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Abstract— Envelope-following methods face special challenges when
applied to oscillators because of their fundamental property of
dynamically-changing frequencies. In this paper, we present a novel and
robust approach for oscillator envelope following. Our method combines,
unifies and extends ideas from two prior oscillator envelope-following
approaches, Petzold’s method and the WaMPDE. Our technique uses
two extra system unknowns, as well as two extra ‘“phase condition”
equations, to track quantities related to dynamical frequency/time-
period changes. These advances confer significant robustness without
appreciable computational overhead. We validate our method on LC, ring
and crystal oscillators, predicting frequency and amplitude modulations
as well as transient startup envelopes accurately. Speedups of 1-2 orders
of magnitude are obtained over traditional alternatives.

I. INTRODUCTION

Oscillators are important in many engineering and communication
systems. For example, they are often used as time references in
digital circuits or for information encoding in communication sys-
tems. As is well known, oscillator simulation presents challenges
that traditional SPICE-like simulation (e.g., [1], [2]) is incapable
of addressing effectively. Due to their marginal stability [3], small
phase errors accumulate unboundedly during transient simulation.
This leads to a much worse tradeoff between simulation timestep
size and accuracy for oscillators than for non-autonomous circuits.
This is especially true for high-Q oscillators, which often feature very
slow and sensitive amplitude responses. To obtain even reasonably
accurate results, extremely small step sizes can be required during
simulation.

The envelope of a highly oscillatory signal refers to its slowly-
varying characteristics, such as the gradual amplitude or frequency
modulation of fast oscillations. When very slow envelopes are
present in an oscillator, predicting waveforms by conventional time-
stepping simulation can be extremely inefficient because of the widely
separated time scales of the fast and slow components [4]. Such
problems are encountered in many practical design situations: e.g.,
when simulating startup/shutdown of oscillators (especially high-Q
ones), frequency modulation in voltage-controlled oscillators (VCOs),
phase-locked loops (PLLs), injection pulling/locking by external
signals, efc.. It should be noted that in such situations, designers
are often directly interested in the slow envelopes themselves.

A variety of methods have been devised to solve for envelopes
more efficiently than transient simulation. The majority of such tech-
niques have focussed on circuits that are not oscillators, i.e., where the
circuit’s frequency does not change. The earliest such technique, to
our knowledge, is the time-domain envelope-following method pro-
posed by Petzold in [5], which was later adapted for circuit simulation
(e.g., [6]-[10]) with application to both transient and steady state
simulations. Another class of techniques, Fourier-envelope methods
[11]-[13], combines frequency-domain Harmonic Balance (HB) and
time-domain integration methods. These techniques solve for the
slowly-varying Fourier coefficients of fast oscillations. Recently, a
family of methods based on Multi-time Partial Differential Equations
(MPDEs) [4], [14], [15] has also emerged. These methods rely on
separating slow and fast variations by employing several artificial
time variables.
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For oscillators, envelope-following methods present special chal-
lenges, as may be expected because their time-periods (or frequen-
cies) change dynamically during operation. The changing frequency
or time period must be calculated very accurately in order to
track envelopes effectively; doing so correctly, in conjunction with
amplitude envelopes, constitutes the main challenge for oscillator
envelope simulation. In [5], Petzold proposed a technique for tracking
the changing period by minimizing the difference between values
at the beginning and the end of a period. Since the cost of such
minimization (via optimization) can be high, Gear [16] proposed
a heuristic to alleviate this issue, identifying periods using zero-
crossings. A remaining issue in both approaches concerns the correct
choice of envelope step sizes when the oscillator’s period varies
over time. In our experience, correct choice of envelope step sizes,
to correspond to an integral number of fast cycles, is critical for
robustness in oscillator envelope following.

