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ABSTRACT by Petzold [3] and later used for circuit simulation (e.g., [4, 5,
In this paper, we propose a novel envelope-following method which 6, 7, 8]), are time-domain envelope-following methods, in which
is uniformly applicable to both non-autonomous and oscillatory only a few selected fast cycles are simulated using transient, while
circuits. A key feature of our technique is the use of an efficient the rest are interpolated. Another popular envelope approach is the
minimum least squares solution technique to solve an underdeter- frequency-domain Fourier-envelope method [9, 10, 11], which uses
mined envelope system directly. This leads to a general purpose a combination of Harmonic balance and time integration methods.
approach which is much easier to solve than previous phase condi- Recently, a new class of envelope methods, based on Multi-time
tion based envelope-following method, improving numerically ro- Partial Differential Equation (MPDE) circuit formulations [12, 13,
bustness dramatically. We validate our method on a variety of au- 14], provide both time-domain and frequency-domain technique in
tonomous and non-autonomous circuits, including a PLL in tran- a unified manner with the use of artificial time scales.
sition to lock. The new method provides speedups of 1-2 orders The above techniques are applicable to non-autonomous circuits;
of magnitude over transient simulation, while obtaining results that to extend them to oscillators, additional refinements are required.
are equally or more accurate. Unlike forced circuits, which operate at fixed frequencies deter-mined by the inputs, frequencies of oscillators are internally ("au-

tonomously") determined and may change dynamically during op-
Categories and Subject Descriptors eration. Therefore, a major issue in oscillator envelope following

B72[IntegratedCircnAids-simulation is how to find the dynamically changing frequency accurately, such
that envelopes vary smoothly and can be tracked efficiently. The
majority of solutions to this problem have focused on the estima-

General Terms tion of the changing periods of oscillators. For example, Petzold [3]
Algorithms proposed a minimization based approach for estimating the periods

of oscillators in her envelope following method. Later, Gear devel-
oped a simpler method to estimate the period by identifying certain

Keywords points that appear repeatedly in a waveform [15]. Another common
envelope following, leastsqapproach towards estimating the changing period is to add an extraenvelope following, least squares, phase condition variable T to the circuit equation system, and to solve it with the

help of a "phase condition" equation, such as those used in Fourier
1. INTRODUCTION [12, 13, 14] and MPDE based [16] envelope methods. Recently

Signals with widely separated time scales arise in many eclec- published work [17] also accounts for the cumulative effect of the
tical systems. For example, in communication circuits, fast carri- changing periods of cycles skipped during envelope simulation. By
ers are often modulated by information signals that vary orders of adding an extra variable to represent the envelope step taken, the
magnitude slower. Circuits that feature this characteristic include robustness of oscillator envelope is significantly improved.
voltage controlled oscillators (VCOs), phase locked loops (PLLs), However, the envelope methods available today require that os-
mixers, etc.. For such circuits, SPICE-like transient simulation cillators be treated differently, using a structurally different enve-
(e.g., [1, 2]) is often extremely ineffective. Simulation timesteps lope algorithm, from non-autonomous circuits. There appears to be
are constrained by fast signal variations to be very small; but at the no general-purpose envelope technique available that is applicable
same time, the total simulation time needs to be long enough to cap- to both autonomous and non-autonomous systems. This constitutes
ture the slow components, also known as envelopes. The situation a significant limitation of envelope methods, especially when com-
is even worse for oscillators. Due to their fundamental property pared with transient simulation, which is broadly applicable to any
of marginal stability, small numerical errors in oscillator phase ac- kind of circuit. Further, it is not always possible to tell whether
cumulate without limit. Therefore, extremely small timesteps are the circuit being simulated is an oscillator or not, especially since
required during transient simulation to obtain acceptable results. a circuit can change its autonomous nature during operation. Such

