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Reduced-Order Modeling of Time-Varying Systems

Jaijeet Roychowdhury

Abstract—We present algorithms for reducing large circuits, Reduced-order modeling is well established for circuit ap-
described at SPICE-level detail, to much smaller ones with similar plications (e.g., AWE [6], [21], [28], PVL [11]-[13], PRIMA
input—output behavior. A key feature of our method, called time- [26]), but to the best of our knowledge, existing methods are

varying Padé (TVP), is that it is capable of reducingtime-varying . ) . . -
linear systems. This enables it to capture frequency-translation applicable only to linear time-invariant (LTI) systems. Hence,

and sampling behavior, important in communication subsystems they are inadequate for communication blocks with properties
such as mixers and switched-capacitor filters. Krylov-subspace like frequency translation, which cannot be represented by LTI

methods are employed in the model reduction process. The models. LTV descriptions of a system, on the other hand, can
macromodels can be generated in SPICE-like or AHDL format, — canre frequency translation and mixing/switching behavior.

and can be used in both time- and frequency-domain verification LTV t fer functi ft. ted in th text
tools. We present applications to wireless subsystems, obtaining ransier functions are often computed in tnhe contex

size reductions and evaluation speedups of orders of magnitude Of radio frequency (RF) simulation (e.g., plotting frequency-
with insignificant loss of accuracy. Extensions of TVP to nonlinear responses or calculating cyclostationary noise [23], [35], [39]),

terms and cyclostationary noise are also outlined. but a formulation suitable for model reduction has not been
Index '|'e|'rns_AHDLl Arn0|di, Kry|ovl Lanzosy macromod- aVaiIable. The baSiC d|ﬁ|CU|ty in generaIiZing LTI mOdel-
elling, nonlinear systems, reduced-order modelling, time-varying reduction techniques to the LTV case has been the interference
systems. of system time variations with input time variations. A key
step in this work is to separate the two time-scales, using
|. INTRODUCTION recgnt c_oncept; of muIFipIe time variables and the muIFirate
i i , partial differential equation (MPDE) [3], [31], [34], resulting
ERIFYING systems hierarchically at different level§y torms for the LTV transfer function that are suitable for

_of abstraction is an important task in communicationg,qqe| reductiort. Pade approximation of this transfer function
design. For this task, small macromodels need to be gener Its in a smaller system, any desired number of moments
that abstract, to a given accuracy, the behavior of much bigggryhich match those of the original system.

subsystems. For systems with time varying and nonlineartyp pags several useful features. The computation/memory
blocks, macromodels are typically constructed by manualfqirements of the method scale almost linearly with circuit
abstracting circuit operation into simpler forms, often aided,e thanks to the use of factored-matrix computations and
by extensive n_onlmear 5|mulathns. This process has disadvaBrative linear algebra [15], [24], [29], [35]. TVP provides
tages. Simulation does not provide parameters of interest (S8 requced model as a LTI system followed by a memoryless
as poles and zeros) directly; obtaining them by inspectiofiing operation; this makes it easy to incorporate the macro-
from frequency responses can be computationally expensiyg,qe| in existing circuit simulators, as well as in system-level
Manual abstraction can miss nonidealities or interactions that, ,iators supporting any analog high-level description lan-
the designer is unaware of. Generally speaking, manual macgpy ge (AHDL) with linear elements and ideal multipliers. TVP
modeling is heuristic, time consuming, and highly reliant Ofjseit can be implemented easily in existing simulation tools,
detailed internal knowledge of the system under Cons'derat'(?ﬁcluding nonlinear time-domain simulators like SPICE. non-
In this paper, we present an algorithmic technique fqfear frequency-domain simulators using harmonic balance,
abstracting small macromodels from SPICE-type descriptio§s \well as in LTV simulators like SWITCAP and SIMPLIS.

of many kinds of subsystems encountered in communicaliglisting |T| model-reduction codes can be used as black
systems. Named time-varying Fa@I'VP), the method reducesy,oyes in TvPs implementation. Like its LTI counterparts,

a large linear time-varying (LTV) system to a small one. Theyp hased on Krylov methods (Section I11-B) is numerically

LTV model is adequate for many apparently nonlinear systemge|| conditioned and can directly produce dominant poles and
like mixers and switched-capacitor filters, where the signglgiques. By providing an algorithmic means of generating
path is designed to be linear, even though other inputs (€ .Qqyced-order models, TVP enables macromodels of com-
local oscillators, clocks) may cause “nonlinear” parametrig nication subsystems to be coupled to detailed realizations
changes to the system. For capturing distortion and intermagly, i more tightly and quickly than previously possible. This

ulation effects, we outline extensions for capturing low-ordely, gignificantly reduce the number of iterations it takes to
nonlinear terms in the input-output transfer function. We alsQuje on a final design. Furthermore, since there is no relation

sketch how TVP can be used to produce cyclostationary nojg&een the topology or components of the original circuit and
macromodels of time-varying systems.
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the reduced one, macromodels generated by TVP can be ugebence of;. To obtain the time-varying transfer function
to protect intellectual property without sacrificing accuracy. from « to 2, we Laplace transform (3) with respect#p

The remainder of the paper is organized as follows. In N
Section II, the MPDE is used to obtain the LTV transfer funcd(C )X (t, 5)) +5C(t1) X (t1, 8)+G(t1) X (t1, s)=bU(s)
tion in forms useful for model reduction. In Section IIl, Rad” oty
approximation and reduced-order modeling of the LTV trans-
fer function is presented. Extensions to nonlinear terms are Z(ty, s) =dT X (ty, s). (4)
described in Section IV. Cyclostationary noise macromodeling
with TVP is described in Section V. Finally, four examples of (4), s denotes the Laplace variable along thetime axis;

the application of TVP are presented in Section VI. the capital symbols denote transformed variables.
By defining the operator
Il. LTV T RANSFER FUNCTION D 0] = 9(C(t1)v) 5)
We consider a nonlinear system driven by a large signal dty oty
by(t) and a small input signal(t) to produce an output,(t) e can rewrite (4) as
(for simplicity, we take bothu(t) and z(¢) to be scalars;
the generalization to the vector case is straightforward). The <£ [+ sC(t) + G(t1)>X(t1 s) = bU(s)
nonlinear system is modeled using vector differential-algebraic dt; ’
equations (DAESs), a description adequate for circuits [7] and
many other applications Z(tl, s) = dTX(tl, s) (6)
% + f(y() = bu(t) + bu(t)  z(t) =d"y(t). (1) and obtain anoperator form of the time-varying transfer
function H(¢1, s)
In the circuit contexty(t) is a vector of node voltages and D 1
branch currents;() and f() are nonlinear functions describing H(ty, s)=d" <_ [+ sC(t1) + G(t1)> 4]
the charge/flux and resistive terms, respectively, in the circuit. dty
b and d are vectors that link the input and output to the rest Z(t1, s) = H(ty, s)U(s). (7

of the system. ) ) )

We now move to the MPDE [3], [31], [34] form of (1). Finally, the frequency-domain relation between the ouggtit
Doing so enables the input and system time scales to ¥&d its bi-variate forme is
separated and, as will become apparent, leads to a form of Z(s) — eo Z d 3
the LTV transfer function useful for reduced-order modeling. (5) / »(s = 52, 52) dso (8)
The move to the MPDE (2), below, is justified by the fact .