Another approach towards oscillator envelope is based on gen-
eralizing MPDE approaches using the notion of “warping” time to
even out the changing periods of fast cycles. This approach, termed
the WaMPDE [17], is appealing not only because of its theoretical
elegance, but its use of an explicit unknown variable, the local
frequency, that is solved for along with all other waveforms to capture
the slowly changing time-period (or frequency) of the oscillator. An
issue with the WaMPDE, however, is that of choosing envelope initial
conditions [18]; unsuitable choices can severely compromise the
computational efficiency that is the primary motivation for envelope
simulation in the first place.

In this paper, we present a new oscillator envelope method which
combines the advantages of Petzold-style methods and the WaMPDE,
while eliminating their disadvantages. From the Petzold point of
view, our technique automatically chooses correct envelope steps,
regardless of dynamic frequency changes; from the WaMPDE point
of view, the envelope initial condition problem is sidestepped, while
the notion of using system unknowns to capture changing frequencies
is retained and generalized. The key advance in our method is
to add rwo extra system unknowns, one representing the changing
frequency/period of the oscillator (as in the WaMPDE), the other
to estimate the envelope timestep. To obtain a “square system” and
be able to solve uniquely for these unknowns, we add two “phase
condition” equations. We term our method “Multiple Phase Condition
based ENVelope following” or MPCENYV for short.

Because it does not rely on minimization, MPCENV’s compu-
tational efficiency is similar to that of non-oscillatory envelope
methods. By automatically taking good care of the problem of
choosing envelope steps correctly via the extra variables, MPCENV
achieves unprecedented robustness in oscillator envelope following,
while retaining the computational efficiency expected of envelope
methods. We validate MPCENV on several types of LC- and ring
oscillators, analyzing frequency and amplitude modulation as well
as slow startup transients. Our simulations confirm excellent matches
between MPCENYV and carefully conducted traditional transient runs.
We obtain speedups of 1-2 orders of magnitude.

The remainder of the paper is organized as follows. In Section II,
we briefly review envelope-following methods and discuss issues for
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oscillator envelopes. In Section III, we provide related background on
the MPDE and the WaMPDE methods. In Section IV, we introduce
the MPCENV method and discuss its relation to the WaMPDE. In
Section V, we present results from applying MPCENV to several
oscillators and VCOs, to investigate startup transients, amplitude and
frequency modulation, etc..

II. ENVELOPE-FOLLOWING METHODS

In this section, we first review existing envelope-following methods
for non-oscillatory circuits, and then discuss extensions to oscillators
[51, [16].

A. Non-autonomous envelope following methods

A circuit can be described by the system of differential equations

q(x) + f(x) = b(1), (1

where x is a vector of state variables (such as node voltages and
branch currents), g contains capacitor charge or inductor flux terms,
and f represents resistive terms [15].

We assume that the solution of the circuit to be simulated has
fast oscillations whose amplitude changes much more slowly than
the oscillations themselves. When this solution is sampled at every
fast oscillation period 7', the resulting samples can be interpolated
using a slowly varying curve, termed the envelope. The basic idea of
envelope-following methods is shown in Figure 1(a), using a scalar
DAE for illustration. We start our simulation at time #y, at which
the state variable has value x¢ (point A in the figure). Transient
simulation is performed accurately for one cycle of the fast oscillation
and the state variable is now at point B shown in the figure. A secant
line between A and B is drawn and then extrapolated over a large
“envelope timestep”, which can comprise many fast cycles, to reach
the solution at point C. This process is repeated until the end of the
simulation interval.

x1 = phi(x0,10, t1)

o 10 20 o 2 0 T e [ TRV
tme pey

(a) Forward-Euler based

following method.

envelope- (b) Backward-Euler based envelope-
following method.

Fig. 1. TIllustration of envelope and Petzold’s method.

