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Abstract— We address the problem of fast and accurate compu-
tational analysis of large networks of coupled oscillators arising in
nanotechnological and biochemical systems. Such systems are com-
putationally and analytically challenging because of their very large
sizes and the complex nonlinear dynamics they exhibit. We develop
and apply a nonlinear oscillator macromodel that generalizes the well-
known Kuramoto model for interacting oscillators, and demonstrate that
using our macromodel provides important qualitative and quantitive
advantages, especially for predicting self-organization phenomena such
as spontaneous pattern formation. Our approach extends and applies
recently-developed computational methods for macromodelling electrical
oscillators, and features both phase and amplitude components that are
extracted automatically (using numerical algorithms) from more complex
differential-equation oscillator models available in the literature. We
apply our approach to networks of Tunneling Phase Logic (TPL) and
Brusselator biochemical oscillators, predicting a variety of spontaneous
pattern generation phenomena. Comparing our results with published
measurements of spiral, circular and other pattern formation, we show
that we can predict these phenomena correctly, and also demonstrate
that prior models (like Kuramoto’s) cannot do so. Our approach is more
than 3 orders of magnitude faster than techniques that are comparable
in accuracy.

I. INTRODUCTION

Coupled self-oscillating systems appear in diverse natural and
physical systems. For example, in nanoelectronics, the tunneling
phase logic (TPL) [1], [2] device, which makes use of the bistability
of single-electron tunneling oscillation to realize logic in phase are
proposed for large scale circuits, due to its extremely high gate
density and ultra low power dissipation. This concept has been
applied [3] to implement cellular nonlinear networks (CNN) [4],
[5], with ultra-high integration levels far beyond even DSM CMOS.
Such CNN systems, consisting of large populations of interacting
TPL oscillators, constitute a promising approach for implementing
future large-scale high performance image processing systems.

It has long been known empirically that in systems of coupled
oscillating entities, self-organizing collective behavior begins to occur
when coupling exceeds a certain threshold; some entities start to
synchronize spontaneously while others remain incoherent. Such “co-
operation” and “competition” engendered by oscillatory nonlinear
dynamics can produce complicated and beautiful spatio-temporal
patterns of collective behavior. In particular, pattern formation arising
from the nonlinear interaction of many individual cells in biochemical
systems is a fascinating and extensively noted phenomenon (e.g., [6]–
[8]) — for example, an important issue in developmental biology
is understanding the formation of spatial patterns in the embryo.
These patterns can be explained by reaction diffusion theory [9],
which shows that a system of reacting and diffusing chemicals can
evolve spontaneously, from an initially uniform or random state, into
spatial patterns known as Turing structures [9]. Such a process can be
modeled as a network of biochemical oscillators interacting with each
other. A typical example is the Brusselator reaction-diffusion system
[10], whose patterns have recently been studied by experiments and
simulation, especially under periodic perturbations [11], [12].

Although the dynamics of coupled oscillating systems have been
well studied experimentally, analytical understanding of the details
of pattern formation remains a challenge. A fundamental difficulty
is that while it is often possible to understand specific systems
of a few coupled oscillators at an analytical level, collective self-
organization typically manifests itself only when large numbers of
oscillators are networked. Many important characteristics of such
large networks have been essentially impossible to understand fully
using hand analysis so far, in part because pattern generation is often
very sensitive to small details of the nature of and coupling between
individual network entities [13], [14]. Thus, analytical simplifications

that may be justified for small systems are potentially inapplicable
to much larger ones and can lead to egregious mispredictions. As a
result, accurate and detailed computational techniques are particularly
critical for developing “understanding” of such systems. Because of
the huge sizes and complex dynamics of these oscillatory networks,
however, the computational problem is very challenging.

A straightforward computational method for nonlinear systems is
to use numerical differential equation solvers to simulate waveforms
in the time domain. But while such “transient” methods work well for
non-oscillatory systems, they are far less suitable for simulating oscil-
lators, especially coupled oscillators, due to inherent error buildup in
phase. Very small timesteps have to be taken within each oscillation
cycle and a complex integration methods need to be used to provide
acceptable accuracy over long simulations. These problems are very
familiar to circuit designers using simulation programs like SPICE
[15] on oscillators, even though conventional electronic oscillator
systems are usually very small relative to networks of nano and
biochemical oscillators. Because envelopes and phase transition in
oscillatory systems can evolve very slowly over thousands or millions
of cycles, the computational challenge is dramatically exacerbated.

