
Automated Oscillator Macromodelling Techniques for 
Capturing Amplitude Variations and Injection Locking 

Xiaolue Lai and Jaijeet Roychowdhury 
Depamnent of Electrical and Computer Engineering 

University of Minnesota 
Email: [laixl, jr}@ece.umn.edu 

Abshoet- We present B method for extneting comprehensive ampli- 
tude and phase macromodels of oseillatm fmm their circuit descriptions. 
The macromodels are based on combining B scalar, nonlinear phase 
equation with a small linear timevarying system lo  capture slowly- 
dying amplitude variations. The comprehensive macromodels are able 
to c o m t l y  prodiet oscillator rerponse in the presence of interference at 
far lower eomputational mst than that of full SPICE-level simulation. 
We also present an efficient numerical method fer capturing injection 
locking in oscillators, thereby improving on the classic technique of Adler 
[I] in terms of accuracy and applicability to any kind of oscillator. We 
demonstrate the proposed techniques on LC and ling oscillators, mm- 
paring results from lhe macromadeb against full SPICE-like simulation. 
Numerical experiments demomtrste speedups of orders of magnitude. 
while relaining excellent accuracy. 

1. INTRODUCTION 
Oscillators are critical components of electronic and optical sys- 

tems. They are often used, for example, for frequency-translation of 
information signals in communication systems. Phase-locked loops 
(PLLs), widely used in both digital and analog circuits for clock 
generation and recovery, frequency synthesis, etc., feature voltage- 
controlled oscillators as key components. The design of oscillators 
and oscillator-based systems is an important pan of overall system 
design; however, simulating oscillators presents unique challenges 
because of their fundamental propeny of neutral phase stability, 
often accompanied (especially in high-Q oscillators) with very slow 
amplitude responses that border on instability. 

Traditional circuit simulators such as SPICE [ I l l  consume signif- 
icant computer time to simulate the transient behavior of oscillators. 
This is especially so for jitter simulation, since very small time-steps 
are required, and for many simulation cycles. As a result, specialized 
techniques based on using macromodels (e.g., 121, [31, [71. [91. 1101, 
[12]-[161) have been developed for the simulation of oscillator-based 
systems. However, such approaches suffer from serious qualitative 
limitations. Most involve simple phase-integrating elements that do 
not capture amplitude variations. which can be imponant for second- 
order effects. An exception is the recent work of Vanassche et al [151, 
but even this involves linear phase integration, which (as we show in 
this paper) is qualitatively inadequate for predicting the important and 
fascinating phenomenon of injection locking. Moreover, Vanassche’s 
method, developed using perturbation analysis of harmonic (LC) 
oscillators, is inapplicable to other topologies such as ring and 
relaxation oscillators which are widely used in digital systems, and 
increasingly. in high-performance mixed-signal systems as well. 

In this paper, we present a method for constructing comprehensive 
oscillator macromodels, including both amplitude and phase charac- 
teristics, for any kind of oscillator regardless of operating mechanism. 
Our method, which is related to a rigorous nonlinear theory for os- 
cillator phase noise [SI, consists of an algorithm to extract amplitude 
and phase responses from an oscillator’s circuit equations provided 
at, e . ~ . ,  the SPICE level. The macromodel oroduced is a combination 

We provide comparisons of macromodels generated for LC and 
ring oscillators vs the, original SPICE-level circuits, under differ- 
ent perturbation amplitudes and frequencies. Our numerical results 
demonstrate that the macromodels are able to reproduce the wave- 
forms of SPICE-like simulation when the perturbation amplitude is 
under about 10% of the oscillator’s load amplitude (this is considered 
large in most practical applications). Even with very small oscillators, 
we obtain speedups in ,the range of 1-2 orders of magnitude; much 
greater speedups are expected with larger circuits and more complex 
device models. 

Further. we demonstrate the suitability of the nonlinear macro- 
model for predicting injection locking. Injection locking is a nonlinear 
dynamical phenomenon peculiar to oscillators, in which an oscil- 
lator’s natural frequency changes to match that of a small injected 
perturbation. The phenomenon is universal to oscillators (manifesting 
itself, for example, as the synchronized Bashing of fireflies. the locked 
swinging of grandfather clocks located close to each other, err.) 
and has been increasingly used in recent years in novel, high-speed, 
oscillator designs. 