The process described above is analogous to solving the envelope
by conventional forward-Euler integration. It uses the slope between
point A and B to approximate the derivative of the envelope solution
at point A. This is a valid approximation if the envelope varies much
more slowly than the fast oscillation. If the extrapolation distance
is (m—1)T (time interval between point B and C), the process of
envelope-following can be described by a difference equation:

x(t4+T)—x(1)

x(t+mT) =x(t)+mT T

@)

Although this forward-Euler based envelope-following is easy to
illustrate, it is not very useful in practice since the envelope step
cannot be very large due to stability issues, just as with the normal

forward-Euler integration method. A more stable, backward-Euler
based, envelope-following method is given by
x(t+mT)—x(t+(m—1)T)

x(t+mT) =x(t) +mT T . 3)

When implicit methods are used, the only unknown is x(z + (m —
1)T); the state at ¢t +mT can be evaluated by integrating (1) for one
fast cycle, and can be written using the state transition function ¢ as

x(t4+mT)=o0x(t+(m—1T),t+(m—1)T,t+mT). 4)

(3) is a boundary-value problem, illustrated in Figure 1(b), which
can be solved by any nonlinear solution method, such as Newton-
Raphson. An initial value of unknown xy is guessed and then a
cycle of transient simulation is performed to obtain the state x;. This
information is used to update xo using Newton’s method until the
boundary condition x| — xgqrr = m(x] —xg) is satisfied.

B. Extensions to oscillators

Envelope-following methods involve integrating (1) for one cycle
T. For oscillators, however, T is not known a-priori. It is extremely
important that 7 be accurately calculated; otherwise, inaccuracies
in envelope following may build up rapidly to such an extent that
large envelope steps cannot be taken at all, leading to a complete
breakdown of any envelope algorithm.

In [5], Petzold proposed a minimization-based algorithm to esti-
mate the period. It is motivated by the observation that if x(z) is
periodic with period T, then ||y(t+T)— y(¢)|| = 0 on the interval
on which x(¢) is defined. Therefore, the period T can be estimated
by minimizing ||y(t+7) —y(¢)||.. However, performing such a mini-
mization is not computationally cheap, and also, reliant on heuristics
for effective minimization.

Another, simpler, approach towards defining the period is to find
certain points that appear repeatedly in the waveform; for example,
zero-crossing points [16]. In [16], zero-crossing of the derivatives
is used, since the waveform itself may not actually cross zero. At
the same time, ||y(t;) —y(%2)||, where #; and #, are zero-crossings, is
also examined in case the waveform has more than one zero-crossing
point within a period.

However, estimation of the envelope step is left to the time-
stepping algorithm, just as in normal numerical solution of differential
equations, in both the methods above. This can be a cause of reduced
robustness when the time-period is varying, because the envelope step
may not exactly be an integer number of cycles. It is critical that this
envelope step be accurately estimated, for essentially the same reason
that T needs to be found accurately, i.e., in order to properly “line up”
the points A, B, and C in Figure 1(a) and obtain a smooth envelope.

III. MPDE-BASED ENVELOPE METHODS

In this section, we first review MPDE methods and their numerical
solution, including the problem of finding good initial conditions. We
then present their extensions to oscillators, i.e., the Warped MPDE
(WaMPDE).

A. MPDE methods for widely separated time scales

In the multi-time partial differential equation (MPDE) formulation,
artificial time scales are introduced to decouple slow and fast time
scales [4], [15]. Each rate of variation is represented by its “own”
time scale, so can be solved using its “own” time step size. Thus,
the envelope, i.e., the slow component in a signal, can be solved
efficiently since large time steps can be used for its time scale. For
simplicity, we consider two time scales, one fast and one slow. The
MPDE form corresponding to (1) is

dq(£) | 9q(%)
ot 1 atz

+ +f(®) =b(11,1), )
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where £(f1,,) and b(t),1,) are the bivariate forms of x(¢) and b(r),
respectively. Here, without loss of generality, we choose 71 to be the
slow time scale and 7, to be the fast time scale.

The envelope equation that results from the MPDE [18] is essen-
tially a DAE in the slow envelope time scale. Taking a time-step along
the envelope time scale involves solving a steady-state problem with
periodic boundary conditions along the fast time scale [15]. To start
the DAE solution along the envelope time scale, however, a periodic
solution along the fast time scale needs to be given at t = 0 (the
initial starting point of the envelope simulation) along the envelope
time scale. It has been shown [18] that proper choice of this envelope
initial condition, which involves heuristics, is crucial to the efficiency
of the MPDE-based and Fourier envelope solution.