An extensive and deep literature is available on analytical ap-
proaches for understanding coupled oscillator systems; here, we
provide a very brief synopsis of the main approaches in order to
better place our contributions. One of the earliest studies was made
by the legendary Norbert Wiener [16], [17], who studied collective
synchronization phenomena using a Fourier-integral-based method.
Later, Winfree formulated an equation governing phase transitions
in populations of coupled limit-cycle oscillators and presented the
concept of a phase sensitivity function [18]. Winfree’s approach was
abstracted by Kuramoto and applied to systems of identical oscil-
lators with equally weighted, all-to-all, purely sinusoidal couplings,
resulting in a well-known phase-based nonlinear differential equation
model for coupled oscillator systems, the Kuramoto model [19], [20].

Using his model, Kuramoto developed a steady-state ‘locking’ (or
‘drifting’) condition which has been shown to successfully predict
bifurcation of phase transitions in coupled oscillator systems. Ku-
ramoto’s model has been extremely influential because it has provided
a relatively simple means of understanding self-organizing phenom-
ena in systems of coupled oscillators. For predicting detailed pattern
formation in a variety of real systems, however, Kuramoto’s approach
has accuracy limitations that can compound, in large networks, to the
extent that wrong patterns can emerge, as we show in this paper.

The main contribution of this work is a much more powerful
model that alleviates the lack of accuracy and general applicability
of Kuramoto’s model, while retaining its advantages of relative
simplicity and computational efficiency; and indeed, significantly
enhancing the convenience and ease with which the model can be
specialized for any specific system of interest. Our model consists of
nonlinear phase macromodel, together with amplitude macromodel
that capture dominant amplitude components. The nonlinear phase
macromodel is a scalar, nonlinear differential equation for phase
deviations. A fundamental mechanism in collective synchronization
is phase pulling/locking between oscillators; our phase macromodel
captures these phenomena very effectively [21], [24].

In some situations (e.g., strong loading effects due to coupling,
unlocked mutually pulling oscillators, etc.), amplitude variations are
large and couple significantly with phase effects, hence it is necessary
to take them into account. To do so, we incorporate an amplitude
macromodel [21] together with our phase equations. Thus, we are
able to predict a much broader range of coupled oscillatory phenom-
ena, with better accuracy than when using the phase macromodels
alone. We develop models of common coupling mechanisms between
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oscillators that capture both phase and amplitude implications.
Importantly, both phase and amplitude macromodels can be ex-

tracted from the oscillators’ differential equations automatically via
numerical algorithms, making this method very easily applicable to
a diverse variety of large and complex oscillator systems.

We apply and validate our technique on networks of biochemical
and nanoelectronical oscillators: a large coupled Brusselator chemical
dynamics system [10] and TPL-based cellular nonlinear network
(CNN) [3]. We show that our methods are able to reproduce the
formation of two important patterns families in biochemical systems:
target patterns and spiral wave patterns, showing that they closely
match measurements reported in the literature [6]–[8]. Furthermore,
we show that Kuramoto’s model is unable to predict the correct
patterns. For the TPL network, we validate bistability behavior and
demonstrate image processing ability (e.g., edge detection) in the
TPL-CNN system, predicting patterns very close to measurements
reported in [3]. Our methods provide speedups of more than 3 orders
of magnitude over direct time-stepping simulation of the original
oscillator network.

The remainder of the paper is organized as follows: in Section II,
we review the Winfree and Kuramoto models for the analysis of
collective synchronization in coupled systems. In Section III, we
summarize the nonlinear oscillator macromodel that we employ in
this work. In Section IV, we describe our nonlinear macromodel-
based technique for simulating coupled oscillating systems. Finally, in
Section V, we present applications to the TPL-CNN and biochemical
Brusselator systems.

II. REVIEW OF PREVIOUS WORK

In this section, we summarize relevant previous work in the
analysis of coupled oscillator systems.