Verifying the presence or absence of injection locking can be 
extremely difficult using SPICE-like simulations, especially for small 
injections at frequencies close to the oscillator’s natural frequency 
(i.e., the typical case). Existing approaches towards understanding and 
predicting injection locking are all directly based on Adler’s classic 
1946 paper [I], which provides a simplified quantitive explanation of 
the phenomenon for simple harmonic oscillators, leading to formulae 
for their lock range. Adler’s appmach is not general, being limited 
to LC harmonic oscillators and relying on analytical simplifications. 
Indeed. it requires the Q factor of the oscillator, therefore cannot be 
applied to, e.g., ring oscillators, for which Q factors are not defined. 
In this paper, we apply the nonlinear macromodels mentioned above 
to develop an efficient numerical method for predicting injection 
locking. In addition to being generally applicable to all oscillators, 
our technique improves significantly on Adler’s method, in terms of 
accuracy, even for LC oscillators. 

The remainder of the paper is organized as follows. In Section 11, 
we review nonlinear perturbation analysis of oscillators and the 
nonlinear phase macromodel. In Section Ill. we derive the oscillator 
amplitude macromodel. In Section IV, we apply the macromodel to 
predict injection locking, and in Section V, we present simulation 
results on three oscillator examples. 

11. NONLINEAR PERTURBATION ANALYSIS 
The standard approach for analyzing perturbed nonlinear systems is 

to linearize around an unperturbed trajectory. However, this approach 
does not suffice for analyzing oscillators. In 151, a novel phase 
macromodel based on nonlinear perturbation analysis was presented 
that is suitable for oscillators. Here, we first review the essentials of 
this approach 

of a icalar nonlinear differential equation’ [SI and a reduced linear 
time-varying system that is computationally simpler and of smaller 
size than the original oscillator, resulting in significant speedups in 
simulations. The macromodel approximates the totality of the output 
characteristics of the original oscillator circuit to perturbations well. 
and can be easily encapsulated in  MATLABISimulink, Verilog-A, 
VHDL-AMS, etc., for use in system-level simulation. 

A. Perfurbarion 
A general oscillator that is being perturbed can be described by 

i + f ( x )  = B b ( t ) ,  (1) 
where b( t )  is a perturbation applied to the free-running oscillator and 
x(r) is a vector composed of the state variables of the oscillator. For 
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small perturbations, we can linearize ( I )  about its unperturbed orbit 
as 

Hi@) z- d f o ( I , c , , w ( t ) + B b ( / )  Jx (2) 
= A ( f ) w ( t )  +Bb(t), 

where w(r) represents deviations due to perturbations and ~ ~ ( 1 )  is 
the unperturbed steady-slate solution of the oscillator. The periodic 
time-varying linear system (2) can be solved using Floquet theory 
[E] to obtain an expression for its stale transition mauix 

(3) 
U ( r )  and V(r) are T-periodic nonsingular mauices, satisfying 
biorthogonality conditions v . f ( t )u j ( t )  = S;j, and D=diag(p l ,  ..., pn], 
where pi are the Floquet exponents. As shown in [SI, one of the 
Floquet exponents must be 0, and & ( I )  is one of the solutions of 
w(t )  = A ( r ) w ( t ) ,  the homogenous part of (2). 

Without lass of generality. we choose P I  = 0  and ut ( t )=d( t ) .  The 
perturbnrion projection vecfor (PPV) q ( t )  satisties v I  (t)ut(I) = I 
[5], 161. The PPV, which can be thought of as representing the 
oscillator's phase sensitivity to perturbations, is a periodic vector 
waveform with period identical to that of the unperturbed oscillator. 

@ ( I , ? )  = U(t)exp(D(r - 7 ) ) V ( ? ) .  

The panicular solution of (2) is given by 

restored, provided it is performed around the dynamically phase- 
shifted steady state + ( I )  = X,(I + a(r)) for it. Given an oscillator 
system 

with solution 

(wherexp(f) = x , ( t + a ( ! ) ) ,  and o(r) represents the orbital deviations 
due to the perturbation b(r)), (10) can be expressed as 

(12) 

Linearizing (12) around x p ( l ) ,  the orbital deviation o(t) is given by 

i + f ( x )  =Bb( t ) ,  y(/) =C'X( / ) ,  (10) 

40 = + p ( f ) + O ( f ) ,  (11) 

lP( f )  +d(f)+f(xp(f)  +o( f ) )  = bt(t) +&(I).  