(proved in, e.g., [31], [34]) that any solution of (2) generateshere Z(s) is the Laplace transform of(¢) and Z,(s1, s2)
a solution of (1) the two-dimensional Laplace transform a1, t2), or equiv-
. . alently, the Laplace transform of (¢, s2) with respect to
o(9) , 2a(i) Y. the Lap (1, 52) P

— o0

TR + ot + f(@(tl, tg)) :bl(tl) + bu(tg) t1.
L 2 X - The operator form (7) is already useful for reduced-order
2(t1, t2) =d" §(t, t2) modeling. We can proceed further, however, by expanding
2 () = 2(¢, ). (2) thet; dependence in a basis. This leads to matrix forms of

the transfer function, to which existing model reduction codes

The hatted variables in (2) are bivariate (i.e., two-time) formgan be applied—a very desirable feature for implementation.
of the corresponding variables in (1). Frequency-domain basis functions, considered in Section II-A,
To obtain the output component linear i we perform a are natural for applications with relatively sinusoidal varia-
linearization around the solution of (2) whe(t;) = 0. Let  tjons, while time-domain ones (Section I1-B) are better suited

this solution bej*(¢1) (note that we can always selegt to  to systems with switching behavior and those that are not
be independent of,). Linearization aboug* yields the linear periodic.

MPDE
I(Ct))z(ty, t A(C(t)z(t, t A. Frequency-Domain Matrix Form
(C(t)x(te, t2)) I (C(t1)a(ty, t2))) 4 G(t)E(t, ) q y o .
dty dta Assume C(t;) and G(t;) to be periodic with angular
= bu(ts) frequencyw,. Define W (¢, s) to be the operator-inverse in
2ty to) = dTa(ty, ta);  2(t) = 3(t, t). 3) )

-1
In (3), the quantities:, Z, and » are the small-signal versions (¢, ) = <2 [+ sC(t1) + G(t1)> 4]
of §, 2, and z,, respectively;C(t;) = (3q(9)/#)|g+ ) and dty
G(t1) = (Of(9)/9)|g-,) are time-varying matrices. D

Note that the bi-variate outpétt, , t,) is linear in the input = i Wt )l + [sCh) + GEOIW(E, 5)
u(t2), but that the relationship is time-varying because of the =b. (9)
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Assume W (t1, s) also to be in periodic steady-state 4n, From (14), note that£(¢;) can be written in the Fourier
and expand’(t1), G(t1), andW (¢1, s) in Fourier series with expansion

coefficientsC;, G;, and W,;(s), respectively 0o
E(t))= Y Ei™h

Clt)= Y Gt ==
z:z—:oo Ei:["'70707 Y 707"'707"']T' (16)
~~
0 . ith position
G t — Gi Jiwoty . . . .
(01) i;m © Hence, we can rewrite (15) in a Fourier series
Wity s)= Y Wi(s)e™"m. (10) H(ty,s)= Y Hi(s)d™"
- i iy
Now define the following long vectors of Fourier coefficients Hi(s) =d" B [sCrp + Trp]™ Brp. (17)
to be Equation (17) implies that any linear periodic time-varying
- system can be decomposed into LTI systems followed by
Wrp(s) memoryless multiplications with?«°*. The quantitiesH;(s)
=[-, Whis), WL (s), Wi(s), Wl (s), Wi(s),--]* will be calledbaseband-referred transfer functions
Bpp = [--,0,0,87,0,0,-- ] (11) We proceed to re-write (17) for all values ofas a single

block-matrix equation. Define
By putting (10) into (9) and equating coefficients @fot: | it i »(s)
can be verified that the following block-matrix equation holds: T
:[ ) H72(3)7 H,l(S), HO(S)v Hl(s)v HQ(S)v : ] .

[sCrp + (Grp + QCrp)|Wrpn(s) = Brp (12) (18)
— —

denote this by Jrp Then

where Hrp(s) =D [sCrp + Trp) ' Brp

Cy C_y C_y--- d
Cep=|--C1. Cy C_i-- D= d . (29)
Oy O Gy - d

Equation (19) is a block matrix equation for a single-input

: : : multioutput transfer function. If the size of the LTV system
Gy G_1 G_g---

Grp = ' Ie. b a (3) isn, and N harmonics of the LTV system are considered
S 0 - in practice, thenBrp is a vector of sizeVn x 1, Cpp, and

Jrp are square matrices of sizén x Nn, D is a rectangular
matrix of sizeNn x N, and Hrp(s) is a vector of sizeV.

Gy Gy Go -

Jrp =Grp +Crp,
. B. Time-Domain Matrix Form
_aJ Consider (9) again
.y D
Q= oo or . (13 g, W, 9+ [5C () + GEIW (11, 5) = b

I . H(t, s) =d"W(ty, s) (20)

We collocate (20) over; € [0,7i] at N + 1 samples

tio = 0,% 1, -, t N, using a linear multistep formula

Now denote (say Backward Euler) to express the differential in terms of

samples. Denote by the long vectoVEr, and Brp the
E(ty) samples ofi¥ (¢, s) and b
=[--,1I —J2w0t1’ I _ontl’ I, 1 Jthl’ T J2‘~‘0t1’ R .

| G G G G ](14) Wrp(s) =W (t10, 5), Wt 8), o, Wt n, 9)]T

Brp =%, o7, 0%, - 1) (21)

From (12), (9), and (7), we obtain the following matrixye then obtain the following matrix form for the collocated
expression forH(t1, s) : equations:

H(ty, s) = d"E¥ (t1)[sCrp + jFD]_IEFD- (15) [sCrp + jTD]WTD(S) = Brp (22)
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where large system explicitly and building the reduced order model
from these moments. The method is outlined in Section IlI-A.