A. Winfree’s Equation For Coupled Systems
For the study of phase dynamics in coupled systems, a fruitful

approach, pioneered by Winfree in 1967 [18], is based on the
intuition that if an oscillator is perturbed by an external input at
a given moment, its phase change should equal to the product of the
perturbation strength and a “phase sensitivity” of the oscillator at that
moment. Based on this intuition, Winfree formulated the governing
equation for a coupled oscillating system with the assumptions of
weak coupling and nearly identical oscillators. His phase model is
expressed by

θ̇i = ωi +(
n

∑
j=1

X(θ j))Z(θi), i = 1, ...,n, (1)

where n is the number of oscillators in the system, θi is the phase of
oscillator i, θ j is the phase of oscillator j and ωi is the free running
frequency of oscillator i. X(θ j) denotes the influence on oscillator i
exerted by oscillator j, and Z(θi) is the phase sensitivity function of
oscillator i.

The chief difficulty with Winfree’s model is that no clear or
convenient means is provided for obtaining the phase sensitivity
functions, which is not easily obtained. As we show later in this
paper, our approach completely resolves this issue.

B. Kuramoto’s Model For Coupled Systems
Kuramoto extended and simplified Winfree’s approach [19] by

showing (using asymptotic expansion theory [22] and averaging) that
the long-term phase dynamics of weakly-coupled simple-harmonic-
type oscillators can be predicted using

θ̇i = ωi +
n

∑
j=1

Γi j(θ j −θi), i = 1, ...,n, (2)

where n is the system size and Γi j are “interaction functions”.
Obtaining the interaction functions faces the same difficulties as

Winfree’s phase sensitivity function. Kuramoto made simplifications
using the assumption that the coupled system was made up of
identical oscillators with equally weighted, all-to-all, and purely
sinusoidal coupling, resulting in

Γi j(θ j −θi) =
K
n

sin(θ j −θi), i = 1, ...,n. (3)

K is a coupling strength. The phase equation is thus simplified to

θ̇i = ωi +
K
n

n

∑
j=1

sin(θ j −θi), i = 1, ...,n. (4)

To visualize the phase dynamics, Kuramoto introduced the complex
order parameter

reiψ =
1
n

n

∑
j=1

eiθ j , (5)

where r(t) is the radius which measures the phase coherence, and
ψ(t) is the average phase. Equating the imaginary part of (5), the
right hand side of (4) can be rewritten as

K
n

n

∑
j=1

sin(θ j −θi) = Kr sin(ψ −θi). (6)

Thus, (4) becomes

θ̇i = ωi +Kr sin(ψ −θi) (7)

Kuramoto showed that the locking condition of oscillator i in a
coupled system is

|∆ωi| ≤ Kr, (8)

where ∆ωi is the difference between the free-running frequency of
oscillator i and the mean frequency of the coupled system.

As noted in the introduction, the simplifications inherent in Ku-
ramoto’s model makes its predictions questionable when applied to
large systems of self-organizing oscillators.

III. NONLINEAR OSCILLATOR MACROMODEL

In this paper, we present a generally applicable approach for
predicting nonlinear dynamics in coupled oscillating systems. Our
method is based upon a nonlinear oscillator macromodel origi-
nally developed for predicting noise, injection locking and other
phenomena in electrical oscillators [23], [24]. In this section, we
briefly review the nonlinear oscillator macromodel we employ for
the simulation of coupled oscillating systems.

A. Oscillator Phase Macromodel - Intuition
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Fig. 1. Decomposition of phase and amplitude variation of oscillator under
impulse perturbation.

Figure 1 depicts the decomposition of phase and amplitude vari-
ation of oscillators under impulse perturbation. The first figure is
the steady state waveform of the oscillator without perturbation. The
second figure depicts the waveform of the oscillator if an impulse
perturbation is applied to the oscillator at t = 0: the oscillator features
some transient amplitude variation which vanishes as time goes
on, until finally, it converges to its steady state again, but with
a permanent phase shift of φ . Intuitively, we know this perturbed
waveform can be decomposed into a steady state waveform with
the time shift φ , and the amplitude response y(t), as shown in the
third and fourth figure respectively. Since the amplitude response
of a perturbed oscillator is stable, this implies that the impulse
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response y(t) should die out as time goes to infinity. As a result, the
decomposition of the phase deviation φ and the amplitude response
y(t) should be unique, and the response of the perturbed oscillator
can be represented as

xp(t) = xs(t +φ)+ y(t), (9)

where xs(t) is the steady state of the unperturbed system and xp(t)
represents the waveforms of the perturbed system.