B. The Warped MPDE (WaMPDE)

The MPDE is not well suited for analyzing frequency modulation
(FM) in oscillators. To remedy this situation, the Warped MPDE (or
‘WaMPDE) formulation was devised in [17]. In the WaMPDE, the fast
time scale is dynamically rescaled (or warped) to undo frequency-
modulation and make the fast undulations uniform. The resulting
warped multi-variate waveforms can be represented compactly (as
for circuits without FM), while the rescaled fast time scale captures
the effects of FM. At the equation level, the WaMPDE is formed by
adding an extra unknown (representing the instantaneous frequency)
to the MPDE as [17]:

dq(%) dq(£)
o ot

where #| is the unwarped (slow) time scale and 7, is the warped (fast)
time scale.

To solve the WaMPDE, an extra equation must be added to the
system, since there is one more unknown than there are equations.
We note that (6) is autonomous in the #, scale, i.e., a time shift in
tp from any solution x(f1,1;) is also a valid solution. Uniqueness of
the solution is enforced by adding a phase condition, which fixes the
phase of one variable at, e.g., #; = 0. For example, the phase condition
can be specified to be:

+f(®) =b(t1,1), (6)

+o(t1)

dx(t1,0)
dn

where £;(f1,1,) is one of the state variables. The WaMPDE can then
be solved with numerical methods similar to those for the MPDE.

The WaMPDE also faces the same problem of finding good
envelope initial conditions, just as for the MPDE. Finding good
envelope ICs for oscillators is, indeed, typically more difficult, due
to the unknown period of the oscillator. The techniques in [18] are
not immediately extensible to oscillators.

‘tZ:O = O’ (7)

IV. THE PROPOSED ALGORITHM

In this section, we propose a Multiple Phase Condition based
ENVelope-following method (MPCENV) for oscillators. The con-
nection between MPCENV and the WaMPDE is also discussed.

A. The MPCENV method

In MPCENV, we introduce two extra unknowns: 7 to represent
the changing period of the oscillator, and 7, (the envelope step) to
capture the effect of FM — since the periods of small cycles will
typically vary, although slowly, within an envelope step. In other
words, the envelope step will, in general, no longer remain an integer
number of the period T (at any given time point). With these two extra
unknowns, the envelope-following equation system (for example, the
backward-Euler based one (3)) becomes underdetermined, since the
number of unknowns becomes more than that of equations.

Our solution to this is directly motivated by our goal of keeping the
phases at the beginning and the end of a fast cycle (also the beginning

of the next cycle) the same. Recall that for the non-oscillatory case,
this is automatically satisfied because the period of the fast oscillation
is known (and a fixed constant over the simulation). For the oscillator,
since the period is unknown and changing, these conditions must be
enforced. For example, we can use a phase condition similar to (7), at
both the beginning and the end of the fast cycle over which standard
transient simulation is performed during envelope following. Only
the phase of one of the state variables needs to be fixed. Using the
backward-Euler based envelope-following method as an example, we
add these two phase conditions to xo and x1, as shown in Figure 1(b).

We now have a well-determined system with equal numbers of
equations and unknowns, which can be solved by nonlinear solvers
such as Newton’s method. The augmented backward-Euler based
envelope-following equation system is:

X(t 4 Tox +T) —x(t +Towr) Xt + Tog) — x(2)

T Toxt
dx
dftl +T =0 ®)
dx;
E|r+Tm+T =0,

where x; is the state variable to which the phase constraints are
applied.

Note that the initial condition x;(0) should be chosen such that
it also satisfies the phase condition applied. This is not difficult to
achieve; for example, a transient simulation can be run for a few
initial cycles to choose an appropriate point for this initial condition.
We note that this idea is closely related to a published method for
finding MPDE initial conditions [18].