Jrp =Grp + ACrD, In Section IlI-B, we present another procedure called TVP-

[G(0) 1 Krylov (TVP-K), which uses Krylov-subspace methods to
Grp = G(t1,1) replace the large system directly with a smaller one, while
. achieving moment-matching implicitly. TVP-K is analogous
i Gty n) to LTI model-reduction techniques which use the Lanczos
1 and Arnoldi processes (e.g., PVL and MPVL [11], [12],
EI operator-Lanczos methods [4], [5], PRIMA [26], and other
1 1 Krylov-subspace-based techniques [9], [22]). As in the LTI
A —gf gf methods, TVP based on Krylov subspaces has significant ac-

curacy advantages over explicit moment matching. Operator-
. or matrix-based techniques can be applied to both explicit and
1 1 Krylov-based TVP; Section IlI-A describes an operator-based

SN 4 SN 1 procedure and Section IlI-B a matrix-based one.

Oy =11, —t1,i—1
rC(0) T A. TVP-E: TVP Using Explicit Moment Matching

Crp = Ct,1) ' 23) Any of the forms (7), (19), and (26) can be used for explicit

- moment matching. Here, we illustrate an operator procedure
L C(t: n) using (7). RewriteH (¢, s) from (7) as

and we have assumed zero initial conditioi§0, s) = 0. H(ty, s) = d"(I]| + sL) " [r(#1)]
If the system is periodic, then periodic boundary conditions

can be applied; the only change in (22) and (23) isMothe \where I]] denotes the identity operator
differentiation matrix, which becomes

1 1 D -t
— S Lvl| = — G(t C(t
o1 o1 1= (g 0+6w)
1 1 D -1
I A () = | =
N o i) = 0+ 6w) b @
'1' 1 H(ty, s) in (27) can be expanded as
— I I
N on H(ty, s) =d¥ (r(t1) — sLr(t)] + s*LIL[r(t1]] +-- )
Define i 4
. . = Z m;(t)s"
HTD(S): [H(tl,Ov 3)7 H(tl,lv 3)7 Ty H(tlyl\‘rv 3)] . =0
(25)
Then where
hrp(s) = DT [sCrp + Jrpl  Brp (26) mi(t) = (=1)" dT{/[L[' o Llr(t)] -] (28)
with D as in (19). Equation (26) is in the same form as éapplications of L[]

(19); both can be used directly for reduced-order modelin

as discussed in the next section. gz’i(tl) in (28) are thetime-varying moment®f H (¢, s).

Note that these moments can be calculated explicitly from
their definition in (28), by repeated applications fgff. From
its definition in (27), applyingL[] corresponds to solving a
The LTV transfer function (7), (19), and (26) can beTV differential equation. If the time-varying system is in
expensive to evaluate, since the dimension of the full systquariodic steady state, as is often the case in applicatibfjs,
can be large. In this section, methods are presented &an be applied numerically by solving the equations that arise
approximating H(¢1, s) using quantities of much smallerin the inner loop of harmonic balance or shooting methods.
dimension. Iterative methods (e.g., [15], [24], [29], [38]) enable large
The underlying principle is that of Padapproximation, i.e., systems of these equations to be solved in linear time, hence
for any of the forms of the LTV transfer function, to obtain d@he time-varying moments can be calculated easily.
smaller form of sizey whose first several moments match those Once the moments:;(¢;) have been computed, can be
of the original large system. This can be achieved in two bro&ided at a given value, and any existing LTI model reduction
ways, with correspondences in existing LTI model-reducticechnique using explicit moments (e.g., AWE) can be 4un
methods. TVP-explicit (TVP-E), roughly analogous to AWEteps to produce ath-order reduced model. This step can be
[6], [28] for LTI systems, involves calculating moments of theepeated for allt; values of interest, to produce an overall

IIl. PADE APPROXIMATION OF THELTV T RANSFERFUNCTION
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reduced-order model foH (¢;, s) in the form @ @
input Tq output

q—1
a;(ty)s . Rq La(t)
Hi(ty, s) = TO = Z . _T_Z;tl()tl) (29) Fig. 1. Floquet from of LPTV system.
D bi(t)st =0 Z
i=0 2) Block Arnoldi: The block Arnoldi algorithm, described

. . ) in, e.g., [26], [37], uses4d andR to produce matrice¥, (of
The simple procedure outlined above has two disadvantages. (A) o . )
L : . ... Size Nn x g) and 1, (size ¢ x ¢). V, is orthogonal (i.e.,
The first is that model reduction methods using explicit mo-" () 4
ment matching suffer from numerical ill-conditioning, makings Y« = o), and T, block-Hessenberg. It can be shown
them of limited value forg more than ten or so [11]. The hat
second is that the form (29_) has. time-varying poles. It can I_'I’(EA)(S) = LTV, [I g — ST(I(A)]—IV(ITR (32)
be shown (see the Appendix) using Floquet theory that the
transfer functionH(t,, s) has a potentially infinite number approximatesH (s) [2].
of polesthat are independent of; (these poles are simply
the Floguet eigenvalues shifted by multiples of the syste@ The Reduced Model
frequency), together with residues that do, in fact, vary with )
¢,. It is desirable to obtain a reduced-order model with similar BOth (31) and (32), in the form
properties. In fac_t, this r_eqwrement can be met by _obtgmmg a ﬁq(s) _ LqT[_,qxq _ qu]*qu (33)
reduced system in the time-domain form of (3), which is very
desirable for system-level mode_zling ap_plications._The Kry|0\étpproximateﬁ(s). In typical applications, adequate approx-
subspace procedures for TVP in Section IlI-B eliminate bofhations are obtained with fairly smagl, ranging from 2 to
problems. 30.
Corresponding to (33), a time-domain system of size
B. TVP-K: TVP Using Krylov Subspace Methods can be obtained easily. We illustrate the procedure for the

In this section, we describe the application of bIock-KryI0\ffequ‘?my'do"naIn mfatnx form qf .Sectpn ”.'A; the tlm_e-
domain form of Section II-B is similar, differing simply in

methods [1], [12], [16], [17], [26], [37] to any multi-output . . . .
matrix form of the LTV transfer function. Krylov—subspacethe choice of basis functions below. Define

methods provide a numerically stable means of obtaining a - = Jiwot

reduced-order model; in addition, the reduced transfer func- Ly(ty) = Z Lg,ae™ (34)

tions are in the same form ad(¢;, s) in (7), with similar T

properties like a possibly infinite numbergfinvariant poles. whereL, ; is theith row of L,. The approximate LTV transfer
Both (19) and (26) are in the form function H4(t, s) is given by

H(s)=D"[sC+ T "B = LT[l - sA"'R H(t1, 5) = Ly(t1)" [Tyxq — sTy) " Ry- (35)

Equation (35) is the time-varying transfer function of the

where following gth-order reduced system of time-domain equations

£=DR=J7BandA=-77C GO %o run ) =Loan  (36)

Equation (30) can be used directly for reduced-order moghere 7 (¢) is a vector of size;, much smaller than that of
eling by block-Krylov methods. We sketch the application ahe original system (3).

two popular such methods, Lanczos and Arnoldi.