Since oscillators are periodic systems, phase shift φ is dependent
on the time when the impulse injection is applied to the oscillator.
If we sweep the impulse injection from t = 0 to t = T , we obtain
a periodic waveform of phase shift φ(t), which we call the phase
sensitivity waveform, and which is very important for predicting the
oscillator’s jitter performance. Since it is not practical to obtain the
phase sensitivity waveform using impulse injection, a method for
calculating it without performing the full simulation is of great value.

B. Nonlinear Oscillator Phase Macromodel
In [23], Demir et al put this intuition on a solid mathematical

foundation. Using Floquet theory [25], [26], Demir presented the
method for obtaining phase sensitivity waveforms from an oscillator’s
linearized periodically time varying (LPTV) systems, and formulated
a nonlinear scalar differential equation to capture the oscillator’s
phase deviation due to perturbations.

A general oscillator under perturbation can be described by

ẋ+ f (x) = b(t), (10)

where b(t) is a vector of perturbation signals applied to the free
running oscillator. The corresponding LPTV system can be obtained
by linearizing this oscillator about its steady state orbit:

ẇ(t) ≈− ∂ f (x)
∂x

|xs(t)w(t)+b(t)

=A(t)w(t)+b(t),
(11)

where xs(t) is the steady state orbit of the oscillator. Via Floquet
decomposition of the homogeneous part of this LPTV system, a series
of Floquet exponents and corresponding eigenvectors can be obtained.
Since we know, from Figure 1, that phase deviation φ never vanishes,
it should correspond to the Floquet exponent with the value of 0. [23]
showed that the phase sensitivity waveform of the oscillator can be
extracted from the eigenvector associated with the Floquet exponent
0, and that the phase deviation α(t) is governed by a simple one-
dimensional nonlinear differential equation [23]

α̇(t) = V T
1 (t +α(t)) ·b(t), (12)

where V1(t) is the perturbation projection vector (PPV). V1(t) is a
vector with the size of system size n; Each element in V1(t) represents
the oscillator’s phase sensitivity to the perturbation applied to the
corresponding node. The PPV, or the phase sensitivity vector, has
periodic waveforms that have the same frequency as that of the
oscillator. Various methods [23], [27]–[29], both in the time domain
and the frequency domain, have been presented for calculating the
PPV from SPICE-level circuit descriptions of oscillators. In (12), the
phase deviation α(t) has units of time. To obtain the phase deviation
in radians, we need to multiply α(t) by the oscillator’s free-running
frequency ω0.

C. Amplitude Macromodel
Once the phase deviation α(t) is obtained by solving (12), a

macromodel for dominant amplitude components can be built as
well, by linearizing the oscillator over its perturbed time-shifted
orbits xs(t + α(t)). In [21], a method is presented to construct
amplitude macromodels of oscillators. The oscillator is first linearized
on xs(t +α(t)):

ẏ(t) ≈ −∂ f
∂x

|xs(t+α(t))y(t)+b(t)

= A(xs(t +α(t)))y(t)+b(t), (13)

where xs(t) is the oscillator’s steady-state orbit, α(t) is the phase
deviation due to perturbation b(t), and y(t) is a small amplitude
deviation from the phase-shifted orbit, due to the perturbation b(t).
By introducing a new variable t̂ = t + α(t) and defining ŷ(t̂) = y(t)

and b̂(t̂) = b(t), we obtain a linear periodic time-varying (LPTV)
system

˙̂y(t̂) = A(xs(t̂))ŷ(t̂)+ b̂(t̂). (14)

Applying Floquet decomposition, the LPTV system can be decom-
posed into a diagonalized LTI system with periodic input/output
vectors:

ŷ(t̂) =
n

∑
i=1

ui(t̂)
∫ t̂

0
exp(µi(t̂ − τ))vT

i (τ)b̂(τ)dτ, (15)

where µi are Floquet exponents, and vi(t) and ui(t) are periodic in-
put/output vectors. By dropping the Floquet exponent corresponding
to phase and other less important Floquet exponents, we obtain a
reduced amplitude macromodel.

When both the phase shift α(t) and amplitude variations y(t) are
available, the oscillator’s orbit under perturbation can be obtained by
the equation

xp(t) = xs(t +α(t))+ y(t), (16)

where xs(t) is the steady state orbit of the oscillator, and xp(t) is the
orbit of the oscillator under perturbation.

