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Abstract-A unique feature of oscillators is that small but sustained ex-
ternal perturbations lead to unboundedly large changes in phase, thereby
making standard harmonic balance (HB) inapplicable to realistic oscillator
phase macromodels. In this paper, we rectify this situation by presenting a
novel extension of HB that is capable of handling oscillator phase macro-
models. Key to the new method, termed PPV-HB, is a formulation that
separates unboundedly increasing phase terms from the bounded, periodic
components. PPV-HB can be used not only on individual oscillators, but it
also enables the application of HB-like techniques for simulating system-
level equation systems composed of higher-level macromodels of blocks.
We validate PPV-HB on individual oscillators and a PLL system, demon-
strating excellent matches with transient simulation using phase macro-
models. Speedups of 1-2 orders of magnitude are obtained, over and above
additional speedups of another 2-3 orders of magnitude that stem from
using macromodels (as opposed to full circuit simulation).

I. INTRODUCTION

Oscillators - e.g., LC and ring oscillators, voltage-controlled oscilla-
tors (VCOs) and clocks - are widely used in electronic systems. They
are often used as information carriers in communication systems, or as
time references in clocked systems. For example, VCOs are key com-
ponents of phase-locked loops (PLLs), which are widely used for clock
generation and recovery, FM demodulation, frequency synthesis, etc..
When perturbed by external signals, oscillators can change their natu-
ral frequency; a well-known effect, known as injection locking/pulling,
involves the oscillator's moving its natural frequency towards that of
a small extemal signal. Injection locking (IL) can be a nuisance in
design as well as a useful phenomenon that is exploited in frequency
dividers [1,2], IL-aided PLLs [3] and quadrature oscillator designs [4].
Therefore, analyzing oscillators' responses under perturbations is an
important component of the oscillator design process.

The simulation of oscillators under perturbations presents unique
challenges, however, since traditional SPICE-like simulation can be
very inefficient and inaccurate. The fundamental reason for this is that
oscillators feature neutral phase stability, which causes small numeri-
cal errors in phase to accumulate without limit during simulation. As
a result, much smaller time-steps are required for oscillators than for
other circuits during transient simulations.

To alleviate efficiency and accuracy problems during transient sim-
ulation of oscillators, a variety of specialized techniques have been
proposed (e.g., [5-7]). A commonly used class of approaches relies on
macromodelling the phase response of oscillators to external perturba-
tions. A linear time-varying phase macromodel was first proposed by
Kartner [5,6] and later generalized to a time-shifted nonlinear one [7].
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By reducing an oscillator system, normally described by differential
algebraic equations (DAEs) of moderate or large size, to a system of
size 1 (a scalar phase equation), these approaches improve simulation
efficiency dramatically. However, the solution of the phase equation
itself is usually performed via transient analysis [8]. Especially when
oscillators are embedded in larger systems, such as PLLs, transient
simulation, which can last thousands of cycles with each cycle requir-
ing small time-steps, can take time.

Also, in practice, tasks such as predicting injection locking, per-
forming oscillator natural frequency sweeps with respect to control,
supply, etc., voltages, are frequently conducted during oscillator de-
sign. For these purposes, transient analysis on phase macromodels [8]
is less than ideal. For example, it may take very many cycles of phase
simulation to determine whether an oscillator is locked (or not locked)
to an external signal. This is especially true for signals close to the
lock range [9] of oscillators. From observing transient results of phase
variations of an oscillator over an inadequate number of cycles, it is
quite possible to draw wrong conclusions about the oscillator's state of
lock (as we demonstrate later).

In this paper, we present an extension of Harmonic Balance (HB)
[10-12], termed PPV-HB, suitable for application to nonlinear phase
equations. Unlike normal DAE systems arising from circuits, where
all unknowns (physical node voltages and branch currents) are peri-
odic, the oscillator phase equation has unboundedly increasing terms.
Therefore, standard HB cannot be applied directly to phase macromod-
els of oscillators. A key advance of our technique is the decomposition
of phase variations into two parts: an unboundedly increasing part and
a bounded periodic part. This leads to a modified phase equation for-
mulation which is suitable for HB simulations.
By avoiding transient analysis of the phase equation, PPV-HB