1) Block Lanczos:Running the block-Lanczos algorithmp jseful Features of TVP-K-Generated Macromodels
[1], [12], [16], [17] with the quantitiesC, .4, and’R produces

the matrices and vectorE@L) (of size g x N), RgL) (size
qx 1), anqu(L) (sizeg x q). q is a small integer related to the
number of iterations the algorithm is run. Define gtk-order
approximantﬁé")(s) by

The TVP-K procedure in Section IlI-B has a number of
notable properties, itemized below.

1) Note that (36) represents a lingame-invariantsystem,
followed by a memoryless multiplication that appears
only in the output equation. The reduced system is illus-
trated in Fig. 1. This feature makes the reduced model
easy to incorporate as AHDL elements in existing tools,
since no time-varying matrices are involved. Only LTI

Then ﬁéL)(s) ~ ﬁ(s), in the sense that a certain number of elements (resistors, capacitors, ideal controlled sources)

matrix-moments of the two quantities are identical—see [16]  and ideal multiplier elements are required to implement

for a precise description of the approximation. the macromodel.

. T _
H{"(s) = L [Iq — TSR, (31)
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2) In practice, only the baseband-referred transfer funEurthermore, we note that if(t) = cos(wt), the ith Volterra
tions corresponding to harmonics of interest can lerm generates components at ttle and lower harmonics.
represented in (18), thereby reducing the number Bbr example, thei = 3 term of (39) isc; cos®(wt) =
columns ofD. Similarly, any postprocessing for averag{c; /4)(3 cos(wt)-+cos(3wt)), consisting of both first and third
ing/Fourier analysis can be directly incorporated in (25harmonics. Thus, higher Volterra terms are useful not only for
thereby reducing the number of time-domain outputs.obtaining harmonic components, but also for modeling gain

3) The form (35) can be shown to imply thﬁq(tl, s) compression of the linear transfer function.
has a possibly infinite number of time-invariant poles, We outline the procedure for macromodeling nonlinearities
similar to H(¢;, s). Further, the eigenvalues @f, are by first considering time-invariant systems.
the Floquet exponents of the reduced-order model, which
approximate those of the original LTV system. The polea. Reducing Time-Invariant Nonlinear Systems
and residues of the reduced-order modeldgfs) can
be easily calculated from the eigenvaluesif

4) Krylov-subspace algorithms such as Lanczos a
Arnoldi require only matrix-vector products witld 0 g -
and linear system solutions witl/. Though both ot la((@)] + Fy(8)) = b7 + buf?). (40)

these matrices can be large, dense or difficult st the dc solution of (40) (withi(#) = 0) be y*. Then, we

factor, epr0|t!ng structure and using iterative lineag, represent the perturbationg) due to nonzerai(t) as
algebra techniques can make these computations scale

almost linearly with problem size [15], [24], [29], [35], 9 * " * DY) = b+ biult 41
[38]. When these fast techniques are employed, the 0t laly™ + 2@+ " + () + bu(?). (41)
computation required by the TVP algorithm growseypanding the nonlinear functiong-) and f(-) in Taylor
approximately linearly in circuit size and number ofgries we obtain

harmonics or time-points, making it usable for large '

We start by specializing (1) to the case of small perturbations
rg;\(g)out a dc operating point

problems. o o _ = e + Criz 4 Cox®@ 4 Cz®@ 4 -] + f(y) + Gre
5) The numerical ill-conditioning problem with explicit ¢ ’
moment matching in Section Ill-A is eliminated using +G2a@ + Gaz@ + - ="+ bi(t).  (42)

Krylov methods, hence TVP can be run up to larg .
) @ .
values ofq if necessary. ﬁerea: represents the vector direct product? z. C; and

6) A system withp, inputs andp, outputs can be handledGi represent theith derivative matrices ofy(-) and f(.),
casily, by stack;ng the extra (())utputs intb (resulting in respectively. From these definitions, if the size of the original

D of sizenN x p, N), and incorporating the inputs intoSYStem (40) is, we haver® € R andC;, G; € R™" .
B (to form a rectangular matrix of sizeN x p;). To obtain the Voltiarra formulation, we use a perturbational
method. We expresg(t) ascu(t), wheree is a small scalar
parameter. Since DAEs driven by smooth inputs have smooth
solutions,z(¢) in (41) can be expressed in a Taylor series in
In the section, we present an extension of TVP for modeling ) 3
signal path nonlinearities described by Volterra series. Volterra x(t) = ex1(t) + e”xa(t) + e%x3(t) + - - - (43)

series [25], [36], [40] are a generalization of Taylor series 1§ hqsitting (43) in (42), and collecting the coefficients of
systems with memory. Given a nonlinear system with 'npwowers ofe, the following equations for;, =», x3, etc., are

x(t) and outputy(t), y(t) can be represented in a Volterrg i iooyg. Y
series expansion as '

IV. REDUCED-ORDER MODELING OF NONLINEARITIES

[=S) % [Cll'l] + Gz = bu(t) (E term$ (44)
y(®) =) u) @7 o
i=0 5 [Crzo] + Gias = ~ % |:CQ.’L'1@>:| — Goz? (€2 terms
where (45)
9 [Crzs] + @ ——3[0 Otz @2 +22@ )}
yi(t):/';'/hi(t_'rl,"',t_Ti)-T(Tl)"'-T(Ti)dTl"'dTi~ ot 143 143 = ot 37 2\%1 @ X2 T X2 O X1
(38) — G3x1® — Go(z1 ®z2+ 22 @ 21) (53 terms. (46)
Equation (37) reduces to a Taylor seriesijf(ty, -+, tn) = From (44)—(46), we observe that; is the solution of the
nb(ty, -+, ta), i.€., ann-dimensional delta function linearized systemy, is also a solution of the same linearized

system but with different inputs (“distortion inputs”), which

B = i 39 depend onzy; and similarly, 3 results from solving the
y(t) = z% cia'(t). (39) inearized system with distortion inputs derived from and
= 2.
We observe that thé = 0 term is the constant term, = Before investigating how to represent (45) and (46) by

1 the linear term,i = 2 the quadratic term, and so on.smaller systems, it is instructive to examine the mechanism
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by which a Krylov-subspace-based technique reduces the
linearized system of (44) to a smaller one. Rewriting (44),,.., —pm]
first as G 1(9/0t)[Crax1] + x1 = Gylbu(t), we obtain the
Laplace-domain transfer function betweeft) andz(¢) to be

reduced linear system

size g1

Xi(s) = [sGyICL+I 7 G U (s). (47)
A r reduced lincar system output y(1)

size g3
A Krylov-subspace method simply generates a small set of]
basis vectors onto which the input and state spaces arg
projected [18], [19], resulting in the reduced model. We
illustrate this projection concept using the Arnoldi metRod.
Run for ¢ steps, Arnoldi generates a rectangular orthonormal
matrix V, € IR"*?, such thatdV, = V, T}, whereT, € R?*¢

is a small square Hessenberg matrix. The sidmear system

reduced linear system

size g3

is now approximated as a sizeene a3
Fig. 2. Block structure of reduced system with nonlinearities.
X1,4(8) = (sTy + I)_ITIIU(S) (48) 9 Y
with Note thatycl@?q1 € R% andG,V2, O,V@ ¢ R, in other
rg =VZr (49) Words, the input to (55) is of sizgf.