Jf 
4 1 )  = -~l".('+n(,))4') +m (13) 

= A ( x , ( f + a ( r ) ) ) o ( r )  + & ( I ) .  

Since A ( x , ( t + a ( r ) ) )  is not periodic, Floquet theory cannot be applied 
directly to analyze the linearized system. The tr;?nsformation ?(I) = 
f + a(t) is therefore applied and a(!) = o ( f )  and 6(?) = & ( I )  detined. 
(13) can then be rewritten as 

or. 
w ( l )  = i u i ( r ) A ' e x p ( p i ( t  . .  - T))vf(?)Bb(T)d?,  (4) (1 +&(r))d(f) =A(x, ( i ) )a(?)  +E(?) .  (15) 

I= ,  

a( t )  = vT(t)bt(r) < 1 since the perturbation bl(t) is assumed small. 
Dividing (15) by 1 + a ( r )  and Taylor expanding, we have 

a(?) =A(x$))a(?)  +$f) + R ( i ) ,  (16) 

where A'(?) = vT(;)b(?)(A(xr(?))B(?)+@)) is a quadratic term which 
is droooed. keeoine onlv the linearized terms. The orbital deviation 

where p1 = 0. A small perturbation b(r) with the same frequency as 
V I ( I )  can always be chosen to satisfy that vf ( f )Bb(r)  has a nonzero 
average value; hence w(1) can be made 10 grow unboundedly with 
I ,  in spite of b(t) always remaining small. This contradicts the basic 
assumption far perturbation analysis, i.e., that w(r) is always small. 

B. Nonlinear Phase Macromodel 

(1) with the perturbation Bb(f )  split into two parts 
To resolve this canmaction. a key innovation of 151 was to rewrite 

i + f ( x )  =bt ( f )+6( t ) ,  ( 5 )  

where 
b l ( r )  = v ~ ( f + a ( r ) ) B b ( f ) u l ( f + a ( r ) )  (6) 

was shown to induce onlyplrased~viations to the unperturbed system, 
while 

(7) 

was shown to conlribute orbital deviations. The solution of x+ f ( x )  = 
bI(t )  is in fact given by 

n 

& I )  = C$(r +a(t))Bb(t)ui(r  +a(r)) 
i=2 

x p ( t )  = X , ( f + a ( t ) ) ,  (8) 

where a( / )  is the phase deviation due to the perturbation b l ( t ) .  
Indeed, it can be shown [51 that a(r) is govemed by the nonlinear 
differential equation 

a(r) =v: ( t+a( f ) ) .Bb( f ) .  (9) 
With the PPV v t ( r )  available for a given oscillator. its phase devi- 
ations due to perturbations can be efficiently evaluated by solving 
the one-dimensional nonlinear equation (9). Effective methods are 
available for computing the PPV from a SPICE-level description of 
the oscillator [ 5 ] ,  [6] in either time or frequency domains. 

In (9). a ( t )  has units of time; the phase deviation in radians is 
easily obtained by multiplying it with the free running oscillation 
frequency 00. 

. . .  1 -  , 
can then be expressed as a linear time-varying (LTV) system 

6( i )  =A(x, (?) )a( i )  +;(?). (17) 

This linear system has the same form as (2). so its solution can be 
expressed as 

a(?) = k u i ( ? )  /d^ exp(p,(t . - -  ?))vf(T);(T)dT.  (18) 
;= I 

From (7). it is clear that ;(?) contains no U I  component. SO the i = 1 
term in (18) can be dropped; the u t  component, in fact, results in the 
grown phase deviation a@) .  Hence, $i) can be replaced by Bb(i) in 
(18). and o ( l )  is given by 

where ? = I + a(r) and b(?) = b(r). The output of the oscillator can 
therefore be expressed as 

y(1) = Crx& +i C'uj(f) ?))$(?)B&(T)dT, (20) 
i=2 

with the amplitude deviation being 
i 

A(?) = i C r u i ( ? ) j o  e x p ( p ; ( i - ? ) ) ~ . f ( ~ ) B 6 ( ? ) d ? .  (21) 

To develop a reduced macromodel that captures only the important 
amplitude components, we dctine the weighted factor w;(l)  for each 
Floquet exponent pi to be 

(22) w;( t )  = C r ui(t)exp(p;T)wT(l)B. 