B. Numerical solution of MPCENV

MPCENYV is a boundary value problem with 2 more phase con-
straints and can be solved by Newton’s method. At each MPCENV
step, the unknowns are x(r 4+ Toy ), T and Toy. x(¢t + Toxe +T) can be
evaluated by integrating one cycle T starting from x(¢ + T,y ). We de-
note the unknown state variables x(¢ + T,xt) by xg; the corresponding
time point as # (fp = ¢ + Toy); the starting state x(r) (which is either
an IC, given at r =0, or known from the previous step) as x;. We
can rewrite (8) using state transition function notation as:

0(x0,70,f0+T) —X0 _ X0 —%s

T Toxt
dxo,
aror g )
dt
do(xo,10,f0+T)1 _ 0
dt ’

The calculation of the Jacobian matrix involves the evaluation of
the derivative of the state transition function, also known as the
sensitivity matrix. It represents the sensitivity of ¢(xo,fo,70 + 7))
to changes of both xy and 7. The evaluation of the sensitivity
matrix is performed during transient simulation with a little additional
computation, just as for the shooting method [19]. Indeed, if we
assume that the sampled envelope does not change with time, then the
boundary condition in (8) becomes a simple periodic one, resulting
in the shooting method.

We apply the trapezoidal integration method (TRAP — better suited
for oscillators since overly stable methods like backward-Euler can

damp out oscillations) to integrate (1) from #y to 7o+ 7. Both j—m

and % can be derived as described in [20]. If x, is the state at #,
(to <ty—1 <ty <to+T), then
&: 9 ﬂ)fl(cn—l _Gn—l)dxn—l
de hn 2 /’ln 2 de ’

(10)
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where C; = 94U5) | G; — 410i) qng p; — 1, — ;. Note that & 4 G2
is the Jacobian matrix of (1) during the integration and is already
available from transient simulation. Starting from Z—jg =1, % can

be found by ?Pplying (10) repeatedly until 79+ T is reached.
Similarly, 77 can be found by applying

dxn Gy Gy,
ar _(E 7) (11)
[(Cn—l _ Gy—1 )dxn—l + q(xn)_q(xn—l)}
hy, 2 ar T

repeatedly, starting from % =0.

V. APPLICATIONS AND VALIDATION

In this section, we apply and validate MPCENV on LC and ring
VCOs. We investigate frequency modulation as well as amplitude
envelopes, and also simulate startup transient envelopes in a high-
Q, crystal-based oscillator. MPCENYV results show excellent matches
with those from traditional SPICE-like transient simulation, while
delivering speedups of 1 -2 orders of magnitude. (All simulation were
performed using MATLAB on an 2.4GHz PC running Linux.)

A. LC VCO

A simple LC VCO from [17] is shown in Figure 2 and simu-
lated using MPCENV. The oscillator contains an LC tank with the
capacitance controlled by a voltage source. The element values are:
R=1kQ,Cd =03uF,C= 5-10"'F, L= 5-10""H,Cm= 3-10""F.
The nonlinear negative resistor characteristic is given in [17] as

i = f(v) = (Go — Ge)Vetanh () + G,
k

where Gg = —0.1,G. = 0.25, and V; = 1. The oscillator has a
nominal frequency of 10MHz.

(12)

i = f(v) [] L ¢ c

Fig. 2. Circuit schematic of a LC VCO.

We start the envelope simulation from the oscillator’s steady state.
Initial conditions are chosen so that they satisfy the phase condition
in (8). The controlling voltage is a sinusoid with the frequency
10* times slower than the oscillator’s free-running frequency (V, =
0.6sin(2110%¢)). The main purpose of this simulation is to illustrate
strong FM in VCOs and show how MPCENYV captures it. Figure 3(a)
shows the frequency change due to the variation of the capacitance
in LC tank. The envelope solution of the inductor current from
MPCENYV is shown in Figure 3(b). The full transient simulation
result is compared with the result of MPCENV — the envelopes
match perfectly. The full simulation result is not depicted here due
to the density of fast oscillations. In this example, MPCENV takes
envelope steps of about fast 200 cycles each, solving the Newton
equations with only 2-3 iterations at each step. A speedup of more
than 40x over full transient simulation is obtained for this example.