For Krylov-based reduction, (55) can be reframed in block-

and .
matrix terms as

X1(s) =V, X1 4(s). (50)

. . . 15] Cl I o Gl 0 T2 | __ GQ‘/(I? @
We observe that the reduction process consists simply of: 59([ 0 0} |:-T26:|>+|: 0 I} [me} N_{CQV@}%““
projectingthe sizen input subspace onto a sizey subspace «@ (56)
(50); 2) using this as input to a sizelinear system (48) to
obtain a sizey state-spaceX; ,; and finally 3) representing
(i.e.,embeddiny X, , in the original sizen state—space (50).
Equations (48)—(50) can be written in time-domain form a

Equation (56) is a LTI system witl inputs; it can, therefore,
be reduced to a smaller system, using Arnoldi with multiple
Sstarting vectors. Let the reduced sizeggeand the correspond-

7] ing subspace b&,; defineV,, = [I, 0]V,,, and let?,,
at (L1, (O] + 21,4 (8) = rqu(t) D pe the permutatiqcin matrix (tlﬁat Eeorde]r;;b 2 to prgéuqée
with 21 ® 29, for any vectorsz; € R™ andz, € IR%. Similar to
(56), (46) can be expressed as
Tq :VqTT (52)
sle llm])+10 Tl
21 () ~ Vyzy o (F). (53) % %

~ _ |:G3V(1§3> (GQ((qu ® Vql)qu,(Il + V(Il ® qu)):|

An approximation to any output;(t) = d¥z1(¢t) of the T GVO (Co((Ve, @ Ve ) Prgn + Vi @ Vi)

original system can thus be obtained directly from the reduced

state—space ag (t) ~ [T'xq ,(t), wherel® = d*'V. : [
We can now apply the concept of projection and embedding

to the nonlinear reduction problem. Observe that an essenfigf,ation (57) is a LTI system with? + q.¢2 inputs. This

difficulty in reducing (45) is that, potentially, the direct produckystem can, in turn, be reduced to a smaller one (of gixe

of the entire size: state space; with itself is used as input. sing the Arnoldi method. The overall structure of the reduced
We can, however, reduce the dimensionality of this input t§§/stem is shown in Fig. 2.

representingz;, as the embedding in (53) from @-sized "\ye note that the effectiveness of size reduction is limited
subspace. We then have by the rapidly increasing sizes of the distortion input sources
to the higher order \olterra systems. The actual input sizes

1@z ~(V, x RV, x . . - '

1@m 2 (Van0) @ (Vadsg) however, are determined by the numerical rank of the input

1y, } . (57)

T1,q @ T2,q0

=V @ Ve )(@1,q @ 21,00)- (54 coefficient matrices, e.g.,
Using (54), (45) becomes
ing (54), (45) [GQV(I@}
15] g @
2 [Craal + Gy m = [(CoV2)P, | = (G2V )P, - Ve,

(55) for (56). Owing to the fact that higher order derivatives of

2We thank Alper Demir for pointing out the advantages of Arnoldi overp'CaI circuit functions arg typlqally very §parse, this rank
Lanczos in this context. can be lower than the nominal size of the input space.
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B. Reducing Time-Varying Nonlinear Systems

The procedure outlined in Section IV-A can be extended to

nonlinear terms of a time-varying system. We start with

a

¢ L]+ f(u(®)) = 07 (t) + bu(t) (58)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 10, OCTOBER 1999

13] 15] . -
<8_t1 + 8—t2> [C1(t1)Es] + G1(t1)E3

_ (oo
T\ dt; Bty
. [03(t1)§71® +Co(t1) (81 @+ 22 ® -f?l):|
— G3(t1)29 — Go(t,) (B @ &g + 2 @ £1). (65)

wherew(t) is a small input perturbation. To analyze perturba-

tions conveniently, we now switch to the MPDE form of th%quation (63) can be expressed in the operator form already

differential equation (2)
a a ) . " N
=+ 5 Jal(ty, £2)) + f(a(t, t2)) = b7 (1) + bu(ta).
gty Ot
(59)
Let the unperturbed solution of (59) (withi(t2) = 0) be

y*(t1). Then, we can represent the perturbatiofys , t2) due
to nonzerodi(t;) as

<ait1 + %)q(y*(tl) + &t 2)) + f(U" (1) + 82y, £2))
=b*(t1) +ba(ts).  (60)

Expanding the nonlinear functiong-) and f(-) in Taylor
series, we obtain

<i + i) [ay" (t) + Ca(t1)E + Ca(t1)2®

oty Oty
+C3(t)E9 + -] + fy (t)) + Gi(tr)d
+ G2(t1)3® + G3(t1)D + - - - = b*(t1) + bu(ta).

(61)

Here, C;(¢t1) and G;(t1) represent the time-varyingth

encountered before in (7)

Kt ) = (5 [+ sC(t) + G(tn)_ (). (66)

As discussed in Section IlI-B, (66) can be reduced using the

Arnoldi method to the form

O Ty, b)) + 1 g(t2) = Ryult)

67
ot (67)

with
R,=VIR (68)

and
.’i’l(tl, tg) ~ ‘/q(tl)-TLq(tQ)' (69)

R,, R, and V, are as defined in Section IlI-BY,(¢,) is
defined as

Vo) = D Vgier™o

=00

(70)

with V, ; being theith block-row of V;, corresponding to the
¢th output harmonic or time point.