achieves further speedup in predicting oscillator behaviours. In ad-
dition, our technique can be extended to analyze oscillators under
DC perturbation, which is useful for investigating oscillator frequency
sweeps to power supply voltages. The main modification is the use of
an extra unknown to capture the unboundedly increasing component
of the phase. An extra equation is also added to help solve the system.
A key benefit of our technique is that it enables the use of HB

for system-level simulations of PLLs using phase macromodels. The
steady state of locked PLLs can be obtained by applying HB in the
phase domain, with the help of our modified phase equation, result-
ing in increased simulation efficiency, accuracy and convenience over
transient simulation of macromodels.
We demonstrate PPV-HB on LC and ring oscillators, as well as on

a PLL. Simulation results show good agreement with transient simula-
tion of both the original phase equation and the full systems. We obtain
speedups of 1-2 orders of magnitude over transient simulation of phase
macromodels. This translates to speedups of 3-4 orders of magnitude
over full system transient simulations [8].

The remainder of the paper is organized as follows. In Section II, we
review the nonlinear oscillator phase macromodel and the PLL phase
domain macromodel based on it. In Section III, we present the PPV-
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HB technique for oscillator nonlinear phase macromodels. In Sec-
tion IV, we apply PPV-HB to LC and ring oscillators, as well as PLLs,
demonstrating large speedups over transient simulations.

II. NONLINEAR PHASE MACROMODELS

In this section, we first briefly review nonlinear phase macromodels
[7] for oscillators. We then demonstrate their use in PLL phase domain
simulations.

A. Nonlinear phase macromodels for oscillators

Oscillator circuits under perturbation can be described by the DAE
system

dq(x)
dt + f(x) =b(t), (1)

where b(t) is a small perturbation signal and x(t) is a vector of circuit
unknowns (such as node voltages and branch currents). In [7], the
solution to (1) is assumed to be:

x(t) = zs(t + a(t)) + y(t). (2)

Here x, (t) is the steady state solution of the unperturbed oscillator, i.e.,
when b(t) = 0 in (1). The effects of perturbations on oscillators are
captured in two parts, with o(t) and y(t) representing phase variations
and amplitude variations, respectively. The phase variations o(t) can
grow unboundedly with time while the amplitude variations can be
shown to always remain small (if b(t) is small).
The phase variation o(t) is obtained by solving a nonlinear scalar

equation:
da (t) v T (t + o (t)) .b (t).
dt I

f (.) describes the transformation relations between the phase differ-
ence and output voltage. For instance, if a mixer is used as the PD,
then

f (¢1, ¢52) = sin(Ql5- 02) + sin(¢5l +052) (4)

--Ifout
fref , (

Fig. 2. Phase domain model of a PLL.
The LPF is often modelled by a system of linear ODEs as

SC = Ax + b(t),

y(t) dTX(t). (5)

where b(t) is the output of the phase detector, x(t) is a vector of circuit
unknowns within the LPF and y(t) is the output of the LPF (d is a
vector which links the output to the rest of the system). The form of
the ODE depends on the type of LPF used.
As mentioned in Section Il-A, the VCO can be represented by the

nonlinear macromodel (3) with the perturbation being the controlling
voltage, i.e.,

da (t) Tdt= VT0(t + C0(t)) v'(t).

Thus the total phase at the output of the VCO is:

(3)

(6)

(7)02(t) = wo(t +o (t)).
Here vT (t) is the perturbation projection vector (PPV), a function of
time which has the same period that of the free-running oscillator and
the same size as the circuit unknown's vector x (t). The PPV represents
"nonlinear phase sensitivities" of the oscillator to the perturbations in-
jected at any nodes or branch. The PPV can be calculated numerically
using two basic approaches, the monodromy matrix method [7] or the
Ax = b technique in [13].

The phase equation (3), which is a size 1 system, can be used as a
phase macromodel for the oscillator in larger systems such as PLLs.
By simulating the smaller macromodel-based system, large speedups
over simulation of the original full circuits can be obtained.

