l ) ] ,  (I[]is the identityoperator), 

H(r1 ,s) in (19) can be expanded as: 

' i=o 
(20) where m;( t i  ) = (- 1 )' dT L [L [. . . L [ r ( t l ) ]  . . . I ]  - 

i applications of L[] 

m;(tl) in (20) are the time-var)iing moments of H ( t l  ,s). Note that these 
moments can be calculated explicitly from their definition in (20), by 
repeated applications of Ln.  From its definition in (19), applying Lfl 
corresponds to solving a linear time-varying differential equation. If 
the time-varying system is in periodic steady-state, as is often the case 
in applications, L 0 can be applied numerically by solving the equations 
that arise in the inner loop of harmonic balance or shooting methods. 
Recently-developed iterative methods (e.g., [RA92, MFR95, TKW95, 
FML961) enable large systems of these equations to be solved in linear 
time, hence the time-varying moments can be calculated easily. 

Once the moments mi(r l )  have been computed, t l  can be fixed at 
a given value, and any existing LTI model reduction technique using 
explicit moments (e.g., AWE) can be run q steps to produce a qth-order 
reduced model. This step can be repeated for all t l  values of interest, 
to produce an overall reduced-order model for H ( t 1 ,  s) in the form: 

The procedure outlined above, though simple, has two disadvan- 
tages. The first is that model reduction methods using explicit mo- 
ments suffer from numerical ill-conditioning, making them of lim- 
ited value for q more than I O  or so [FF95a]. The second is that the 
form (21) has time-varying poles. It can be shown using Floquet the- 
ory that the transfer function H ( t l  ,s) has a potentially infinite number 
of poles that are independent oft1 (these poles are simply the Floquet 
eigenvalues shifted by multiples of the system frequency), together 
with residues that do, in fact, vary with t l .  I t  is desirable to obtain a 
reduced-order model with similar properties. In fact, this requirement 
is equivalent to obtaining a reduced system in the time-domain form 
of (3), which is very desirable for system-level modelling applications. 
In Section 3.2, we present Krylov-subspace procedures for TVP that 
eliminate both problems. 

3.2 TVP-K: TVP using Krylov subspace methods 
In this section, we describe the application of the block-Lanczos al- 
gorithm [ABFH96, FGN91, FF95b, Fre981 to any multi-output matrix 
form of the LTV transfer function. Alternatively, operator-Lanczos or 
any Amoldi-based method can also be applied. Using Krylov-subspace 
methods provides not only a numerically stable means of obtaining a 
reduced-order model, but in addition, the resulting reduced transfer 
function has a form similar to that of H(tl  ,s) in (6), with similar prop- 
erties like a possibly infinite number of tl -invariant poles. 

(18) is in the form: 

(22) can be used directly for reduced-order modelling by block- 
Lanczos methods. We recall briefly the relevant features of these tech- 
niques, which are described in detail in [ABFH96, FGN91, FF95b, 
Fre981. Running the block-Lanczos algorithm q steps using the quan- 
tities D, C, J and B' will produce the following matrices and vectors: 

t 
4 (t) 

t 
R, 

Figure 1 : Specialized Floquet form of a LPTV system 
L, (of size q x N ) ,  R, (size q x 1) and T, (size q x q). Define the qth- 
order approximant f iq(s )  by: 

gq(s) = Lq' [Iqxq - sT,] R, (23) 

Then f iq(s )  M f i ( s ) ,  in the sense that a certain number of matrix- 
moments of the two quantities are identical - see [Fre98] for a precise 
description of the approximation. Further, i t  is typically the case in 
Dractice that even small values of a lead to excellent amroximations. 

Using 
obtained 

where L, 
tion Aq(i 

.he quantities in (23), a i  equivalent system'df size q can be 
asily. Define: 

w 

Lq(rl)  = c L,,;e"~~'l (24) 

is the ith column of L,. The approximate LTV transfer func- 
)s) is given by 

,=-w 

f i q ( t l  ,s) = t , ( r l  l T  [I+, - ST,] - I  R, (25) 

( 2 5 )  is the time-varying transfer function of the following q"-order 
reduced system of time-domain equations: 

where Z ( r )  is a vector of size q, much smaller than that of the original 
system (3). 