To solve such systems more efficiently, researchers have pro- situations are not the exception but are commonly encountered in
posed various techniques. One category of techniques, proposed practice. For example, when an oscillator is injection locked, itloses its natural frequency to match the frequency of the injection

signal. During this locking process, the oscillator changes from
an autonomous system to a forced system. Another very impor-
tant practical application where this happens is phase-locked loops

Permission to make digital or hard copies of all or part of this work for (PLLs), which contain an autonomous VCO which becomes locked
personal or classroom use is granted without fee provided that copies are to an external reference over time.
not made or distributed for profit or commercial advantage and that copies In this paper, we present a novel envelope-following technique
bear this notice and the full citation on the first page. To copy otherwise, to that applies uniformly to both autonomous and autonomous cir-
republish, to post on servers or to redistribute to lists, requires prior specific cuits, and can cope naturally with transitions from one to the other
perrnission and/or a fee. during operation. The method (which we call LSENV) modifies
DAC 2006, July 24-28, 2006, San Francisco, California, USA. the recently-published MPCENV method [17] by introducing the
Copyright 2006 ACM 1-59593-381-6/06/0007 ..$5.00.
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important notion of minimum least-squares solution. We retain the Similar algorithms, which apply explicit and implicit Adams for-
concept of using two extra variables to represent the potentially mulae, can also be derived [31. For instance, the backward-Euler
changing period and the cumulative effect of changing periods, re- based envelope-following method, popular for circuit simulation
spectively. The key advance of our technique, however, is the use applications, can be described by the difference equation:
of a minimum least-squares method to solve an underdetennined
envelope system directly. By exploiting a Moore-Penrose pseudo- x(t + mT) = x(t) + mTX(t + mT)-2x(t ± (m- )T) )inverse based Newton solution method [18], our method is not only T (
more general, but also makes numerical envelope solution much where T is the period of the fast cycles and m the number of cycles
easier and more robust, compared to previous approaches based on in one envelope step (between point A and C in Figure 1).square systems via the introduction of phase conditions. The com-
putational efficiency ofLSENV is virtually identical to that of non-
autonomous envelope-following methods, since we perform least- 035-
squares solution efficiently by deflating away a 2-dimensional null A B
space. Replacing phase conditions by minimum least square so- - - C -
lution also results in the algorithm's naturally finding smooth en- - - -
velopes that would be very difficult to identify even with manual
knowledge and effort; this has further positive implications on effi- ol1
ciency and robustness. We present numerical strategies and a phase
corrector method to further check and ensure the smoothness of the|envelopes solved. -_

We validate our method extensively on a variety of circuits, both _________
oscillatory and non-autonomous. In addition to applying LSENV - 20
to oscillators, mixers, etc., separately, we also consider circuits that
change nature from autonomous to non-autonomous during opera- Figure 1: Illustration of envelope and Petzold's method.
tion. Using LSENV, we are able to predict the onset of injection
locking in forced oscillators effectively. Even more importantly
from an application perspective, we demonstrate that LSENV is 2.2 Envelope following for oscillatorssuitable for simulating the capture/lock process in PLLs. We obtain

The Envelope followingexcellent matches of results from LSENV against transient simula- The main difficulty in applying the above envelope following
tion, but with speedups of 1-2 orders of magnitude. In view of the techniques to oscillatory circuits arises from the fact that the fast
effectiveness and robustness of the technique and also its relative oscillation period T is not known a priori and can, indeed, change
simplicity of implementation, we feel that LSENV, though new, dynamically during circuit operation. It is extremely important that
can already be profitably deployed in industrial simulators. T be accurately estimated in order to sample the fast waveforms in
The remainder of the paper is organized as follows. In Sec- a synchronized manner. Otherwise, the resulting envelope will not

tion 2, we briefly review existing non-autonomous and autonomous be smooth and cannot be followedunsing large envelope steps.
envelope-following methods. In Section 3, we describe LSENV, One technique for estimating the oscillation period, proposed by
discuss numerical solution details and describe refinements to en- Petzold [3], iS to minimize y(t + T)-y(t) I2, where y(t) is the
sure good solutions. In Section 4, we present results from applying vector of circuit unknowns to be solved. A simpler approach is to
LSENV to various kinds of circuits to demonstrate its generality find certain points that appear repeatedly in the waveform, such as
and effectiveness. zero-crossing points [15]. Another method to determine the chang-

ing T uses a "phase condition" equation to augment the steady state
equations used to solve each of the fast cycles encountered during2. ENVELOPE FOLLOWING METHODS envelope simulation. In spite of their estimating T dynamically,