B. PLL simulation using VCO phase macromodels
The block diagram of a PLL is shown in Figure 1. It consists of 4

major components: a phase detector (PD), a low-pass filter (LPF), a
VCO and a frequency divider (FD).

fref
fout

PD
-N

Fig. 1. Block diagram of a PLL.
A widely used approach for fast simulation of PLLs is to use phase

macromodels to represent each component of a PLL and to simulate
the system of macromodels. For example, Figure 2 shows a phase-
domain model of a PLL in [14]. The PD is modeled as Kpdf(b, 2),
where 1, 02 are the phases of the reference signal and the output of
the VCO, respectively. Kpd represents the gain of the PD and function

Here wo is the free-running angular frequency of the VCO.
Combining all these phase domain macromodels together, we now

have a system of ODE of much smaller size than that of the original
PLL system:

J0(t) = v7j (t + co (t) ) (dTx(t)),
{a = Ax + KpdfQyl, 02),

(8)

where b1 = wrt (wr is the frequency of the reference signal) and ¢b2
is define as (7).
We can solve the system (8) by transient simulation; as noted al-

ready, however, better alternatives can be desirable. For example, if
the LPF has a low cutoff frequency, the PLL can take an extremely
long time to lock [15, 16]. For such situations, steady state methods
(such as HB and shooting) are typically preferred, since they can "di-
rectly" find the locked state.

III. HB SIMULATION ON PHASE MACROMODELS

As mentioned before, phase deviations in oscillators can grow un-
boundedly when perturbed by external signals. Thus, they are not pe-
riodic waveforms; and as such, cannot be treated using normal HB.
In this section, we first develop a generalization of HB for nonlinear
phase macromodels (3) when oscillators are in lock. We then extend
our approach to analyzing oscillators perturbed by DC signals. Finally,
we demonstrate the use of our technique for PLL steady state simula-
tions.
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A. Oscillators in lock

We assume that the unperturbed oscillator's frequency is fo and
rewrite its PPV in the form vi (t) = x(fot), where X( ) is 1-periodic.
For the moment, we also assume that the injection signal is a sinu-
soidal waveform with a frequency of fl. Then the phase equation can
be written as

d(t) = X(fo(t + oz(t))) sin(27 fit). (9)

When an oscillator is in lock, it changes its frequency to match the
frequency of the perturbation signal, i.e., the phase of the oscillator,
which is 2wrfo(t + oa(t)), "catches up" with the phase of the external
signal. Hence

fo(t + (t)) = fit +p (fit), (10)

where p(.) is a 1-periodic function yet to be determined. p(.) repre-
sents small phase variations within each period. Then,

(t) = [(f fo)t +p (fit)], (11)fo

It can be seen that the phase variation oa(t) consists of two parts: an
unboundedly growing part (f -fo)t which is responsible for locking
the oscillator's frequency to that of the external signal, and a small
periodic AC part p(fit), which represents small phase variations in
each period.

Plugging in (11) into (9), we get

[A\f + fip'(fit))] = X(fit + p (fit)) sin(27rfit), (12)

where Af = f -fo. We can rewrite (12) in terms of a scaled time
t ft as

f [Af + flp'(ts)] = X(t, + p(ts)) * sin(2wrt,). (13)

Observe that both sides of the above equation are periodic, with period
1. This means that we can expand everything in Fourier series and
apply harmonic balance. Let p(.) be expressed in its Fourier series

M
Cjk27rt,p(ts=E Pk e (14)

k=-M

The key computational step is: given (some guess for) {Pi} (i.e.,
given the Fourier coefficients of p(t,)), find the Fourier coefficients of
X(). At this point, we face a problem: suppose we sample t, uni-
formly with N points, then we can find p(t,) easily enough at the
samples using IDFTs. But now we cannot use DFTs for finding the
Fourier coefficients of X(Q), because X(Q) is not sampled uniformly.

The problem is easily solved by moving to a bivariate function
X(, .):

X(tl, t2) = X(tl + p(t2)). (15)

Observe that X() is (1, 1)-biperiodic in ti and t2. This means that
we can do a 2D DFT very easily to obtain its two-tone Fourier series
coefficients

M1 M2

x(l,t2k)= MEE7 k C (16)
k=-Ml 1=-M2

Now, given Ek,1, we can obtain the Fourier coefficients of X(t' +
P(t )) = X(ts, t' ). Let

X(ts +P(ts)) = E i ej2Tit,
i=-M

(17)X(ts ts)
M1 M2

I E j27T(k+l)t,

k=-Ml 1=-M2

Hence
MI

Xi= k,i- (18)
k=-M1

These look like anti-diagonal lines on the coefficient plane of (k, 1).