derivative matrices ofy(-) and f(-), respectively, evaluated A in the time-invariant case, we approximaﬁ@ as

abouty* (t1). Next, we express(tz) aseu(tz), with £ a small

scalar parameter. The solutidiit;, ¢-) can now be expressed

21 @21 & (Vg (h)71,4,) @ (Vi ()71, 1)

in a Taylor series ire =V (t) @V, (1) (@1, ¢, @ x1,4.).  (71)
Now, (64) becomes
B(t1, to) = ed1(t1, t2) + 2 Ba(ty, t2) + °2a(ty, t2) + - -. W ( 8) 9
. . . _(62) <— + —> [C1(t1)22] + G1(t1)22
Substituting (62) in (61), and collecting the coefficients of at, Ot
powers ofe, the following equations foii, £», 23, etc., are _ (0 9 ® ®
obtained: T\t + Ot» [(CQ(tl)Vql ()21, (t2)}
N P s — (Ga(t)V2(t1)) 2Py, (t2). (72)
<8_t1 + 8_t2>[ 1(t)21] + Grlt)en = bultz) (63) Equation (72) can now be expressed in block-matrix form as
o 9 ) ) a  aN([Cit) —I[& Gi(t) 0
— 4+ — }J[C (¢t Gt v .Y 11 2 1(t1
<8t1 +8t2>[ 1(t1)22] + G1(t1)%2 <8t+8t2><{ 0 0} [@J)-F[ 0 I}
0,9 ; ; i Ga(t)V (1)
= o + = )| Co(t1)E®] — Go(t)2P (64 S Fr | o o2V ) @
(57 + 50, ) [:)32] - Gatra® 09 ] [eE e, e
i i Cl(tl) -1 .’i’g + Gl(tl) 0 .’i’g
8t1 8t2 0 0 5536 0 1 5536
N [Gz(tl)%@(tl) (Gt )((Ve, (1) @ Vi, (1) Fyo, g + Vau (B) @V, (tl)))} . { 22, (t2) } (74)
C3(t)VR(t)  (Coalt) (Ve (t1) @ Vi (1)) Pasy + Ve (1) @ Vi (1)) | 21,44 (B2) @ 2,4, (£2)
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/\/\/\/ output
input

G, G
cos(wl t)

Fig. 3. Low-pass filter-mixer—two bandpass filters.

Equation (73) has;? inputs; it can therefore be reduced to Equation (76) is structurally similar to (21) in [14], with

a smaller system using the techniques of Section IlI-B feeplaced by the rectangular matfX It is straightforward to
multiple inputs. Let the reduced size lgg and the corre- apply the same reformulation steps as for LTI noise [14] to
sponding Arnoldi subspace L’félz; defineV,, = [Inn O]f/qz. bring (76) to the form of (30), i.e.,

Following a procedure similar to that for obtaining (73), (65) . . o

can also be expressed in matrix form as shown in (74). F(s) = D¥[sC + J]7'D. (77)
Equation (74), shown at the bottom of the previous page, is ) )

an LTV system withg? + g1¢2 inputs, which can, in turn, be TVP can now be applied to (77) to obtain a much smaller

reduced to a smaller one (of sizg) using the techniques of S€t of equations in the form of (36), which can be used to
Section 11I-B. compute the noise contributions of the macromodeled system.

V. MACROMODELING CYCLOSTATIONARY NOISE VI. APPLICATIONS OF TVP

When a system is macromodeled, it is also desirable toln this section, we present four applications of TVP. The
replace all its noise contributions by a few equivalent noidest application is to a small idealized example, for the
sources at the inputs or outpdtdsually, the power spec- purpose of verifying TVP against hand calculations. The
tra of the equivalent sources have complicated frequengecond application is to a switched capacitor integrator block.
dependence, unlike those of the relatively simple white afthe third is to a RF mixer subsystem from the Lucent W2030
flicker noise models typically used for internal noise geneRFIC chip. The final application is to a dc/dc power conversion
ators. At the macromodel level, representing this frequensystem.
dependence perfectly requires computations with the original
system, thus defeating the purpose of macromodeling. IN- A Hand-Calculable Example

stead, it is preferable to find approximate, but computationally _. . .- ,
; ; : Fig. 3 depicts an upconverter, consisting of a low-pass filter,
inexpensive, forms of this frequency dependence. Such_a

capability has already been obtained for LTI systems Wi&l;llcéesal rzl:(eerér?gsetr\]’v?obzgpafs Igt()ergta%esjhf 6cokr?2ponent
stationary noise [13], [14]. In this section, we sketch theo oe> W L= C ’

. . L =5009Q, Cy =Cy =C3=10nF, andL, = L3 = 25.35
extension to cyclostationary noise in LTV systems, usefgl® —° vl 2= 3 P A2 = 3
Y Y Y NnH. These values result in a low-pass filter with a pole at 100

for capturing phenomena such as frequency-transiation ak z, and bandpass filters with a center frequency of 10 MHz
mixing of noise. The extension is achieved by applying the "’

noise reformulation technique in [13], [14] to a block-matri)?rnd bandwidths of about 10 and 30 kHz, respectively. The LO
;?]I:tﬁ]r;;o;;)élc)ll?:éat%(\)/r;ary noise [35] to obtain the form (30), With reference to (17), the baseband-referred transfer func-
We first recall the cyclostationary noise block-matrix relat—Ions of _mterest n this case at, (s) andH_l(.S)’ since they
tion [35] appear in the desired up- and down-conversion paths. It can be
shown thatH_;(s) = H}(—s); hence, it suffices to consider
Spr(s) = [TFD 4 sCpp] L ASuu(s)AT[Jrp + sCpp]~*  only Hi(s) here. The expression fal(s) can be derived
(75) easily using intuitive frequency-translation concepts; it is

equency for the mixer was chosen to be 10 MHz.

where A is the incidence matrix of the systems internal noise (s + gwo) Lo

sourced, S, is a block matrix of HPSDs (harmonic power (s) = 0.5 1+ (54 gwo)?LaCy

spectral densities) from internal noise sources, 8pdis the 1+sC1 Ry Ryt (5 + gwo)Lo

block matrix of noise HPSDs within the system, including the ST (s + jwo)2 L2Cs
outputs. Analogous to (19) and without loss of generality, we (s 4 qwo) L3

can select the HPSDs at a single output by 1+ (5 + jwo)2L3Cs 78)
F(s)=DTS,.(s)D Rt (54 gwo)Ls

=D [Trp + Crp| L ASuu ()AL [Trp + sCrp]*D. 1+ (5 +gwo)?LsCs

(76) Equation (78) is plotted for positive and negative frequencies

3Input- and output-referred noise sources are used extensively in circILthlg' _4' Also plotted are the transfer functions obtained from
design. TVP with ¢ = 2 andg = 3. It can be seen that far = 2, TVP
“4Not to be confused withd in (30). produces a reasonable approximation, whereag for3, the
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+ marks: full system, hand—calculated
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+ marks: full system, hand—calculated
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Fig. 4. Simple circuit:H; (s) from TVP versus hand calculations. (ajve frequencies. (b}-ve frequencies.

match is perfect, even though the original system is of order

five.

The poles of the original system and those from TVP are

shown in Table I.

