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Abstract— Phase-locked loops (PLLs) are widely used in electronic
systems. As PLL malfunction is one of the most important factors in
re-fabs of SoCs, fast simulation of PLLs to capture non-ideal behavior
accurately is an immediate, pressing need in the semiconductor design
industry. In this paper, we present a nonlinear macromodel based PLL
simulation technique that is considerably more accurate than prior
linear PLL simulation techniques. Our method is able to accurately
capture transient behavior and faithfully estimate timing jitter in noisy
PLLs. We demonstrate the proposed technique on ring and LC voltage-
controlled oscillator (VCO) based PLLs, and compare results against
linear PLL macromodels and full SPICE-level simulation. We show
that, unlike prior linear macromodel based approaches, the proposed
nonlinear technique captures the dynamics of complex phenomena such
as locking, cycle slipping and power supply noise induced PLL jitter,
replicating qualitative features from full SPICE simulations accurately
while providing speedups of over two orders of magnitude.

I. INTRODUCTION

PLLs [14] are extensively used in all analog and digital sys-
tems. Their uses include clock generation, signal conditioning and
synchronization, frequency synthesis, FM demodulation, clock and
data recovery, etc. Despite their application in circuits over decades,
modern PLL design still presents significant challenges. In actual
fabrications and real designs, PLLs often do not function as they are
ideally supposed to, due to second-order effects such as non-ideal
filters, interference from power supply lines, loop stability issues,
etc.. Indeed, in modern RF and mixed-signal designs (especially for
SoCs) functional degradation of PLLs is a major cause of overall
system malfunction, often resulting in many design and fabrication
re-spins. Costs of such re-fabs can run into the millions of dollars
and significantly delay product time-to-market. As a result, accurate
simulation of PLLs is of great practical importance. Direct time-
domain simulation of PLLs at the level of SPICE circuits is typically
impractical because of its great inefficiency. PLL transients can
last hundreds of thousands of cycles, with each cycle requiring
hundreds of small timesteps for accurate simulation of the embedded
voltage-controlled oscillator (VCO). Furthermore, extracting phase or
frequency information, one of the chief metrics of PLL performance,
from time-domain voltage/current waveforms is often difficult and
inaccurate.

To alleviate the inefficiency of simulating PLLs at the SPICE level,
a popular approach towards approximate PLL simulation involves
the use of phase domain macromodels (e.g., [8]). In this approach,
each building block of a PLL (such as the VCO, the phase/frequency
detector, and the low-pass filter) is represented approximately using
small, simple macromodels, and the system of macromodels sim-
ulated. Furthermore, in contrast to SPICE-level circuits which use
voltage/current domain device models, the PLL block macromodels
used are typically in the phase domain. For example, in traditional
approaches, the VCO is represented as a simple linear integrator that
converts input voltages to output phases; similar simple macromodels
of other blocks are also employed. The use of such macromodels can
lead to dramatic speedups (of many orders of magnitude over the
SPICE level); however, such speedups are obtained at the expense of
accuracy. As we show in this paper, the use of linear macromodels
can lead to qualitatively incorrect prediction of important PLL
phenomena.

Linear PLL block macromodels, while appropriate for simple,
locked PLLs in near-ideal operation (e.g., the low-pass filter (LPF)
rejects high frequencies well, there is no interference from power
supply/ground lines, etc.), can be seriously inadequate for predicting
the complex non-ideal phenomena that are typically responsible for
performance degradation in today’s industrial PLLs. For example,
high-bandwidth PLLs (e.g., [13], [10]), popular in read channel and
clock recovery applications for their fast tracking properties, are
difficult to simulate accurately using linear macromodels because
the high-frequency components transmitted from the phase/frequency
detector to the VCO excite nonlinear mechanisms critical for cap-
ture/lock and cycle slipping. Such mechanisms often result in
changes to the static phase offset of the PLL in lock; these changes
in static offset consume additional phase budgets for a stable lock
and affect the likelihood of cycle slipping (e.g., [7]). Linear methods
do not take these non-idealities into consideration, thus resulting in
incorrect predictions. Moreover, charge pump PLLs (e.g., [1], [12]),
widely used for frequency synthesis, usually feature a feed-forward
channel bypassing the low-pass filter to ensure loop stability. The
high-frequency components transmitted through these feed-forward
paths again invalidate linear macromodels.