B. Oscillators perturbed by DC inputs

We assume that when a DC input is injected to an oscillator, it causes
a shift in frequency Af. The new frequency is fo + Af. Then,

foa(t) = Af t + p ((fo + Af)t). (19)

However, unlike the case in Section III-A, Af here is not known.
Now, the object is to find Af and p(t) numerically. Plugging in (19)

into (3), we get

1

fo -[Af + (fo + Af)p'((fo + Af)t))]
(20)

=x((fo + Af)t + p ((fo + Af)t) ) bDC-

Both sides of the above equation are periodic, with period fo + Af.
Thus, we can expand everything in Fourier series and apply HB. Sup-
pose we expand everything in N = 2M + 1 harmonic components, as
usual. Then we have N +1 unknowns the N harmonic components
of p(.), plus Af. But we have only N harmonic balance equations.
This "paradox" is explained by (3) having no "time reference" when
b(t) is a DC signal; i.e., if we define, for any T,

(21)0 (t) = oz(t -7) -7,

then /3(t) also satisfies (3), since

&(t- T) = X(fo(t -T + OZ(t- T))) bDc (22)

is simply the same as choosing a different value of t in (3). There-
fore, we need to set an extra condition fixing the time reference, such
as o(O) = 0. This is the same thing as saying that p(O) = 0, or that
E Pk = 1. More generally, this means that one of the Fourier coeffi-
cients Pi can be arbitrarily chosen; motivated by the right-hand side of
(22), we choose P0 = 0. Now we have N + 1 unknowns and N + 1
equations and the system can be solved uniquely.

C. HB simulation of locked PLLs
In PLL simulation, we use the nonlinear phase macromodel (6) to

represent the VCO. We assume that the frequency of the free-running
VCO in a PLL is fo. If the PLL locks to a reference signal that has the
same frequency as fo, then the phase variation ofVCO at PLL's steady
state is purely periodic. More specificly, the phase of the VCO 0(t)
has the form:

5(t) = fo(t + 0(t)) = frt + p (frt) + 0

= fot +p (fot) + 0.
(23)

285



Here, fr is the reference frequency. p(.) is a periodic function which
has the same frequency as the reference signal. It represents the ef-
fect of the high frequency component in the controlling voltage of the
VCO, which is first generated by the phase detecter and then passes
through the LPF (practical LPFs cannot perfectly filter out all high fre-
quency components). 0 is a constant phase offset when the PLL is in
lock. Therefore,

Cm=0.6p
de

RiR1200
(24)

We can move the constant 0 into p(.) since it only changes the DC
component of p(.). Denoting pi (fot) = p (fot) + 0, we then have

o0<(t) =-IPi (fot) (25)
fo

Since 0<(t) is periodic, we can directly apply HB to the PLL phase-
domain model (8).

However, when the PLL locks to a reference signal whose frequency
is different from fo, the VCO will change its frequency to match the
reference frequency. Then the phase variation o<(t) ofVCO grows with
time to "catch up" with the reference phase. In this case, 0<(t) is no
longer periodic and hence the DAE system of the PLL phase-domain
model (8) cannot be solved by HB.

In this case, the controlling voltage of the VCO consists of two
components: a DC component responsible for frequency changes in
the VCO, and a small AC component representing the high frequency
component leaked through the LPF. The frequency of the AC compo-
nent is fr. Now we can apply the PPV-HB technique developed in
previous sections to modify the phase macromodel of the VCO so that
we can apply HB on (8). More specifically, when the PLL locked to
fr, the phase of the VCO is:

fo(t+ t)) = frt + P(frt) + 0. (26)

As before, we merge the constant 0 into p(.) and denote the combined
function as p, (.), i.e.,

0(t) = -(f - Mot + PI (Urt)] (27)
fo

Fig. 3. A 4GHz Colpitts LC oscillator

A. 4GHz Colpitts LC oscillator

A Colpitts LC oscillator is shown in Figure 3. The circuit has a free-
running frequency fo of approximately 4GHz. The circuit is perturbed
by a sinusoidal voltage source in series with the inductor LI.
When the oscillator is locked to an external signal, the phase vari-

ation 0<(t) grows linearly with time, as shown in (11). However, it is
difficult to predict whether the oscillator is in lock using transient sim-
ulation on the phase macromodel of the oscillator (3), although it is far
more efficient and convenient than transient simulation on the oscil-
lator itself. It is possible to reach the wrong conclusion by observing
transient simulation results of (3) for a given number of cycles, espe-
cially when approaching the lock range of the injected signal1, since it
is usually not known a priori how many cycles of transient simulation
are needed to detect injection locking in oscillators.