i=2 

A large w i ( t )  implies that the corresponding Floquet exponent will 
have a large contribution to the amplitude deviation. Hence, w i ( r )  can 
be evaluated for each Floquet exponent. and exponents with small 
weights can be dropped to obtain a reduced diagonal matrix D.  If 
a Floquet exponent pi is dropped, the corresponding ui(f)  and w i ( r )  

111. A M P L I T U D E  M A C R O M O D E L  

The key utility of the decomposition ( 5 )  isJhat the orbital deviation 
does not grow unboundedly if only the b(t) component of b(r) 
is applied; hence, validity of small-signal perturbation analysis is 
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are also dropped, resulting in a reduced matrices, o(t) and v( f ) .  On 
completing this process, a reduced system for the amplitude deviation 

A(?) s C T o ( f ) /  exp(D(i-T))v(T)&(T)dT (23) 

is obtained. This can be expressed as a macromodel in ODE form as 

A(?) =Dri(?) +Y(?)Bb(l), 
(24) 

A(f) =A(?) = CTO(?)d(?), 

i 

0 

where D=ding[fil, ...,fim], U(?) e r X m ,  v(?) €RmX" and m is the 
size of the reduced system. 

Combining the nonlinear phase equation (9) with the above am- 
ulitude macromodel. a commehensive macromodel is obtained. The 
how of the macromodelling process is outlined below: 

1) Obtain the steady state x r ( f ) .  
2) Calculate U@), V ( t )  and Floquet exponents using numerical 

3) Solve (9) for the phase deviation a @ ) .  
4) Solve (24) for the amplitude deviation A(1). 
5 )  The output of the oscillator is given by 

methods [4]-[61. 

y ( t )  =CTxJ?)+A(?). (25) 

IV. PREDICTING INJECTION LOCKING 
Injection locking is a nonlinear dynamical phenomenon occurring 

in all oscillators. When M oscillator is perturbed by a weak external 
signal close to its free-running frequency, the oscillator's frequency 
changes to become identical to that of the perturbing signal. Capturing 
injection locking using traditional simulation presents challenges. 
SPICE-level simulation of oscillators is usually inefficient, since 
oscillators often require thousands of cycles to lock to an injecting 
signal, with each simulation cycle requiring large numbers of very 
small timesteps for acceptable phase accuracy. If the frequency of the 
injected signal is close to oscillator's free-running frequency, it also 
becomes very difficult to distinguish injection locking from observing 
time-domain waveforms. 

A. The Adler Equation 
In [l]. Adler derived the following equation for the instantaneous 

beat frequency of LC tanks oscillators perturbed by an external signal: 

_ = - _ _  da ' f f l J  sin(a)+Aub, 
dt  Vo 2Q 

where Vo and Q are the output voltage and frequency of the 
unperturbed oscillator and % is the instantaneous beat frequency, 
A% is the frequency difference, which satisfies 9 << 1 When 
the oscillator locks to the external injection signal, the beat &uency 
vanishes, resulting in the locking condition 

% A% sin(a)=2Q-- 
V n j  00 

Since the values of sin(a) can only be between -1 and + I ,  the 
maximum locking range of the oscillator is given by 

Adler's equation is widely used for capturing injection locking in 
oscillators. However, it suffers from an immediate limitation: it 
requires a LC-tank Q factor for (28). For oscillators that rely 
on abruptly switching elements, e.g., ring or relaxation oscillators, 
Adler's equation is of limited utility. Furthermore, even for LC 
oscillators, the predictive ability of Adler's equation is typically 
limited to a range of Q values. 

E. Using Ihe Nonlinear Phase Macmmodel for Injection Locking 
The nonlinearity of the phase macmmodel (9) makes it well suited 

for capturing injection locking effects in any oscillator for which the 

PPV is available. If the oscillator locks to an injected signal, the 
oscillator's phase follows that of the injected signal; this leads to the 
relationship 

u b t + $ ( t ) = V l t + 8 ,  or $ ( t ) = ( m t - % ) l + 9 ,  (29) 

where 00 is the frequency of the free-running oscillator, 0 1  is the 
frequency of the injected signal, @ ( r )  is the phase deviation of the 
perturbed oscillator, and 8 is a constant which represents the phase 
difference between the locked oscillator and the injected signal. It is 
clear from (29) that if 'the oscillator locks to the injected signal, the 
phase shift due to the injected signal should grow with time linearly 
with a slope of 01 - 00. Since a ( t )  has units of time. the phase 
deviation in radians can be expressed as 