Furthermore, linear VCO macromodels typically have difficulty
accounting for supply- or substrate-interference-induced PLL phase
jitter (e.g., [8], [11]). In the deep-submicron technologies in predom-
inant use today, interference-induced jitter has grown to be a primary
cause of PLL performance degradation. Since jitter is mainly created
by direct interference to the VCO, the (ideally slow) loop dynamics
of the PLL is unable to eliminate it appreciably; again, fast nonlinear
mechanisms are excited which linear macromodels [6], [16], [2], [15],
[9], [5] are ill-suited to cope with [3].

To address the above macromodel-based simulation accuracy is-
sues, while still providing large speedups over full SPICE-level sim-
ulation, we present a macromodel-based PLL simulation technique
that employs automatically extracted, nonlinear, VCO phase domain
macromodels [3]. In our method, the phase deviation of the VCO
is captured using a single, scalar nonlinear differential equation with
as many inputs as desired. The inputs include (but are not limited
to) not only the control input of the VCO, but also interference and
noise sources from the power supply, ground, substrate, etc...

The key advantage of this technique is that it considers non-
idealities and nonlinearities in the PLL loop. As a result, the transient
behavior of PLLs can be simulated far more accurately than with
linear macromodels: phase noise in the PLL’s reference signal,
high-frequency components from the phase/frequency detector, power
supply, ground and substrate interference are all accounted for
correctly. To demonstrate the capabilities of the proposed technique,
we apply it to estimating static phase offset, simulating step response,
cycle slipping and supply-interference effects of a high-bandwidth
PLL structure. We provide comparison against simulations with
linear macromodels and full simulation, demonstrating that the new
technique provides accuracies essentially equivalent to full SPICE-
level simulation, but with speedups of over two orders of magnitude.
Furthermore, we demonstrate how the same simulations, but using
linear macromodels, can completely fail to predict important phe-
nomena such as cycle slips and supply-induced jitter.

The remainder of the paper is organized as follows. In Section II,
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we briefly review previous linear models and identify their short-
comings for our problem. In Section III, we review the nonlinear
oscillator macromodel for PLL timing jitter estimation and derive
the nonlinear PLL macromodel in ODE form. In Section IV, we
present simulation results on both LC and ring VCO based PLLs,
and compare the results with linear models and full SPICE-level
simulation.

II. REVIEW OF LINEAR PHASE MACROMODELS

The block diagram of a PLL is shown in Figure 1. It consists
of a phase/frequency detector (PFD), a low-pass filter (LPF), a
voltage-controlled oscillator (VCO) and a frequency divider (FD).
The FD is usually used when the PLL is a frequency synthesizer. The
PFD compares the phase difference between the reference frequency
fre f and the feedback frequency f f b and produces a voltage which
corresponds to the phase difference between two signals. Since the
output of the PFD has high frequency AC components, an LPF is
applied to filter out these AC components and provides a DC voltage
to control the VCO. The PLL is a feed-back loop, which means that
when it is in lock, the feedback frequency f f b is forced to be identical
to the reference frequency fre f . Given an input frequency fre f , the
frequency at the output of the PLL is fout = N fre f .

- -

�

-
- -

fre f fout
PFD LPF VCO

FD
÷N

f f b

Fig. 1. Functional block diagram of a PLL.

It is well known that direct simulation of PLLs in time domain
is very expensive since the PLL requires many periods of the VCO
to reach the steady-state. This is especially true when we simulate
frequency synthesizers with large multiplication factors. To simulate
the phase of the PLL accurately, the simulator has to use many
timesteps for every cycle of the VCO, and the locking process
often takes hundreds or thousands of cycles at the reference input.
Hence, full simulation of PLLs at SPICE-level consumes a lot of
computational resources.

Simulating the PLL directly in phase can significantly saves
computational time, because the VCO is treated as a phase generator
and no oscillator is involved in the simulation. A linear phase-domain
model of a PLL is shown in Figure 2.

l
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- - - - foutfre f
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Kpd f (∆φ) Kvco
SH(S)

Fig. 2. Linear phase-domain model of a PLL.

In this phase domain macromodel, the PFD is modeled as
Kpd f (∆φ), where Kpd is the gain of the PFD and f (∆φ) is the
transformation function between the phase difference and the output
voltage of the PFD, which depends on the type of the PFDs. For
example, if the PFD is a mixer/multiplier, the transformation function
can be defined as f (∆φ) = sin(∆φ); if the PFD is a XOR phase
detector, the transformation function is f (∆φ) = ∆φ

2π , if the LPF is
ideal and can filter all ACs out.