In this section, we first review envelope following methods for these envelope approaches lack robustness because they are unable
forced circuits. We then discuss envelope following for autonomous to account for the cumulative de-synchronizing effect of the chang-
circuits, i.e., oscillators [3, 15, 17]. ing periods of the cycles skipped.

A recent technique, MPCENV [17], introduced the notion of im-2.1 Envelope following for non-autonomous plicitly calculating the envelope step taken, by adding one more
circuits phase condition to ensure synchronization of the envelope samples.

Generally, a circuit can be described by a system of differential In MPCENV, two extra system unknowns are added to the circuit
equations: equations. One unknown represents the instantaneous changing

period (T) of oscillators; the other unknown (envelope step Tenv)4(x) +f(x) = b(t), (1) takes into account cumulative effect of the changing periods of the
where x is a vector of state variables (such as node voltages and skipped cycles. Extra phase condition equations are then added
branch currents), q contains capacitor charge or inductor flux terms, in order to ensure synchronized envelope sampling and to form a
and f represents resistive terms [ 13]. "square" system that can be solved uniquely. For example, the aug-
We assume that waveforms of a circuit feature both fast and slow mented backward-Euler based oscillator envelope following equa-

characteristics. For example, the waveform shown in Figure 1 con- tion system is
tains fast oscillations whose amplitude changes much more slowly. T T
When such waveforms are sampled at every fast oscillation period, t TenV
the resulting samples can be interpolated as a slowly varying curve. T Tenv
This curve is defined as the envelope (depicted by the dashed line dx
in Figure 1). Envelope methods [3] gain efficiency by solving for dt lt+Tenv =(
the envelope via transient simulation on only a few selected fast dxlcycles, while skipping the simulation of many intermediate fast cy- -=t+T 0O-cles. More specifically, a fast cycle is first simulated accurately us- dt
ing transient analysis, as shown in Figure 1 (from point A to B). A where xi is a single state variable on which the phase condition
secant line between A and B can then be extrapolated over a large constraints are applied.
"envelope timestep"7, which can have many fast cycles, to obtain
the solution at point C. This process is repeated until the end of
the simulation interval. The process described above is analogous
to solving the envelope by conventional forward-Euler integration.
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2.3 Lack of uniformly applicable envelope calculation of the Jacobian matrix involves the evaluation of the
following methods derivative of the state transition function (known as the sensitivity

The reader will have noted above that practically effective en- matrix). This can be computed during transient simulation with
velope formulations for non-autonomous and autonomous circuits additional work, just as for the shooting method [20].
differ structurally, i.e., it is necessary to choose the appropriate al- For example, if the trapezoidal method (TRAP) is used during
gorithm based on the nature of the circuit. Especially when con- the transient (from to to to + T, while evaluating O(xo, to, to + T)),
trasted with the general applicability of, e.g., plain transient simula- dO can be calculated by repeatedly applying [21]
tion, this constitutes a significant limitation for envelope following
methods in general, for it may not be known a-priori if a circuit is dxn Cn Gn -1 Cn-I Gn_I dxn- 1
oscillatory or not. Even more significantly, circuits can dynam- dx ( ) ( hn 2 )dxo (6)
ically change from oscillatory to non-oscillatory and vice-versa.
For example, during the process of injection locking, an oscillator until dx(tO+T) iS obtained Here C dq(x,) G df(x) h
gradually loses its autonomous frequency and eventually becomes a dxo dxi - dxi =-i
forced circuit that oscillates at exactly the same frequency as an ex- t 1 and r- I xn is the circuit state at tn (to . t,- I tn, <to + T).
ternal input. Similarly, during PLL startup and frequency switches, Nc G-
the VCO typically starts as an autonomous system with dynami- Not tatn.h +
cally changing frequency but end up as a forced system when the slmulation.
PLL is locked. Unlike the phase condition based envelope-following method,