B. Switched Capacitor Integrator Block

Our second application of TVP is to a lossy switched-
capacitor integrator block. The circuit was designed in a .35-

TABLE |

-10°
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PoLEs (Hz) oF H;(s), ORIGINAL AND REDUCED SYSTEMS

Original system

TVP,g=2

TVP,g=3

-4.98e3 - j3.88e3
-1.59¢e4 - j3.90e3
-9.95e4
-5.72e4 - j2.00e7
-3.59e4 - j1.99e7

-4.96e3 - j3.91e3
-1.56e4 - j3.49e3

-4.98¢3 - j3.88e3
-1.59¢4 - j3.90e3
-9.95¢4
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. . . The poles and residues of the system were obtained by
eigendecomposition of thé&, matrices, and used to construct
expressions for the transfer function from the signal input to
the signal output envelope. Fagr = 3, this resulted in the
following analytical expression for the transfer function from
the input to the output envelope:

4 0.613 1.02¢ — 4

H Ho o—s(f) =

i 0,4=3(f) J2n f — (—1.1e6) t onf = (—1.68¢5)
3 9.81lc — 3

2rf —(—1.2¢9) (79)

From the fact that the poles have negative real parts, it is seen
that the system is stable. Further, we also observe that the
smallest pole (168 kHz) has a much smaller residue than the
08, : L L " L L L , one at 1.1 MHz. Such expressions can be useful to incorporate
«0® the precise characteristics of real circuit blocks into simple

Fig. 5. Steady-state output of a switched-capacitor integrator (with ze%)readSheet_type system design tools. NOte that. this is a LTl
input). macromodel that abstracts the underlying continuous filter

from the switching. If detail about the effects of switching is

CMOS process, and modeled using a Lucent MOS modigsired in the macromodel, all the timepoints along the clock
(ASIM3) specifically intended for high-accuracy analog sinfycle need to be incorporated as outputs to TVP.

ulations. Comprising more than 150 MOS devices, it includes

biasing, common mode feedback and slew-rate enhancementRF Buffer and Mixer Block

sections. : ) ) ) . A portion of the W2013 RFIC from Lucent Microelectron-
T_he clock S|gnal_to the switched-capacitor filter had a tm\%s, consisting of an I-channel buffer and mixer, was reduced
period of 78 ns (i.e., frequency= 12.8 MHz), but some . 1vp The circuit consisted of about = 360 nodes, and
sections of the circuit operated at twice that frequency, i.6a5 excited by a local oscillator at 178 MHz driving the mixer,
25.6 MHz. The steady-state waveform of the output node (fyie the RF input was fed into the I-channel buffer. The
the absence of signal input) was obtained using shooting &f)fle_yarying system was obtained around a steady state of the

is shown in Fig. 5. , L L circuit at the oscillator frequency; a total 8f = 21 harmonics
The output node did not have switching activity filtered OUlyere considered for the time-variation

Fig. 6 depicts a multi-time scale plot of the waveform at the Fig. 8 shows frequency plots o, (s), the upconversion

output node in the presence of a 10-kHz sinusoidal input. (Fﬁ’énsfer function. The points marked-" were obtained by
details on how to interpret multi-time plots of waveforms, Sefirect computation of (17), while the lines were computed
[31] and [34]. The signal envelope (riding on the switchinglsing the TVP-reduced models with = 2 and ¢ = 10,
variations) is obtained directly from the waveform along f"espectively. Even with = 2, a size reduction of two orders of
cross-section parallel to the signal time scale. By shifting ﬂ?ﬁagnitude, the reduced model provides a good match up to the
point of cross-section to along the clock time-scale, the signgh frequency. When the order of approximation is increased
envelope at different points of the clock waveform can be S€&P-ten, the reduced model is identical up to well beyond the
Note how the (sinusoidal) signal is transmitted in the regiqny frequency. Evaluating the reduced models was more than

between 60 gnd 78 ns on the clock time scale, but is cut Hlee orders of magnitude fastéan evaluating the transfer
(because switches are off) between about 0-20 and 40-60¢)Sction of the original system

For macromodeling, we chose to sample the output at 70 NSrhe poles of the reduced models f& (s), easily calcu-

on ﬂ:_" ﬁloﬁk time slc_alr-i), .e., in the r_md((jjle of tI;]e CIOdephasfgted on account of their small size, are shown in Table IL.
in which the signal is being transmitted. In other words, thenose are useful in design because they constitute excellent

transfer function bejng modeleq is that betweer_l the input ag proximations of the full system’s poles, which are difficult
the waveform obtained by taking a cross-section, parallel determine otherwise

the signal time scale, at 70 ns on the clock time scale in Fig. 6.

A time-domain version of TVP was applied to reduce
this transfer function. The macromodeling algorithm was rdd- PWM DC/DC Converter
up to order 25. Fig. 7 depicts the input-to-output transfer Our final application of TVP is to a boost-type dc/dc
functions from the full systemx marks), as well as from converter, featuring PWM feedback for output voltage stabi-
two macromodels of sizg = 3 (dashed line) andg = 25 lization. A simplified diagram of the circuit is shown in Fig. 9.
(solid line). As can be seen, even a tiny behavioral model ¥fhen the switch closes, the inductor current rises linearly
size 3 is sufficient to capture the response for input frequenciastil the switch opens, after which the current is diverted
up to almost the switching frequency, while the size 25 modtirough the diode into the load resistor. The peak current of
is accurate up to well beyond. the inductor is related to the amount of time the switch is

time
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0 8 clock time scale
signal time scale
Fig. 6. Multitime plot of switched-capacitor output.
10° ; . . , TABLE I
PoLES OF H (s) FOR THE |-CHANNEL BUFFERMIXER
TVP, g =2 ] TVP, ¢ =10
x — brute force calculation -5.3951e+06 -5.3951e+06
TVP: =25 -6.9196e+07 - j3.0085e+05 -9.4175e+06
-1.5588e+07 - j2.5296e+07
§ -1.5588e+07 + j2.5296e+07
= ~1
510 ] -6.2659e+08 - j1.6898e+06
©
£ : -1.0741e+09 - j2.2011e+09
Y -1.0856e+09 + j2.3771e+09
-7.5073e+07 - j1.4271e+04
! -5.0365e+07 + j1.8329e+02
TVP:q=3
-5.2000e+07 + j7.8679e+05
1072 1 1 1 1
10° 10* 10° 10° 107 10° . i _ N .
frequency using about 100 timepoints. TVP (using time-domain steady-