The VCO is an oscillator that converts its input voltage to an
output frequency. The relationship between input voltage and output
frequency is considered to be linear time-invariant (LTI) and can be
expressed as

fout(t) = KVCOvc(t)+ f0, (1)

where f0 is the VCO’s central frequency, KVCO is the gain of the VCO
and vc(t) is the control voltage from the LPF. The output phase of
the VCO can then be given by

φout(t) = 2π f0t + 2π
∫

KVCOvc(t)dt. (2)

this linear model is very suitable for studying the phase deviation
of the pll under small perturbations when the PLL is in lock, as long
as we only concern how the perturbation affects the phase of the
PLL. However, it suffers from some drawbacks. Since the VCO is
treated as a LTI system and the high frequency components from the
PFD is ignored, the model is unable to capture nonlinear dynamics
in the loop which affects the behavior of PLLs. In addition, this
model can not predict the phase deviation caused by power supply
and substrate noise since the linear VCO model is unable to translate
noise currents/voltages into phase deviation.

III. PLL SIMULATION USING NONLINEAR VCO PHASE
MACROMODELS

To solve the above problems in linear macromodels, we develop
a nonlinear PLL macromodel, which simulates the behavior of PLLs
more accurately. Our nonlinear phase-domain macromodel is closely
related to recent oscillator phase noise and jitter theories [3], and can
precisely capture the transient behavior of PLLs and approximate the
timing jitter of PLLs in the presence of perturbations, both random
and deterministic.

A. The Nonlinear Oscillator Phase Model
In this section, we provide a brief review of the nonlinear phase

model in [3], which we adapt in this work in order to build the
nonlinear PLL phase-domain macromodel.

A general oscillator can be expressed as

ẋ = f (x)+ b(t) (3)

where b(t) are perturbations to the free running oscillator. We can
assume the solution of the perturbed oscillator is

xp(t) = xs(t + α(t))+ y(t), (4)

where xs(t) is the steady-state solution of the unperturbed oscillator.
Hence, the effect of the perturbations b(t) to the oscillator is
partitioned into two parts: the phase shift α(t) to the unperturbed
oscillator and the amplitude deviation y(t).

The phase shift α(t) due to the perturbation is governed by the
nonlinear differential equation

α̇(t) = V T
1 (t + α(t)) ·b(t) (5)

where V1(t) is the perturbation projection vector (PPV) which has
the same period as the oscillator. The phase shift α(t) due to
perturbations in the nonlinear phase model has the unit of time.
Phase shift in radians can be obtained by multiplying α(t) by the
free running oscillation frequency ω0.

The PPV is a vector of waveforms, each of them represents the
oscillator’s phase sensitivity to noise injected to the corresponding
circuit node on the oscillator. The PPV can be extracted from the
SPICE-level description of oscillator circuits by numerical methods
effectively [4], [3] and applied to study the oscillator’s behavior under
perturbations.

B. Nonlinear Phase-domain Macromodel of PLL
Figure 3 depicts the block diagram of our nonlinear PLL macro-

model. We use the nonlinear VCO macromodel proposed in [3] as
replacements for the linear ones that have so far been used.

In this macromodel, the VCO is no longer a simple linear inte-
gration component, instead, it is modeled as an oscillator perturbed
by multiple injection signals: one is the control signal from the LPF,
others are perturbation signals injected into circuit nodes on the VCO.
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Fig. 3. Nonlinear phase-domain model of a PLL.

The differential equation for the phase deviation of the VCO can be
of the form:

α̇(t) = Vvc(t + α(t))vc(t)+V T
n (t + α(t))n(t), (6)

where vc(t) is the control voltage from the LPF, Vvc(t) is the PPV
of the VCO control node, Vn(t) is a vector of PPV waveforms
representing the VCO’s phase sensitivity to the noise injected into
the corresponding circuit nodes and n(t) is the noise current/voltage
applied to the VCO. The major differences between our nonlinear
macromodel and traditional linear model are the inclusion of the
phase shift α(t) inside the perturbation projection vector Vn(t) and
the gain of the VCO Vvc(t) is no longer a constant. Since (6) gives
the phase shift of the PLL under control voltage and perturbations in
time. The total phase of the VCO in radians can be expressed as