For example, Figure 4 shows a transient simulation of (3) when the
injected signal is 4 x 10-3sin(2wr1.OIfot). We need to simulate the
phase macromodel for at least 200 cycles to see that the oscillator is
actually not in lock. We can be easily misled by the fact that the phase
variation o<(t) grows linearly with time if we only perform transient
simulation for fewer cycles, say 100 cycles.

x21

Plugging (27) into (8), we have

I11p3(t) + zf VVTco(frt +PI(frt))(dTX(t)),
{z = Ax + Kpdf(¢l, ¢2),

where AJf = fr-fo, b1 = 27frt and 072 = 27r(frt + Pi(frt)).
Note that x are the node voltages inside the LPF and are periodic with
frequency fr. pi(.) is also periodic with the same frequency. Thus,
we can apply HB on (28). The Fourier coefficients of VT,() can be

evaluated using the technique developed in Section III-A.

IV. APPLICATION AND VALIDATION

In this section, we apply PPV-HB to LC and ring oscillators, as well
as a PLL. Simulation results confirm good matches against SPICE-
level transient analysis, with speedups of orders of magnitude ob-
tained. All simulation were performed using a MATLAB-based cir-
cuit/system simulation environment on an 2.4GHz, Athlon XP-based
PC running Linux.

Fig. 4. Phase variation when the perturbation current is 4 x
10-3sin(1.Olwot). The figure shows the simulation result for 200 cycles.
We now change the injection signal to be 4 x 10-3sin(2wr1.005fot).

Figure 5 shows the transient simulation result for 200 cycles. It seems
that the oscillator is in lock. We then use our PPV-HB technique to
solve the steady state of the locked oscillator. It only takes 4 iterations
for HB to converge with a reasonable initial guess. It confirms that the
oscillator is in lock. Figure 6(a) shows the steady state of p(t) in (13).
The phase variation can be recovered using (11), which is compared
with the transient simulation result in Figure 6(b). A speedup of about
226 is obtained over the transient simulation on the phase macromodel
(vs transient over 200 cycles).

'The lock range is the maximum frequency deviation from the oscillator's
natural frequency.
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B. 3 Stage Ring Oscillator

A 3-stage ring oscillator with identical stages is shown in Figure 8.
The free-running frequency of the oscillator is 1.53 x 105Hz. We inject
a sinusoidal current into the output of the 2nd stage.

Fig. 5. Phase variation when the perturbation current is 4
10-3sin(1.005wot). The figure shows the simulation result for 200 cycles.

(a) Steady state of p(t) (b) Comparison of a (t)

Fig. 6. Oscillator in lock: the perturbation is 4 x10-3sin(27w1.005fot)

Fig. 8. A 3 stage oscillator with identical stages.
Figure 9(a) shows the steady state solution from our tech-

nique when the oscillator is in lock (the injection signal is 5 x
10-5 sin(27r1.02fot)). The phase variation recovered from the steady
state solution is compared with transient simulation in Figure 9(b).
They are in good agreement. We obtain a speedup of about 50 times in
this example (we only run 100 cycles of transient simulation). We
also test our technique when the injection frequency is 1.03fo and
1.04fo (the amplitude remains the same). HB simulations do not con-
verge with good initial guesses (initial guesses are chosen using the
approach outlined in Section IV-A) in both cases. The transient simu-
lation confirms that oscillator is not locked in both cases. However, it
takes many cycles for transient simulation to predict injection locking.
For instance, it takes at least 300 cycles to see that the oscillator is not
in lock when the injection frequency is 1.03fo, as shown in Figure 10.