' $ ( f )  = ooa(t). (30) 
Substituting (30) into (29). we have 

where A q  = q - is the frequency difference between the free- 
running oscillator and the injected signal. This relationship provides 
a direct means to chdck for locking behavior in oscillators. For 
example, if an oscillator is injected with a signal with frequency 
10% higher than its free-running frequency, using @ I ) ,  the oscillator 
locks to the signal if its phase shift a(r) increases linearly with a 

Substituting (31) into the nonlinear phase equation (9). we have 
slope of 0.1. 

where Ainj  is the ampliiude of the injection signal and 8 is the phase 
difference between the'injection signal and the oscillator's output. 
Since V I  (I) has the same frequency as the free running oscillator, 
the frequency of v l ( 2 t )  must equal the injection frequency w].  As 
A@ in (32) increases, the nonlinear locking mechanism changes the 
locked phase difference 9 to match the slope Since (32) is q- 
periodic, integrating both sides for one period 2 TI leads to 

Hence, the maximum locking range is given by 

(35) 

where 

7 is independent of the injection frequency fl, and can be easily 
calculated by numerical methods if the PPV is available. Note 
that (36) has a form similar to the Adler equation. Unlike Adler's 
equation, however, it can apply to any physical oscillator, regardless 
of operating mechanism; indeed, the underlying ideas used to derive 
(36) appear quite different from Adler's. 

V. NUMERICAL RESULTS 

In this section, we apply and validate the techniques presented 
above for capturing phaselamplitude variations and injection locking, 
using LC and ring oscillators. All simulations were performed using 
MATLAB on a Linux machine with an AMD Athlan -2200+ proces- 
sor. In what follows. we predict amplitude deviations and injection 
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"'i 'B 
Fig. I .  A simple LC oscillator. 

locking u l  ascilldtor, urmg our mscroniodel,. 3nd compare the result, 
with SPICE-lite wnuldton, uf the lull oscilldlor circuit in the m n c  
J I W I A B  cnviionment For inpt ion Ihrking mdyrtr ,  u c  plot the 
relationship butuecn ~ n ~ e c t w n  unplitud-. and maximum 1o:king range 
u w g  fu l l  simu131ion snd cumpas uith ths re,uIL\ by cvrluating 1351. 
The,c e\penments demmarate th31 our mxrumodels wurt t'ery well 
uhun the ."Illude of the perturbittun is leis than 3bOUl 10% uf the 
1ncill3tur'~ worbng IhrJ S p d u p r  or 3&11l11 t u "  a c  obtimcd 
using Ihr. ni3cromudel, 

A Itill: LC m c d l ~ m r  

u h0.e dtifercntial equauonr drc 
Figure I d:pictr the bloA diagram of a ,mplc LC ~h21II3Ior. 

-Czv(f) d = - + i ( f ) + S t a i ~ h ( ~ v ( t ) ) + b ( t )  4 1 )  G" 

(37) R 
d .  
dr 

L--l(t) = "(I). 

L = 4.869 x 1 0 - 7 / ( 2 q  H, c = 2 x 10-1*/(2~) F, R = 100 R, s = 
1 / R  and G. = - I . I / R .  With these parameters, the LC tank has a 
resonance frequency of I GHz, and the inductor current has amplitude 
Ao = 1.2mA. 

I )  Phase and amplifude macromodel: Since the simple LC oscilla- 
tor has only two unknowns, the corresponding system has two Floquet 
exponents. So this is a minimum system, and it cannot be reduced 
any more. However, using our macromodel, we get a linear equation 
for amplitude and a mildly nonlinear equation for phase deviation. 
Both of them can be simulated with much larger timesteps. A key 
feature of the macromodel is that these two equations are independent 
and can be solved separately without matrix computations. In our 
simulation, the runtime using the full circuit transient simulation 
takes 230 seconds for a simulation time of 200 cycles. However, 
it takes only 8 seconds to simulate the same number of cycles using 
the macromodel, representing a 29 times speedup. Moreover. as the 
original system's size increases, larger speedups are obtained. 

First, we investigate the response of the LC oscillator under a small 
impulse perturbation injected at steady state. The amplitude of the 
impulse is 0.2mA and its duration is 10% of the period. Comparisons 
of results from the macromodels and the full SPICE-level simulation 
are shown in Figure 2. As can be seen, there is an excellent match 
in both phase and amplitude characteristics. 