In principle, it is possible to apply MPCENV to non-oscillatory LSENV does not reply on extra phase conditions to help solve the
circuits and to circuits that transition between oscillatory and non- system, which improves the numerical robustness of envelope fol-
oscillatory. However, the phase conditions ofMPCENV can be dif- lowing quite dramatically. If finite differences are used to approxi-
ficult to satisfy numerically and can cause problems for flat wave- mate the derivative, then the phase condition in [17]
forms (e.g., square-like waveforms in ring oscillators). In the next
section, we present a generally-applicable envelope method that dx - 0 (7)
dispenses with the need for specifying phase conditions. dt

is often difficult to satisfy and results in convergence failure of
3. LEAST SQUARES BASED ENVELOPE Newton's method. In addition, the phase condition based approach

FOLLOWING can cause problem for flat waveforms, such as the square wave-forms generated by ring oscillators. In this case, there are manyIn this section, we propose an envelope following method SUit- continuous points that satisfy the phase condition. By eliminating
able for both autonomous and non-autonomous systems. The method the phase condition requirement, our method introduces extra free-
eliminates the requirement for extra phase conditions by solving an dom in the solution space. Starting from different initial guesses
underdetermined system of nonlinear equations using least squares for Newton's method, we obtain different solutions with the use
techniques. Dubbed LSENV, the method is also numerically more of MLS to update the initial guesses. Therefore, the chances of
robust than phase condition based methods for oscillator envelopes. converging to one of the solutions are much higher, leading to im-

3.1 LSENV formulation and Newton solution proved robustness in numerical solution.3.1 LSENV,we foretain lahetwonextraunkndoNewtonsofMPCEOn the other hand, however, if this extra freedom is improperly
In LSENV, we retain the two extra unknowns of MPCENV: T exploited, total breakdown of the envelope method can result. For

and Tenv; i.e., the first envelope-following equation in (3) is used example, if the solutions calculated at subsequent envelope step
unchanged. Without the phase conditions, however, this is an un- have very different phases, then sampling synchronization is com-
derdetermined system since it has two more unknowns than equa- pletely lost and the "envelope" is not smooth anymore, hence can-
tions. (3) can be rewritten using the state transition function 0, as not be followed efficiently using large envelope steps. Therefore,

4(xo, to, to + T) -xo xo-x proper initial guesses for each envelope step need to be provided,=_s_ 0. (4) such that the resulting solutions form a smooth envelope. In other
T Tenv words, the solutions should have either the same phase or phases

At each envelope step, xo are the unknown state variables (at to) to that vary only slowly between envelope steps.
be solved, while x5 are the known starting state from a previous en- In our implementation, we first start the simulation with a ran-
velope point. 0P(xo, to, to + T) are the circuit state at to + T (starting dom initial condition that satisfies (1), obtained by performing a
from xo at to). short transient simulation and picking any solution. Since the en-