state matrices) was then run for ten steps. Fig. 10 shows
plots of the transfer-functionfrom the input source E to the
regulated voltage at node 3. Tlkemarks were obtained from
closed, i.e., the duty cycle of the switch control. This peake full system, while the dashed and solid lines are from
current determines the maximum output voltage, at node 3evaluations of the TVP-generated macromodels, as indicated.
The negative feedback loop operates by comparing t@bserve that the size-4 macromodel is adequate to capture the
output voltage at node 3 with a reference to obtain an errgystem’s behavior up to the switching frequency. From the
voltage, which is used to control the duty cycle of the contrglliots, we note that for low frequencies, the ripple rejection of
to the switch. If the output voltage is lower than the referencthe system is of the same order as the loop gain. The rejection,
the duty cycle is increased, and vice versa. however, deteriorates significantly as the frequency rises; in
The nominal value of the input power source E was set &&ct, a smallgain is seen at about 80 Hz.
1 V, while the reference voltage for the output was set to 1.4 V. The transfer function corresponding to the= 4 macro-
The switching rate was 100 kHz. The resistance—capacitarisedel (using poles and residues obtained by eigendecompo-
(RO pole formed at the load was at about 20 Hz.

Initially, the loop gain including the PCM _unit W?‘S set tO. 5This is theOth-harmonic transfer function, i.e., the average over the clock
ten. The steady state of the system was obtained with shootiing scale.

Fig. 7. Frequency response of a switched-capacitor filter.
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Fig. 8. I-channel mixerH;(s): reduced versus full system.
sition) is
—0.147+1.14
HO, q=4(f) == =
j2nf — (—24.66 1+ 38.365)
0.0366

j2rf — (—250.74)

Note that the real parts of the poles are negative, indicating Hg ,—4(f)

a stable system.

To improve the supply rejection of the converter, the loop
gain was increased to 1000, the steady-state recomputed using

10* 10°

frequency

(b)

shooting, and TVP macromodels generated again. The new
transfer plots are shown in Fig. 11. Note that, as expected,
the rejection at dc has improved to a factor of about 1000.
However, the TVP-generated analytic transfer function (for

+small term (80) ¢ = 4) is now

_ —0.0124 £ 0.0455j
-~ j2rf — (4+80.32 + 773.45)
0.0239
g2nf — (—2854.9)

+ small term (81)
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1M N 3
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L LR
Tt %

PWM ckt

—— Vref

Fig. 9. A dc/dc switching power converter with PWM feedback.

unstable periodic solutions, because they solve boundary-value
problems rather than initial-value (“transient”) problems.

VII. CONCLUSION

We have presented the TVP algorithm for reducing
large LTV systems to much smaller ones with
similar  input—output  transfer  characteristics.  The
method is useful for automatic generation of accurate
macromodels from SPICE-level descriptions, especially
of communication system blocks. TVP has applications
in  system-level verification, producing  analytical
expressions for transfer functions, and intellectual property
protection. We have illustrated TVP with several examples
and obtained size reductions and computational speedups
of orders of magnitude without loss of accuracy. We have
also described extensions of TVP to incorporate signal path

”" \\,Q TVP: g=3 nonlinearities and for cyclostationary noise macromodeling.
107 o
38 x — brute force computation ) N APPENDIX
-:% 10 \\ TVP: =4 FLOQUET PARAMETERS AND LPTV TRANSFER FUNCTIONS
[
£

10 10 10* 10
frequency

Fig. 10. A dc/dc converter: transfer function for loop-gain 10.

10

It is well known that any LPTV system can be reduced to
an LTI system and memoryless time-varying transformations.
This result from Floquet theory (e.g., [10], [20]) implies that
any LPTV system has modes associated with it, the so-
called Floquet parameters, corresponding to the eigenvalues
of the underlying LTI system. In this section, we clarify the
relationship between the Floquet parameters and the time-
varying transfer function of the LPTV system.

We start from the following ordinary differential equation
description of a linear periodic time-varying sysfem

0 d
10 N p7 z(t) =G()x(t) + bu(t) (82)
I’\ X
#(t) =d () (83)
10° g N .
_',/’ e TVP:g=3 where G(¢) is periodic with periodZ;. Floguet theory [10],
- [20] states that there exists a nonsingularperiodic matrix
%10“‘ X  brute force computation N P(t) and a constant diagonal matri®, such that (82) is
£ b . equivalent to
& s
B | / () = P(t)  bu(?)
d .
SRS 7 Y(8) = Dy(t) +a(t)
107® ) k
. x(t) = P(t)y(t) (84)
TVP: g=8
" . . . Hence, we obtain a system equivalent to (82) and (83)
10° 10° 10* 10° 10° d
frequency % y(t) =Dy(t) + P(t)_lbu(t)
Fig. 11. A dc/dc converter: transfer function for loop-gain 1000. ”

Note that the complex pole pair now hagasitivereal part,

(1)

2(t) = d¥ P(t) y(t).
I (t)

(85)

showing that the system is in fact unstable. The instability

is generated by a combination of excessive phase shift drduation (85) can be recognized to be an LTI system with
gain in the PWM feedback look. Using TVP-generated macrée inputs and outputs multiplied by the periodic time-varying
models, numerical values of such unstable poles are ea§l§@ntitiesr(¢) andi”(¢). SinceD is diagonal, the equations
obtained. Note that steady-state methods like shooting anelThe general case of LPTV DAEs can be addressed similarly using Floguet
harmonic balance, on which TVP relies, are indeed able to fif@ory for DAEs [8].
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are decoupled into modes. The entriedbére the Floquet pa- [6]
rameters. Following a procedure similar to that in Section III,7]
the time-varying transfer function for (85) can be shown to bé

-1
H(tw o) =150 (4 +s1-D) ) (66) g

Equation (86) can be solved explicitly, becau3es diagonal
and time-invariant. The solution witl’ -periodic boundary
conditions can be shown to be

[10]
[11]

oo

H(t;, s)= Y > LE ils+ jwok — D] Ry

m=—o0 k=—occ
~

[12]

(23]

Hon(s) [14]

. ejrnwgtl

(87)

15
whereL; and R; are the Fourier coefficients éft) and(t), 1]

respectively. Let the diagonal elements Bf be p;. Then
H,.(s) in (87) can be written as

Hu(9)= D, 2

k=—o0 =1

[16]

<L(m—k),v‘,Rk,i>
5+ jwok — p;

where L, _1),; and R;, ; are theith elements ofL,,,, and
Ry, respectively.

Equation (88) shows that for each, H,,(s) can have
an infinite number of poles, which are simply the Floquggdl
parameters shifted by multiples g&o. Moreover, it is clear o4
that these poles are not time-varying. When (88) is put into
(87), it is also evident that the residué@,,,_k%ikaiejm“Otl
of H(t;, s) are, in fact, time varying.

88) [17]

(18]

[19]

[22]

23
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