Now we inject a sinusoidal signal to the LC oscillator. The 
injection amplitude is 5% of the oscillator's load amplitude, and 
the injection frequency is 1.03J0, where Jo is the oscillator's free 
running frequency. Results from a simulation of IO0 cycles are 
shown in Figure 3(a) (phase deviations) and Figure 3(b) (amplitude 
deviations). From the phase and amplitude information obtained 
fmm simulating the macromodel, voltage and current waveforms 
are re-constructed using (25) and shown in Figure 3(c). Comparing 
these against SPICE-level transient simulations of the original circuit 
(shown in Figure 3(d)), the match is observed to be very close. A 
more detailed comparison of 15 cycles (from r = 25T to r = 40T) is 
shown in Figure 4 .  

To test the range of validity of our macromodel with respect to the 
amplitude of input perturbations, we increase the injection amplitude 
gradually, and plot the results in Figure 5. The macromodel works 
well when the injection suength is less than about 10% of Ao. When 
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Fig. 2. Phase and amplitude deviations under impulse penurbation. 

4 s 9 M ea ! L 4  d. 9 ti t3 ,b 
"7 

(a) Phase deviation (b) Amplitude deviation 

(c)  Oscillator output (macro- (d) Oscillator OUIPUI (full simu- 
model) lation) 

Fig. 3. 
O.OSAosin( l.03ubr). 

Output of the simple LC oscillator under the penurhation ijaj = 

the injection amplitude increases. the macmmodel's prediction error 
increases, resulting in a higher beat frequency. When the injection 
amplitude increase to 0.25Ao. the oscillator locks to the external 
signal, but at these extremely high injection levels, the macromodel 
fails to capture lock correctly, because of its underpinnings in small- 
signal linearization. Such high injections are usually rare in practice 
and do not significantly limit the applicability of our macromodels. 

2) Injecfion Locking Analysis: (35) reveals a linear relationship 
between the injection amplitude Ainj and the frequency difference 
Am; given the PPV, the slope I) in (35) can be calculated using (36). 
Figure 6 shows the locking range of the LC oscillator. The nonlinear 
phase macromodel can capture injection locking well when the 
injection amplitude is below 15% of Ag. I). which can he calculated 
very quickly (in a few seconds), can be used to predict injection 
locking by evaluating (35). In contrast, full SPICE-like simulation 
requires four minutes to predict locking on this low-Q oscillator. 9 

)O 
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Fig. 4. 
0.05Ao sin(l.03ubr). 

Output of Ihe simple LC oscillator under the perturbation i,., = 

needs to be calculated only once: it can then be reused to investigate 
injection locking under different injection frequencies and suengths. 
A similar feature is not available when solving the full system of 
equations. Furthermore, when the Q-factor of the LC oscillator is 
made high, thousands of cycles elapse before lock. The simulation 
time for the full circuit becomes more than one hour on our system, 
while that for the macromodel remains unchanged. 

E.  77vee-Sfage Ring Oscillator 

described by the differential equations 
Figure 7 depicts the block diagram of a three-stage ring oscillator, 

Each stage of this ring oscillator is identical, we have C1 = C2 = 
C3 = 2nF, RI = R2 = R3 = IkR, and G,l = Gm2 = Cm3 = -5. The 
oscillator has a natural frequency of 153498Hm and a maximum load 
current of A0 = 1.2mA. 

I )  Phase and amplitude macmmodel: This oscillator has the 
system size of 3, so it has two Floquet exponents for amplitude 
macromodel. In the following. we simulate two macromodels: a 
reduced macromodel retaining only the dominant Floquet exponent. 
and a "full" macromodel, which keeps both Floquet exponents. Our 
numerical experiments below reveal very little difference between the 
two macromodels, indicating that size reduction leads to insignificant 
loss of accuracy. Both macromodels match full SPICE-level simula- 
tion well, and deliver about a 30 times speedup. 

First, we apply a perturbation current with amplitude Ajnj = 0.05Ao 
and frequency fimj = 1.Mfo to the oscillator, and simulate it for 100 
cycles. Figure 8(b) and Figure 8(c) depict the results of the reduced 
macromodel and the full macromodel. Both waveforms match full 
simulation well, as shown in Figure 8(d). Increasing the injection 
amplitude gradually, we show the changes that occur in amplitude 
and phase response in Figure 9. We obtain a Vend similar to that 
for the LC oscillator: the macromodels work well when the injection 
amplitude is less than about 10% of Ao. 