Instead of adding two extra phase conditions to help solve (4) as velope changes orders of magnitude slower than the fast oscilla-
in MPCENV, we directly solve the underdetermined nonlinear sys- tions, its variation after one envelope is small. At each envelope
tem using a Moore-Penrose pseudo-inverse based Newton-Raphson step, we use the previous starting state (x,) as the initial guess of
solver [18]. At each Newton iteration for solving (4) xo when solving (4) (more sophisticated predictors could also be

used). The start state xs is either the initial condition (given at the
JAx =-F(x) (5) first envelope step) or a known state from previous step. In our ex-

perience, choosing the initial guess for each envelope step in thisis solved. Here F(x) is the function evaluation of the left hand side manner provides solutions with slowly varying phase, resulting in
of (4) and J iS the Jacobian matrix. J iS a rectangular matrix of size a smooth envelope in most cases.
n x (n + 2), where n is the number of circuit unknowns. Therefore, In a few numerically sensitive cases, even slightly different phases
(5) has an infinite number of solutions. We choose the unique solu- in the envelope sampling points can cause large changes in the en-
tion with minimum norm that satisfies (5), i.e., the Minimum Least velope amplitude. To ensure smooth envelopes for such cases, we
Squares solution (MLS). It can be shown that Newton's method perform a minor postprocessing or "corrector" operation after least
(which retains its convergence properties when the MLS solution squares solution in each step to correct the phase, treating the solu-
is used) converges to a point on the continuous nonlinear manifold tion from MLS as a predictor. An obvious option for the corrector
of solutions of (4) that is "near" the initial guess it was provided is to identify "the same phase" of a particular waveform by finding
[1l8]. the zero-crossing point for the derivative of the solution. Since the
3.2~~~Nu eia .ouino S N n h hs solution obtained by least square usually has a small phase shift,3.2 NumericlsolutionofLSENV an the phase the correction only needs a little additional work, at most one fast

corrector cycle of transient simulation.
During the numerical solution of LSENV (4), @(xo, to, to + T) is A considerably superior method for the corrector, however, is to

evaluated by integrating over one cycle T, starting from xo. The find the point in the new cycle being sampled that is closest to x5
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in the n-dimensional solution space. Not only does this minimum-
distance corrector eliminate dependence of the algorithm on zero-
crossings, maxima, etc., of a particular waveform, it enhances and L

refines what we feel is a key property of LSENV, responsible for s
its efficacy and robustness: that the Moore-Penrose pseudo-inversel
based Newton automatically "finds" the smoothest and most natu- .illi|iL ll c ' \'/i
ral envelope in the abstract n-dimensional space of solutions. In-
deed, for most circuits, postprocessing to correct the phase is not _ - a
even necessary, since LSENV automatically converges to smooth
envelopes. (a) LSENV solution (b) Detailed comparison with

transient solution
4. APPLICATIONS AND VALIDATION

In this section, we apply and validate LSENV on various cir- Figure 3: LC VCO: solution of the inductor current from
cuits. We first test our method in oscillators: for predicting en- LSENV and comparison with transient simulation. The re-
velopes in LC and ring VCOs and startup transient envelopes in sult in blue dashed line is from transient simulation with 100
high-Q oscillators. We then apply our method to mixers, which timesteps per fast cycle. The result in red solid line is from
are non-autonomous circuits that frequently feature slow envelopes, transient simulation with 400 timesteps per fast cycle. The re-
Finally, we apply LSENV to circuits that change their nature from sult marked in circles is from LSENV with 100 timesteps per
non-autonomous to autonomous during operation, applying it to fast cycle.
predict injection locking/pulling of oscillators and PLL capture/lock
envelopes. Results from LSENV show excellent matches against .10

SPICE-like transient simulation, with speedups of 1-2 orders of 10.6
magnitude. All simulations were performed using a MATLAB- 10.4-
based circuit simulation platform, on a 2.4GHz AthlonXP PC run- 10.2
ning Linux. 10/

4.1 Oscillator envelope following 'g/
4.1.1 LC VCO S.4 ___/
Figure 2 shows a simple LC VCO from [16]. The capacitance of 0.

the LC tank is varied by a controlling voltage, resulting in changes
to the VCO's frequency. The oscillator has a nominal frequency Figure 4- LC VCO. frequency modulation
of 10MHz; the controlling voltage is sinusoidal with a frequency
of 1kHz. The nonlinear negative resistor characteristic is given by
[16]: 4.1.2 3 stage ring VCO

i= f(v) = (Go - GO)Vktanh( - ) + G,v, (8) A ring VCO with 3 identical inverting stages is shown in Fig-
Vk ure 5. The oscillator has a free-running frequency of 100MHz. Its

frequency is varied by changing the stage-to-stage delay, using awhere Go = -0.1, Gm = 0.25, and Vk = 1. MOS resistor controlled by a voltage source. The controlling volt-

Cm R age is 10+2sin(27c104t).
[ l / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Vdd

i=f(v) L C , Cd X.