B. 3 stage ring VCO

A 3 stage ring VCO is shown in Figure 4. Each stage is identical
in this VCO. The resistance is varied by changing the controlling
voltage; this changes the period/frequency of the oscillator. The
oscillator has a free-running frequency of 100MHz.

.
1081 Envelope: current through L
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Fig. 3. LC VCO: solution of the inductor current.

Vdd

1

Fig. 4.  Circuit schematic of a ring VCO.

We choose a point in the oscillator’s steady state as the initial
condition for MPCENYV, i.e., we start the simulation from steady
state. The VCO’s controlling voltage is 10 4 2sin(2r10%). The
simulation interval is 0.3 ms. A nominal envelope timestep of 200
cycles is used in this example. Figure 5(a) shows the variation of
the oscillation frequency, as it responds to the controlling voltage.
The envelope solution of the amplitude variation at the output of the
3rd stage is shown in Figure 5(b) and compared against transient
simulation results. They are in good agreement. We obtain speedups
of about 35x for this example.

2.804]

1.02] 2.802

2
»
P

Frequency (Hz)
Voltage (V)

2.798|

2.796|

3 4
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(a) Ring VCO: frequency modula- (b) MPCENV envelope solution of the
tion. output of the 3rd stage.

o 1 3 4 0 1

2 2
Time (s) Y10 Time (s)

Fig. 5. Ring VCO: solutions of MPCENV.

C. Startup transient, Pierce crystal oscillator

Figure 6 shows a Pierce crystal oscillator from [21], [22]. The
element values are: R; = 100KQ,Ry = 2.2KQ,C; = 100pF,C, =
100pF,Cp = 25pF,Cs = 99.5fF,R; = 6.4Q and Ly = 2.55mH, result-
ing in a high quality factor Q about 2.5 x 10*. The bipolar transistor
has current gain 3 = 100, and the oscillator’s nominal frequency is
around 10MHz. Due to its high Q, the crystal oscillator takes many
oscillatory cycles to reach its steady state from power-on start up.

In the simulation, we use variable envelope stepsizes, based on a
very simple convergence criterion: if the envelope Newton converges
in a few iterations, we increase the envelope step; otherwise, if
Newton takes too many iterations, we shorten the step. Figures 7-8
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Fig. 6. Circuit schematic of a pierce crystal oscillator.

show waveforms obtained by MPCENYV at the base and the collector
of the BJT. As can be seen, the envelope step is small at the beginning
due to a relatively fast-changing envelope. The envelope step gets
larger as the oscillator approaches its steady state and the waveform
stabilizes. Over the simulation, MPCENV takes an average envelope
step of about 91 fast cycles. For full transient simulation, it takes
about Ims (10000 cycles) to approach the steady state and about
another 2ms (20000 cycles) to actually reach the steady state. We
obtained a speedups of 45 over the transient for this simulation.

Voltage (V)
> ® 3

Voltage (V)

IS

[
0 1

3 a ] 1

2 2
Time (s) ™ Time (s)

(a) MPCENV solutions

x10°

(b) the envelope solution

Fig. 7. Waveform at the collector of the BJT in the pierce crystal oscillator.

Voltage (V)

-

Voltage (V)

3 2 o 1

] 1 2
- Time (s)

2
Time (s) x10°

(a) MPCENYV solutions (b) envelope solution

Fig. 8. Waveform at the base of the BJT in the pierce crystal oscillator.

We note in passing that MPCENYV can thus also be used as a means
for finding the steady state solution of high-Q oscillators (e.g., [10]),
since it accelerates the simulation of startup transients — although
this is of course not its only capability.

VI. CONCLUSIONS

We have presented a robust and efficient algorithm for oscillator
envelope following. Our approach is able to capture dynamic fre-

quency changes accurately and robustly, leading to unprecedented
robustness compared to prior methods. We have applied our method
to different types of oscillators and obtained speedups of 1-2 orders
of magnitude over transient simulation.
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