IV. SIMULATING COUPLED OSCILLATORS USING THE
NONLINEAR OSCILLATOR MACROMODEL

Once oscillator macromodels are obtained using the methods in
Section III, the complex oscillator equations in the coupled system
can be replaced with the nonlinear scalar phase equation (12),
and the coupling between oscillators can be modeled as the inputs
applied to (12). The resulting reduced system can be simulated using
any transient simulator, with great speedups compared to the full
system. Moreover, since the system is simulated in the phase domain
directly, the simulation efficiency can be improved by using larger
timesteps and simpler integration methods, without appreciable loss
of accuracy.

A. Nonlinear Phase Equation For Coupled Systems
Since in (12) V1(t) is a vector in which each element represents

the phase sensitivity of the corresponding node in the oscillator, and
b(t) is also a vector of size n that models the perturbation on each
oscillator circuit node, our method can handle a system consisting of
oscillators with different characteristics, coupled with very complex
topology. For purposes of illustration of simplicity, we assume that
the coupled system consists of identical oscillators, and coupling
only occurs on one node with the phase sensitivity function v(t) and
the steady state waveform x(t). This leaves the following governing
equation of the coupled system:

α̇i(t) = v(t +αi(t)) · γi(t), i = 1, ...,N, (17)

where N is the network size or number of oscillators in the coupled
system, αi(t) is the phase shift of oscillator i due to coupling, v(t)
is the phase sensitivity of the node on which coupling occurs and
γi(t) is the coupling function that models the coupling force applied
to oscillator i. If the coupling γi(t) and phase sensitivity v(t) are
purely sinusoidal waveforms, it is easy to show that (17) is equivalent
to Kuramoto’s model. However, when the coupling and the phase
sensitivity functions are not purely sinusoidal, (17) is far more
accurate than Kuramoto’s model, since it considers all harmonics.

B. Modeling Coupling In Coupled Systems
To solve (17), we need to formulate the coupling function γi(t),

which models the coupling force applied to oscillator i from other
oscillators in the coupled system. Here, we model three typical cou-
plings: resistive coupling, capacitive coupling and idealized coupling,
shown in Figure 2.

1) Resistively-loaded coupling: Figure 2(a) depicts a system cou-
pled by resistors; the resistance between oscillator i and oscillator j
is Ri, j (Ri, j = ∞ if there has no coupling between oscillator i and
oscillator j). Such coupling adds a load to the oscillator and this can
lead to significant amplitude effects if the coupling is strong. We call
this the loading effect. For such a system, the coupling function can
be written as

γi(t) =
n

∑
j=1

(x j(t)− xi(t))/Ri, j (18)
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Fig. 2. Typical coupling in coupled oscillating systems.

and models the perturbation current injected into oscillator i, where
x j(t) and xi(t) are the voltage waveforms of oscillator j and oscillator
i respectively. According to (16), the oscillator waveform has the form

xi(t) = x(t +αi(t))+ yi(t), i = 1, ..,N, (19)

where x(t) is the oscillator’s steady state waveform, αi(t) is the
oscillator’s phase shift due to coupling, and yi(t) is the oscillator’s
amplitude variations due to coupling. These can be calculated using
the method in [21]. In the case that the coupling is weak and the
loading effect is negligible, we can ignore the amplitude variations
and obtain a simpler form:

xi(t) = x(t +αi(t)), i = 1, ..,N. (20)

If the coupling is not weak, the loading effect may change the
free-running characteristics of the oscillator (e.g., as in relaxation
and ring oscillators). In such cases, Kuramoto’s model cannot apply,
since it assumes oscillators converge to a mean frequency that can
be changed due to the loading effect.

2) Capacitively-loaded coupling: If the system is coupled by
capacitors, as shown in Figure 2(b), and the capacitance between
oscillator i and oscillator j is Ci, j (Ci, j = 0 if there has no coupling
between oscillator i and oscillator j), the coupling function can be
written as

γi(t) =
n

∑
j=1

Ci, j · (ẋ j(t)− ẋi(t)), (21)

where ẋ j(t) and ẋi(t) are derivatives of waveforms on oscillator j
and oscillator i. If the oscillator waveforms have the form of (20),
their derivatives can be written as

ẋi(t) = ẋ(t +αi(t)) · (1+ α̇i(t)), i = 1, ...,N. (22)

Considering that α̇(t)� 1 if coupling in the system is weak, we can
simplify (22) as

ẋi(t) = ẋ(t +αi(t)), i = 1, ...,N (23)

for the weak coupling case.
If the coupling is not weak, the loading effect needs to be taken

into consideration, and we need to incorporate the amplitude macro-
model. Furthermore, capacitive loading may change the free-running
frequency of LC type oscillators, since it changes the equivalent tank
capacitance. For such a system, the oscillator will not converge to a
mean frequency, and Kuramoto’s model fails for this case as well,
since it assumes that oscillators converge to a mean frequency.