Figure 2: Circuit schematic of a LC VCO. Here R = lkQ, Cd =
0.3uF, C =- 2 10-7F, L = I 10-7H, Cm = I 10-7F.

The simulation is started from the nominal steady state of the
VCO. We choose the initial condition with the inductor current at
the peak of the fast oscillation waveform. The inductor current Figure 5: Circuit schematic of a ring VCO.
from LSENV is shown in Figure 3(a). By skipping a large num-
ber of fast cycles in each envelope step (and hence avoiding the We start the simulation from a steady state obtained after not
phase errors that would have accumulated during their simulation), changing the VCO control for a long time. Figure 6(a) shows re-
LSENV is actually able to achieve better accuracy than detailed sults from LSENV at the output of the 1st stage. Note that it is not
transient simulation, while also being more efficient. Figure 3(b) necessary for the envelope solution to be at specific phase points,
shows detailed comparison of results from our method and tran- such as the peaks of fast cycles, for the envelope simulation to be
sient simulation. As can be seen, results from LSENV with 100 useful. However, if necessary, it is easy to obtain the envelope at
timesteps per fast cycle match transient simulation result with finer the peak/bottom of the fast cycles, by applying the postprocessing
timesteps (400 timesteps per fast cycle). phase corrector in Section 3.2 to LSENV's results. We observe

Furthermore, the envelope solved by LSENV is smooth and the similar accuracy properties for LSENV compared with transient in
sampling points in envelope are roughly at the same phase (peak this example as in the previous one (transient simulation results are
of the fast cycles). Hence, for this example, the varying period omitted here due to lack of space and the density of the fast os-
solved for by LSENV captures the frequency change due to the cillations). The slowly varying oscillation frequency is shown in
variation of the capacitance in LC tank, as shown in Figure 4. In Figure 6(b). A nominal envelope timestep of 200 cycles is used in
this simulation, we use an envelope step of about 200 fast cycles, this example, resulting in a speedup of about 150x.
resulting in a speed up of around 200 over transient simulation with
similar accuracy.
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(a) Output of the st stage (b) frequency modulation. erential outputs MOS t

Figure 6: Ring VCO: solutions from LSENV. Figure 8: Waveforms from LSENV.

4.1.3 Startup transient ofa high-Q oscillator 4.3 Injection locking/pulling in oscillators
We use a Pierce crystal oscillator from [22, 23] to demonstrate Injection locking/pulling [25, 26] is an interesting phenomenon

startup transient of a high-Q oscillator. It has a high quality factor that occurs when a periodic signal is injected into an oscillator. Un-
Q about 2.5 x 104, resulting in a very slow startup transient before der the influence of perturbations, an oscillator can change its nat-
reaching its steady state, making it ideally suited for investigating ural frequency to match the frequency of the injection signal, i.e.,
envelope algorithms. it "locks" to the injection signal. Even if the injection signal does