When we use the perturbation 4 x 10-3sin(2wr1.01fot), which can-
not lock the oscillator as shown above, the PPV-HB does not converge.
Therefore, our PPV-HB can be exploited as a useful approach to help
predict injection locking: the oscillator is injection locked if PPV-HB
converges. However, it is difficult to predict injection locking when
PPV-HB does not converge, since convergence failure can result from
many other causes. A modified approach is as follows: if the oscilla-
tor is in lock and PPV-HB converges, then slight changes to injection
signal are unlikely to make large change to the steady state solution of
PPV-HB. Then the solution from the previous PPV-HB (when oscilla-
tor is in lock) can be used as a good initial guess for the next PPV-HB
(with injection frequency slightly changed). If, even after this simple
continuation strategy, PPV-HB fails, our experience has been that it is
highly likely that the oscillator is not locked2.
We also test our PPV-HB method on the case when the oscillator is

perturbed by DC signals. Figure 7(a) shows the steady state of p(t)
when the perturbation strength is 7 x 10-3V. The oscillator frequency
solved is 0.99958fo. The result is confirmed by transient simulation,
as shown in Figure 7(b).

(a) Steady state of p(t) (b) Comparison of a (t)

Fig. 9. Oscillator in lock: the perturbation is 5 x10- sin(2-r1.02fot).

Fig. 10. Phase variation using transient simulation: the perturbation is 5
10-5 sin(2-F1.03fot) (the figure shows results for 300 cycles).

(a) Steady state of p(t) (b) Comparison of a (t)

Fig. 7. Oscillator under DC perturbation: the perturbation is 7 X 10 -3

2We fully recognize that even though practically useful, this heuristic is rather
unaesthetic; we are currently working on generalizations of PPV-HB that will
solve this problem elegantly and robustly.

C. PLL steady state simulation
The PLL used is shown in Figure 11. In this PLL, a mixer is used

as the phase detector (PD). The LPF has a high bandwidth; this al-
lows high frequency components to pass through the LPF in signifi-
cant quantity, exciting non-idealities in VCO behaviour. (Such effects
are typically of great concern in today's integrated RFICs and serial
data links.) The LC VCO has a free-running frequency fo of about
1OOMHz; the original system has a size of 14. We reduce it to a size
of 4 using the phase-domain macromodels (8).
We first use a reference signal with a frequency of fo. Figure 12(a)

shows the phase variation o(t) of the VCO from transient simulation.
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L C =f(J

(a) The controlling voltage

Fig. 11. Schematic of a PLL. Fig. 14. Steady state of locked PLL (locked to l.01fo): comparison between
PPV-HB results and transient simulation results.

It confirms our previous conclusion that o(t) is purely periodic in this
case. Thus we can directly apply HB on (8). We compare the steady
state solution of o(t) with the result from transient simulation in Fig-
ure 12(b). As can be seen, they match well. We use 101 harmonics in
the HB simulation. It matches transient simulation with 400 points per

cycle, as shown in Figure 12(b). In this example, it takes about 300
cycles for the PLL to lock, resulting in a speedup of about 100.

(a) a (t) from transient simulation. (b) Comparison of a (t).

Fig. 12. PLL locked to fo.
We then lock the PLL to a reference signal of frequency 1.01 fo. The

phase variation a (t) of the VCO (300 cycles) from transient simulation
is shown in Figure 13(b). It can be seen that o (t) is not periodic, so HB
does not apply. We use our PPV-HB technique to solve for the steady
state of the PLL. Figure 14 shows the comparison between our results
with transient simulation results at the controlling voltage, as well as

a (t) (a (t) in our technique is recovered from pi (t)). A speedup of 73
is obtained. Furthermore, the high bandwidth LPF we have used leads
to a relatively fast lock of the PLL. For a LPF with lower bandwidth,
the PLL takes longer to lock, resulting in larger speedups.

(a) The controlling voltage (b) a (t).

Fig. 13. Transient simulation result (300 cycles).

V. CONCLUSIONS AND FUTURE DIRECTIONS

In the paper, we have presented a generalization and extension of
HB to phase macromodels of oscillators. We have demonstrated the
use of our technique to predict injection locking, as well as oscillator
responses under DC perturbations. Our method, PPV-HB, enables the
use of HB on system-level simulation of PLLs, resulting in improved

efficiency and accuracy over transient simulation for several commonly
used design tasks. We are currently extending PPV-HB to steady state
simulation of unlocked oscillators, as well as fast transient envelope
methods for phase macromodels of oscillators.
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