3) Idealized coupling (without loading): Figure 2(c) depicts the
idealized coupling case. The coupling from oscillator j to oscillator
i is modeled by coupling factor g j,i. Such systems have no loading
effect, and is thus the only case in which Kuramoto’s model can

apply. The coupling function can be written as

γi(t) =
n

∑
j=1

g j,i · x j(t), i = 1, ...,N. (24)

Incorporating the coupling function γ(t) into the governing phase
equation (17), we can solve the phase dynamics of complex cou-
pled systems in this simplified form using the traditional transient
integration method. Since the system size is reduced and the phase is
simulated directly, we obtain speedups without appreciably sacrificing
accuracy, especially in the case of large coupled systems with
complex oscillator models.

V. APPLICATION TO LARGE OSCILLATOR NETWORKS

In this section, we apply and evaluate our technique. We apply
our method to simulate the collective behavior of different coupled
oscillating systems, including nanoelectronic systems and biochemi-
cal systems. We first simulate a Brusselator system to show that our
model is able to reproduce complex pattern formation processes in
biochemical systems. We then apply our technique to a TPL-based
CNN system to demonstrate its ability in simulating next-generation
nano-scale systems. All simulations are performed using MATLAB
on a Linux system. We construct oscillator macromodels using
the method described in Section III, and simulate the behavior of
different coupled systems using the method described in Section IV.
Numerical results show our method is able to capture the phase
and amplitude dynamics in coupled systems with good accuracy. We
obtain speedups of about 3000× in our simulations.

A. Pattern formation in a Brusselator biochemical network
Patterns widely exist in many biological systems, such as animal

furs and human fingerprints. The pattern formation process, which
is important for the understanding of biological mechanisms in
biological systems, can be modeled as a reaction-diffusion system.
In such systems, chemicals interact with each other, forming patterns
from an initially uniform state. The simulation of these chemical
interaction systems present a challenge for direct simulation methods,
as the system sizes are very large. In this section, we simulate a large
Brusselator biochemical system using our macromodel-based method.

A Brusselator system is a oscillating chemical system with two
chemical species,

∂u
∂ t

= A− (B+1)u+(1+ γ · sin(2π f t))u2v+Du∇2u

∂v
∂ t

= Bu−u2v+Dv∇2v,
(25)

where u and v are two species, A and B are constant parameters
corresponding to feed concentrations, γ sin(2π f t) is the external force
applied to the oscillator, and Du and Dv are the diffusion coefficients.
We chose A = 0.5 and B = 1.5 in our simulations.

We simulate a network of Brusselator oscillators with size of
400×400 (about 160000 oscillators). After discretizing the diffusion
between oscillators, we obtain a coupled oscillating system coupled
by resistive coupling. The coupling resistance R is dependent on
diffusion coefficients Du and Dv. We show that the coupled system
forms different patterns when the coupling resistance R is varied.

We first choose the coupling resistance R = 15, and simulate the
system using our method for 150 cycles. The simulation results
are shown in Figure 3, which clearly depicts the pattern formation
process in this coupled oscillating system. In this figure, we use
colors to represent the phase of oscillators, i.e., different colors
indicate oscillators with different phases. At the beginning (t = 0), all
oscillators are given a random phase: hence we cannot see any pattern.
After 5 oscillating cycles (t = 5T ), the collective synchronization
phenomenon is clearly seen: oscillators synchronize their phase with
the phase of their neighbors. As a result, we can see many color spots
in the figure. After 20 oscillating cycles, some small target patterns
appear, and a spiral wave pattern forms on the right side of the figure.
From t = 40T onwards, we can see those patterns grow, and merge
together. Finally, after 150 cycles, we obtain a complex figure which
combines both target pattern and spiral pattern. This pattern is very
close to the experimental measurements reported in [8], [11].