Variable envelope stepsizes are used in this case, resulting in fur- not succeed in locking the oscillator, it still pulls the frequency of
ther speedups for LSENV. Results from LSENV at the base and the the oscillator, often resulting in periodic changes in amplitude and
collector of the BJT are shown in Figure 7. As can be seen, the frequency. The locking process can be slow and long, especially in
envelope step is small at the beginning but grows as the oscillator high Q oscillators. During the injection pulling process, oscillators
approaches steady state and the envelope settles. In this example, start off as autonomous systems; but when locked, essential prop-
the phase at which the selected fast cycles are sampled by the enve- erties (such as small-signal stability properties) change to mimic
lope shifts slightly with each envelope step- as mentioned earlier, those of non-autonomous systems like mixers.
this is a feature of least-squares solution. The changes in phase are For illustration, we use the simple nonlinear LC oscillator sim-
slow and the envelope remains smooth. An average envelope step ilar to Figure 2. The Q factor of the tank is about 2000, leading
of about 90 cycles is taken in the simulation, leading to a speedups to relatively slow injection locking/pulling. The injection signal
of 40 over the transient for this simulation. is a sinusoidal current source in parallel with the LC tank. Fig-

ure 9 shows the inductor current from LSENV when the oscillator
-, _____ -. - is finally locked to the injection signal. Figure 10 shows waveforms

.0 k _4when the oscillator is not in lock; periodic changes in the amplitude
envelope can be seen. These results are compared against care-

E z_ |£ _1 i1 ful transient simulation in both cases; they are in good agreement.
In this example, we obtain a speedup of 1-2 orders of magnitude.More speedup can be obtained with the higher Q oscillators.

. ,214 0 0 3 4 0.001.

(a) At the collector (b) At the base
0.005

Figure 7: LSENV solutions at the collector and the base of the
BJT in the pierce crystal oscillator. 0

4.2 LSENV on non-autonomous circuits
We use a balanced CMOS down-conversion mixer from [24] as -0°' 0.2 0.4 0.6 0.5 1

an example. In this circuit, the current generated by the lower pair t lo'
of MOSFETs doubles the frequency of the driving LO. The upper
pair ofMOSFETs is a differential pair that effectively multiplies the Figure 9: LSENV solution of the inductor current from our
RF signal by a distorted LO signal with large components at twice method. Oscillator is in lock. Injection signal is: 3 x
the LO frequency. High frequency components at the output are fil- 10-6sin(27t1.013 x 109t).
tered out by the simple RC filter, thus retaining only low-frequency
down-converted components. The LO signal is a sinusoid at 450
MHz, while the RF signal is a 900 MHz carrier modulated by a
sinusoid at l0kHz. 4.4 PLL simulation with LSENV

In this example, we start the simulation from the DC operating The PLL used in our simulation is shown in Figure 1 1. Here,
point. Due to the double frequency effect, one fast cycle of LO a mixer is used as the phase detector. The center frequency of the
signal results in two cycles of fast oscillations at the drains of the LC VCO is about 100 MHz. Figure 12 shows the startup transient
lower MOSFETs. Hence the amplitude envelope change at this at the controlling voltage of the PLL, obtained from LSENV and
node caused by the slight phase shift may not be small. Therefore, compared against transient simulation for validation. Similarly, the
we use the postprocessing phase corrector to correct the phase at capacitor voltage within the VCO is shown in Figure 13. As can
each step for this example. Figure 8 shows the results from our been, the solution from our method matches transient simulation
method. We take a nominal envelope step of 500 cycles due to the well. In this case, we obtain relatively modest speedups of 2x and
wide separation of frequencies in the signals. A speedup of about 8 x, over coarse (100 steps per fast cycle) and finer (400 steps per
100 is obtained for this example. cycle) transient simulation, respectively. The small speedup is due
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0 0.2 0.4 0@ 08 9.05 9.06 9.07 9.06 .09 9.1 9.11
t(s) l,o' lo-' 2.70.11 -1 .75 -2.ns 0 -0.5 2.10 -700

(a) LSENV solution (b) Detailed comparisons of

method and transient. Figure 13: Detailed comparison of waveform of the capacitor
voltage in the VCO from our method and transient solution.

Figure 10: Results when the oscillator is not in lock. Injection
signal is: 3 x 10-6sin(2tl.014 x 109t). 6. REFERENCES
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