The TVP-K procedure above has a number of useful properties: 
0 Note that (26) represents a linear time-invariant system, with 

the time-variation appearing only in the output equation. The 
reduced system is illustrated in Figure I .  This feature makes the 
reduced model very easy to incorporate in existing simulation 
tools. 

0 In practice, only the baseband-referred transfer functions cor- 
responding to harmonics of interest can be represented in (17), 
thereby reducing the number of columns of D. 

0 The form (25) can be shown to imply that f i q ( t l  ,s) has a possi- 
bly infinite number of time-invariant poles, similar to H ( t l  ,s). 
Further, the eigenvalues of T, are the Floquet exponents of the 
reduced-order model, which approximate those of the original 
LTV system. The poles and residues of the reduced-order mod- 
els of H;(s) can be easily calculated from the eigenvalues of T,. 
The Floquet exponents are also useful in oscillator phase noise 
applications. 

0 Krylov-subspace algorithms such as Lanczos and Amoldi re- 
quire only matrix-vector products with C and linear system so- 
lutions with J .  Though both matrices can be large, dense or 
difficult to factor, exploiting structure and using iterative linear 
algebra techniques can make these computations scale almost 
linearly with problem size [RA92, MFR95, TKW95, FML96, 
RLF981. When these fast techniques are employed, the com- 
putation required by the TVP algorithm grows approximately 
linearly in circuit size and number of harmonics or time-points, 
making i t  usable for large problems. 

0 The numerical ill-conditioning problem with explicit moment 
matching in Section 3.1 is eliminated using Krylov methods, 
hence TVP can be run upto large values of q if necessary. 

0 A system with pi inputs and p o  outputs can be handled easily, 
by stacking the extra outputs into fi (resulting in D of size nN x 
p,,N),  and incorporating the inputs into B (to form a rectangular 
matrix of size nN x pi). 
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TVP, 9 = 10 
-2.95e-8 
-1.69e-8 

-2.81e-9 +j4.56e-9 
-2.81e-9 -j4.56e-9 

-2.54e-10 +j6.85e-13 
-2.85e-11 +j5.84e-11 
-2.53e-11 -j5.54e-11 
-2.12e-9 +j4.03e-13 
-3.16e-9 -j1.15e-14 
-3.06e-9 -;4.63e-11 

Table 1 : Poles of  H I  (s) for the I-channel bu f fe rh ixe r  
4 Application to RF circuits 
In this section, we apply TVP to a portion of the W2013 RFIC from 
Lucent Microelectronics, consisting of an I-channel buffer and mixer. 
The circuit consisted of about n = 360 nodes, and was excited by a 
local oscillator at 178Mhz driving the mixer, while the RF input was 
fed into the I-channel buffer. The time-varying system was obtained 
around a steady state of the circuit at the oscillator frequency; a total 
of N = 21 harmonics were considered for the time-variation. 

F i g u r e  3.2 shows frequency p lo t s  of H I  (s), t h e  upconver s ion  t r ans -  
fer function. The points marked '+' were obtained by direct compu- 
tation of (16). while the lines were computed using the TVP-reduced 
models with q = 2 and 9 = 10, respectively. Even with q = 2, a size 
reduction of two orders of magnitude, the reduced model provides a 
good match up to the LO frequency. When the order of approximation 
is increased to 10, the reduced model is identical upto well beyond the 
LO frequency. Evaluating the reduced models was more than three 
orders of magnitude faster than evaluating the transfer function of the 
original system. 

The poles of the reduced models for H I  (s) are shown in Table 1. 
5 Conclusion 
We have presented TVP, a theory and methods for reduced-order mod- 
elling of linear time-varying systems. The technique has applications 
in the macromodelling and hierarchical verification of communication 
systems, including noise. Applications to RF subsystems have been 
presented and size reductions of more than two orders of magnitude, 
resulting in similar speedups, have been obtained. 
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