Now we investigate the patterns of this biological system under
different coupling strength, and plot the patterns in Figure 4. In the
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Fig. 3. Pattern formation in an unforced biochemical system.

first figure, coupling is strong (R = 10), all oscillators lock to same
phase, so we cannot see any pattern. In the second figure, we increase
the coupling resistance to R = 12.5, a spiral wave pattern forms. We
keep increasing the coupling resistance and obtain different kinds of
patterns, as shown in Figure 4.

Such pattern formation processes are of great importance in
biochemical systems, suggesting new insights in the understanding
of biological processes. Our macromodel based technique offers a
feasible approach for simulating the pattern formation in large bio-
chemical systems. We obtain about 3000× speedup in this simulation.
If the system size is larger and oscillator model is more complex,
speedups can be greater.

B. Nanoelectronic System – Tunneling Phase Logic Based Cellular
Nonlinear Network

Figure 5 depicts a basic tunneling phase logic unit and its oscil-
lating waveform. A basic TPL unit consists of an ultra-small SET
junction with capacitance Cj, a DC bias VDC and a pump voltage Vp.
The SET junction has the property that when its voltage increases to a
threshold VT , single-electron tunneling occurs and the capacitor Cj is
discharged. With the DC bias VDC providing a bias current, the SET
junction behaves as shown in Figure 5(b). The AC pump provides
a sinusoidal voltage with amplitude Vp, which runs two times faster
than the SET frequency. Therefore, if the SET is super-harmonically
locked by the pump voltage, it has two steady states, with the phase
difference π . If the phase of the SET oscillator is set to represent
the logical values 0 and 1, we can realize logic in phase, instead of
voltage as in traditional CMOS circuits.

R=10
50 100 150 200

50

100

150

200

R=12.5
50 100 150 200

50

100

150

200

R=15
50 100 150 200

50

100

150

200

R=40
50 100 150 200

50

100

150

200

R=120
50 100 150 200

50

100

150

200

R=1500
50 100 150 200

50

100

150

200

Fig. 4. Biological patterns under different coupling strength.
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Fig. 5. TPL unit and its voltage-charge characteristic.

We first use the nonlinear phase macromodel to verify bistability in
the TPL. We simulate multiple TPL units with random initial phases,
using the nonlinear phase equation (12). If the TPL has a bistable
nature, the final phase of those TPL units will converge to two phases
with the interval of π . We plot the simulation results in Figure 6. Four
TPL units have different phases at t = 0. After about 20 cycles, the
phases of TPL unit 1 and unit 4 converge to about 3π

2 ; and the phases
of TPL unit 2 and unit 3 converge to about π

2 . Hence, our simulations
verify that the TPL does indeed feature bistability.

In [3], a TPL based CNN implementation is proposed. Here, we use
our macromodel based technique to simulate the TPL-CNN system.
We adopt the near-neighbor coupling topology described in [3], and
define the nonlinear output of the TPL unit as

fi, j(φi, j) =
{

1, π < φi, j < 2π
−1, 0 < φi, j < π, (26)

where fi, j is the output of the TPL cell on row i and column j, and
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Fig. 6. The bistability of the TPL.

φi, j is the cell’s phase.
A major potential application of CNNs is in image processing [30].

Here we present an example to show the image processing ability
of TPL-CNNs: we use a TPL-CNN to detect an image edge. The
original images are shown in Figure 7(a) and Figure 7(b). We transfer
these images into two-color mode and apply them as inputs to the
CNN network. In Figure 7(c) and Figure 7(d), we can see tunneling
occurs and the inputs are replicated at the outputs of the CNN after
4 oscillating cycles. At t = 8T , the edges of the images are detected,
as shown in Figure 7(e) and Figure 7(f).

(a) Original picture (Intel) (b) Original picture (AMD)
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Fig. 7. Image edge detection performed by a TPL-CNN.

VI. CONCLUSION

We extend a nonlinear oscillator macromodelling technique, usu-
ally applied to the prediction of phase noise in electrical systems, to
nano- and biochemical-systems, and demonstrate its ability in solving
some difficult problems in these areas. Experimental results show
that our technique is able to predict the behavior of very large-scale
coupled oscillating systems, with great speedups while preserving the
simulation accuracy. Our future work includes investigating large-
scale oscillating systems under external forces.
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