φout(t) = ω0(t + α(t)), (7)

where ω0 is the VCO’s free-running frequency.
The model of the PFD in our macromodel is slightly different

than that of the linear macromodel. We retain the high frequency
components to ensure we can capture the dynamics in the loop
precisely. The PFD is modeled as Kpd f (φ1,φ2), where Kpd is the
gain of the PFD and f (φ1,φ2) is a function that takes two phases as
inputs and output a voltage. If we use a mixer/multiplier as the PFD,
the function can be defined as

f (φ1,φ2) = sin(φ1−φ2)+ sin(φ1 + φ2)

= sin(φre f (t)−ω0(t + α(t))
+sin(φre f (t)+ ω0(t + α(t)). (8)

where φre f (t) is the phase of the reference signal, ω0 is the VCO’s
free-running frequency, and α(t) is the VCO’s phase shift computed
by (6).

If we formulate the transfer function of the LPF H(S) in its ODE
form and combine it with our nonlinear VCO phase model, we can
reduce the original PLL system to an ODE system with a much
smaller system size.

Since the phase of the PLL is calculated directly in this macro-
model, we can use much larger timesteps to simulate the PLL,
resulting in great speedup. Our nonlinear model has taken the non-
idealities in the PLL loop into consideration, thus, it captures the
nonlinear dynamics in the transient behavior of PLLs much better
than traditional linear models. In addition, our VCO macromodel
is a noise model, which accurately predicts the phase shift caused
by power supply and substrate noise. Hence, our macromodel has
the capability to correctly simulate the behavior of PLLs under the
influence of perturbations.

IV. EXPERIMENTAL RESULTS

In this section, the nonlinear method discussed in Section III is
applied to predict the pull-in process, cycle slipping and injection
locking in PLLs.

We first build the PLL macromodels using the method in
Section III and derive the reduced ODE equations for our test circuits.
Using the LC oscillator based PLL, We calculate static phase offset,
simulate the pull-in process under different reference frequencies,
and predict the cycle slipping under different initial phase errors.
Our method provides good matches to full SPICE-level simulation,
with great speedup. We also demonstrate the ability of our method

for capturing injection-locking-related phenomena on a ring oscillator
based PLL. Our method can predict the phase deviations of the PLL
correctly, while the linear methods fail in this case, providing totally
wrong prediction.

A. Building the PLL macromodel

The PLL circuit we use in our experiment is shown in Figure 4.
The circuit has a mixer as the phase detector and a low-pass filter with
high bandwidth, with which we can simulate the non-idealities in the
PLL. The system size of this simple PLL circuit is 14. In this circuit,
the center frequency of the VCO is designed to be f0=100MHz and
the RC pole is designed to leak appropriate AC components (0.2v in
amplitude) to the VCO. Using the method we discussed in Section III,
we can reduce the system size to 3.

L C R i=f(v)
Vref+Vref+

Vvco−

Vvco+

Vref−

Vctrl
+

−

Fig. 4. An LC oscillator based PLL.

1) PFD Model: The output of the PFD is defined by (8), the only
parameter we need to identity here is the gain of the PFD kpd . We
run full circuit simulation on this PFD with different input phases and
plot the relationship between the phase difference on two inputs and
the output voltage of the PFD as Figure 5. It is clear from the figure
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Fig. 5. Gain of phase detector.

that the gain of the PFD has a very good linearity in its working
range. In this PLL circuit, Kpd of the phase detector has the value of
−0.16.

2) LPF Macromodel: The transfer function of the Low Pass Filter
can be derived from the circuit diagram directly. It has the form of

H(s) =
3 + 2τs

(1 + τs)2 , (9)

where, τ is the RC pole of the LPF. Using the companion form
method, we can rebuild the ODE equations of the LPF as

{
ẋ1(t) = x2(t)

ẋ2(t) =− x1(t)
τ2 − 2

τ x2(t)+ b(t),
(10)
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where b(t) is the output of the phase detector. The output of the LPF
has the form of

y(t) = 3x1(t)+ 2τx2(t). (11)

3) Nonlinear VCO Macromodel: The nonlinear VCO phase model
can be calculated by numerical methods [3], [4] directly from
its SPICE-level circuit equations. In this experiment, we use the
time-domain method introduced in [3] to calculate the PPV of the
oscillator, as shown in Figure 6.

2 4 6 8 10
x 10

−9

−0.4

−0.3

−0.2
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0

0.1

Time (s)

P
P

V
(s

/v
)

Fig. 6. The PPV of the control node of the LC VCO.