2) lnjeclion locking analysis: As mentioned earlier, a key ad- 
vantage of our approach is its general applicability for predicting 
injection locking. Using (36). the maximum locking range of this 
rine oscillalor is easily oredicted. as olotted in Fieure 10. As before. 

~ 
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(e) ii.j =0.25Aosin(l.l5ubt) (0 i,., =0.25Agsin(l.l5ubf) 

Fig. 5. Outputs of the simple LC oscillator under different penwbations. 

C. 4GHz LC Oscillator 
The circuit and parameters of another LC oscillator are shown 

in Figure 11. The oscillator has a free-running frequency of about 
4GHz. and the inductor current through L1 has an oscillation ampli- 
tude of 15mA. 

I )  Phase and amplitude macmmodel: The size of the LC oscillator 
system is 6. We find, somewhat surprisingly, that an amplitude 
macromodel of size only 1 captures the oscillator's dynamics very 
well. With only a one-dimensional nonlinear phase equation and 
a onedimensional amplitude equation against a 6-dimensional full 
oscillator circuit, large speedups (more than 100 times) are obtained. 

Injecting a voltage perturbation in series with the inductor L I  
and simulating under different perturbation suengths, we obtain the 
results shown in Figure 12. When the perturbation amplitude is 
2mV, the amplitude deviation due to this perturbation is about ImA, 
which is 6% of the inductor's oscillation current. The macromodel 
matches full simulation well at this perturbation level, as shown in 
Figure IXa)  and Figure 12(b). As the injection amplitude grows to 
8mV, the amplitude deviation increases to 4 4 ,  which is about 25% 
of the inductor's oscillation current. The macromodel can still predict 
beats in the waveform well: however, the shape of the waveform is 
no longer as accurate, as shown in Figure 12(e) and Figure 12(f). 

2) Injecfion locking analysis: Using (36) to calculate the slope 
11 provides quick prediction of injection locking, as in the previous 
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(a) Injcaion frequency is higher than 
lhe oscillator's frequency 

(b) Injection frequency is lower lhan 
the oscillator's frequency 

Fig. 6. Locking range of the simple LC oscillator. 

I I - 'p 'p 'p 

I 

Fig. 7. A three-stage ring OScilIator. 

cases. Comparing against full SPICE-level simulation with different 
injection amplitudes in Figure 13, it is evident that the macromodel's 
results match full simulation very well, especially when the iniection 
amplitude is less than 40mV. 

VI .  CONCLUSIONS 

We have presented a novel technique to exlract simple ampli- 
tuddphase macromodels from detailed circuit descriptions of any 
physical oscillator. The macromodels are able to predict oscillator 
phase and amplitude deviations well in the presence of perturbations 
and offer significant speedups over full SPICE-like simulation. We 
have demonstrated the use of these macromodels for capturing injec- 
tion locking in oscillators, a feature that eludes oscillator macromod- 
els in common indusuial use today. Our injection-locking technique 
generalizes and overcomes limitations of the classic Adler equation. 
Numerical results demonstrate the ability of the macromodels to 
predict the totality of oscillators responses well, while providing 
large speedups over full SPICE-level simulation. We are currently 
developing efficient, Krylov-subspace-based variants of our method 
that will be applicable to large systems, resulting in macromodels 
that arc expected to yield speedups of 3 or more orders of magnitude 
with insignificant loss of accuracy. 

(a) Phase deviation (b) Oscillator output (reduced 
macromodel) 

-10 LJ YT - I a U m  "l 

(c) Oscillator output (full (d) Oscillator output (full simu 
macramdel) latio") 

Pig. 8. 
D.05Ao sin(l.Moor). 

Output of the simple ring oscillator under the penurbation ijnj = 
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(b) Injection frequency is lower than 
Ihe oscillaloz's frequency 

Laking range of the simple ring oscillator. Fig. 10. 
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Fig. 11. A 4GHz LC osdlaror. 
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(a) vjnj =O.WZsin(l.OlZoot) 

I 1-".I I 

(c) venj =0.004sin(I.O16oot) (d) vinj =0.004sin(I.Olboor) I 

(e) vinj =O.~nsin(I.o24ubt) (0 U,", =O.oOnsi~(l.O24oot) 

Fig. 12. Outputs of the 4GHz LC ~~cilla*Or under different pprmrbalions. 
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