It can be clearly seen that the VCO is not a LTI system, as the
phase sensitivity of the control node is very dependent of when the
control signal is applied. The linear VCO model uses the average of
the PPV waveform as KVCO, so it can not capture the dynamics of
the PLL correctly.

4) PLL Macromodel: Combining the LPF model, the PFD model
and the VCO model together, we get the reduced PLL macromodel,
which can be expressed as





α̇(t) = Vvc(t + α(t))(3x1(t)+ 2τx2(t))+V T
n (t)n(t)

ẋ1(t) = x2(t)

ẋ2(t) =− x1(t)
τ2 − 2

τ x2(t)+ Kpd f (φre f ,φ f b),

(12)

where f (φre f ,φ f b) is defined by (8) and n(t) is the noise signal
applied to the VCO. This reduced system can be simulated by any
transient solvers, with great speedup. Using full SPICE-level simu-
lation, the runtime in Matlab is about 150 minutes for a simulation
time of 600 cycles. However, it takes only 1 minutes to simulate the
same number of cycles using the nonlinear PLL phase macromodel
– an approximately 150 times speedup.

B. Transient Simulation

Using the nonlinear macromodel, we simulate the transient behav-
ior of the PLL and compare the results with full simulation and linear
models. We simulate the static phase offset, step response and cycle
slipping of the PLL, the results show that our nonlinear macromodel
matches the full SPICE-level simulation well, providing more precise
simulation than linear models.

1) Static Phase Offset: One desirable property of PLLs is that the
clock edge of the reference signal and the feedback from VCO can
be brought into very close alignment. The average difference between
the phases of these two signals when the PLL is in lock is called the
static phase offset. Even though the circuit we use in this experiment
is a first-order PLL, the phase difference between the reference signal
and the feedback signal is suppose to be zero if we apply a reference
signal with frequency that is identical to the VCO’s free running
frequency, since the VCO requires a zero control input. However, if
the LPF is not perfect and the AC signals from the PFD are leaked
to the VCO, they may impact the static phase offset of the PLL via
an injection-locking-like effect.
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Fig. 7. The static phase offset of PLL when fre f = f0.

Figure 7 depict the static phase offset of the PLL when we apply
a reference that has the same frequency as the VCO’s free-running
frequency. We simulate the PLL to steady-state and plot the phase
difference between the reference signal and the feedback signal. Since
the LPF is not perfect, it cannot filter out the high-frequency AC
components from the PFD completely; both full simulation and our
nonlinear macromodel show the PLL has a static phase offset of about
0.43 radians. However, the linear model cannot capture this correctly,
reporting a static phase offset of 0.

2) Step Response Simulation: We simulate the step response of
the PLL under different reference frequencies and plot the results
in Figure 8. Figure 8(a) depicts the step response of the PLL using
full simulation, the linear phase model and the nonlinear macromodel
when the reference frequency is 1.07 f0. With this reference signal,
both linear and nonlinear macromodels track the reference frequency
well, although, as expected, the nonlinear model provides a more
accurate simulation than the linear one. When we increase the
reference frequency to 1.074 f0, the linear phase macromodel cannot
track the reference correctly, as shown in Figure 8(b). In contrast,
our nonlinear macromodel can track the reference signal with full
precision. Finally, we increase the reference frequency to 1.083 f0,
which is beyond the pull-in range of the PLL circuit, so the PLL
cannot lock. Even in this case, the transient behavior predicted by
our macromodel matches full simulation very well.

3) Cycle Slipping Simulation: The PLL is a phase estimator which
has multiple stable solutions with an interval of 2π . Once a PLL
enters its locking mode, it tends to maintain a steady state condition
where the phase error lies between its slip boundaries. Cycle slipping
occurs when the phase error of the PLL accumulates to such a critical
point that its feedback loop is unable to correct the error, resulting in
a phase jump or ’slip’ from one locked steady-state point to another.
Cycle slipping degrades the frequency estimation capability of PLLs
and produces isolated bursts of large phase noise. To study cycle
slipping in the PLL, we inject a sinusoid to the VCO to pull the PLL
away from its steady-state and provide an initial phase error. The
PLL may jump to another steady point, or return to the original one,
depending on the extent of error and the dynamics of the loop.

Investigating cycle slipping for different initial phase errors, we
plot the results in Figure 9. We first provide a reference frequency
fre f = 1.07 f0 and simulate the PLL to its steady-state. Then we
inject a sinusoid perturbation with amplitude of 5mA to the VCO;
the duration of the injected signal is 10 periods. This perturbation
gives an initial phase shift of 1.2 in radians. The full simulation
demonstrates the presence of cycle slipping in the PLL, as shown
in Figure 9(a). Both nonlinear and linear macromodels predict this
qualitative phenomenon correctly, with the nonlinear macromodel
matching the full simulation better than the linear one. Next, we
reduce the injection amplitude to 3mA, and run the simulation again.
For this excitation, the initial phase offset due to the perturbation is
about 0.6 radians, and the PLL can return to its original steady state

 462



0 5 10 15
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

time (T)

V
C

O
 F

re
qu

en
cy

 (G
H

z)

Full Simulation
Linear Model
Nonlinear MacroModel

(a) fre f = 1.07 f0

0 50 100 150 200

0.95

1

1.05

1.1

V
C

O
 F

re
qu

en
cy

 (G
H

z)

Full Simulation
Linear Model
Nonlinear MacroModel

(b) fre f = 1.074 f0

0 50 100 150 200
0.8

0.85

0.9

0.95

1

1.05

1.1

time (T)

V
C

O
 F

re
qu

en
cy

 (G
H

z)

Full Simulation
Linear Model
Nonlinear MacroModel

(c) fre f = 1.083 f0

Fig. 8. The step response of the PLL under different reference frequencies.

phase error. The nonlinear macromodel provides a close match to
full simulation for this case; however, the linear model is unable to,
predicting completely erroneous behaviour.

C. Simulation of Injection Locking Effects in PLLs
We demonstrate the ability of the nonlinear macromodel to capture

injection-locking-type behaviours in PLLs, using a ring oscillator
VCO. We use the ring oscillator VCO shown in Figure 10 to replace
the LC one in Figure 4. The PPV of the ring oscillator VCO is shown
in Figure 11.

To predict injection locking effects in the PLL, we first apply
a reference frequency of 1.06 f0. After the PLL is in lock, we
start to inject periodic perturbations to the node 1 of the VCO,
as shown in Figure 10, and observe the phase shift of the PLL.
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(a) Noise amplitude is 5mA
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Fig. 9. Cycle slipping in the PLL under different noise amplitudes.
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Fig. 10. A ring oscillator VCO.
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Fig. 11. PPV of the ring oscillator VCO.
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(d) Nonlinear Macromodel (in-
jection amplitude = 0.02mA)
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(f) ISF model (injection ampli-
tude = 0.02mA)

Fig. 12. Phase shift of the PLL under different injection amplitudes, using
different simulation methods.

The frequency of the perturbation is 2.5% lower than that of the
reference, and the duration is 200T . We simulate the PLL under
different perturbation strengths using full simulation, the nonlinear
macromodel and the ISF model [6], plotting results in Figure 12.
The results of the full simulation are shown in Figure 12(a) and
Figure 12(b). In Figure 12(a), the injection amplitude is 0.01mA,
which is too weak to drive the PLL away from steady point, so it
only introduces small phase deviations in the PLL. In Figure 12(b),
the injection amplitude increases to 0.02mA. This time, the injection
signal is so strong that the PLL stops locking to the reference
signal. Instead, it locks to the injected perturbation signal, resulting
in continuous phase loss. Our nonlinear macromodel matches the full
simulation very well, as shown in Figure 12(c) and Figure 12(d). The
ISF model, whose results are shown in Figure 12(e) and Figure 12(f),
cannot simulate the PLL under perturbations well, especially when
the injection amplitude is 0.02mA.

V. CONCLUSIONS

We have presented a macromodel-based technique for fast simula-
tion of PLLs. Our method uses a compact, nonlinear phase domain

VCO macromodel that is extracted via algorithm from a SPICE-
level circuit description. The macromodel correctly accounts for the
nonlinear impact of a multiplicity of control and interference inputs
to the VCO. Using the nonlinear phase domain macromodel, we
are able to simulate a variety of PLL transient responses speedily
at SPICE-level accuracies. Applications of our technique include
predicting cycle slipping, high-frequency feed-through effects and
injection-locking-like interference effects leading to jitter. Thus our
technique is particularly relevant to modern PLL architectures with
non-traditional modes of operation. We have also demonstrated how
prior linear macromodels for PLL simulation can suffer from serious
shortcomings in their predictive ability in these cases.
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