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Abstract— Accurate estimation of the effects of threshold variations,
in particular yield loss, is crucial during the design of robust SRAM
cells and memory arrays in deep submicron technologies. We present
an efficient technique to calculate yield loss due to access-time, static
noise margin, etc., related failures. Our method does not rely on Monte-
Carlo techniques; instead, it finds the boundary in Vt (threshold voltage)
parameter space between success and failure regions and uses quick
geometrical calculations to find the yield. The Vt boundary curve is found
efficiently via an Euler-Newton curve tracing technique, adapted from
mixed-signal/RF simulation, that guides detailed SPICE-level simulation
with accurate MOS device models. We compare and validate the new
method against Monte-Carlo style yield estimation, obtaining superior
accuracies and speedups of more than 10×.

I. INTRODUCTION
SRAM arrays have been becoming increasingly important in

System-on-Chip (SoC) and microprocessor designs, as more and
more chip area is dedicated to data and instruction cache. For
example, in modern multi-core processors like AMD’s Opteron and
Intel’s Core Duo, more than half the chip’s area is dedicated to cache;
today, more than 70% of this internal cache consists of SRAM,
with an increase to beyond 90% expected in future years. As a
result, their manufacturability, reliability and robustness are major
concerns for ensuring high yield in SoCs and microprocessors. But
even as SRAMs are becoming more and more integral to SoCs and
microprocessors, their performance and reliability are being eroded
by the ever increasing problem of parametric variations in nanometer
technologies. SRAMs are especially susceptible to variations (to a
much greater extent than other logic circuitry) because they are made
of minimum sized devices.

Parametric variations can be broadly categorized into global (inter-
die, wafer) vs local (intra-die or single chip) variations, and further
subdivided into deterministic (systematic), correlated, and random
variations [1]. Global variations, which stem mainly from wafer
manufacturing processes, cause the same device to feature different
characteristics across different dies. Local variations, caused by the
processes like sub-wavelength lithography, gas diffusion, molecular
beam epitaxy, etc., are responsible for variations in device char-
acteristics within a single chip. Furthermore, local variations in a
number of parameters (mainly lithography/geometrical ones such as
channel length and width, oxide thickness, etc.) exhibit significant
deterministic/systematic spatial dependence (i.e., they are not totally
random in nature) and correlation. Finally, fluctuations in many
process related parameters (such as dopant concentration within
channels, surface roughness, etc.) are largely random and statistically
independent. Of these, random dopant and surface roughness effects
are particularly important for SRAMs, since they are harder to control
and their effects are more pronounced for minimum sized devices,
which are used commonly in SRAMs. A key effect of these variations
is that MOS threshold voltages (Vts) are significantly affected by
variability, but in a statistically independent manner across devices.

As a result, static random-access memory (SRAM) cell perfor-
mance is significantly affected by variability in the form of mis-
matches in Vt amongst MOS devices. Vt variations affect not only
the driving strength of ON transistors, but also leakage currents in
OFF devices. Variations in driving strength and leakage affect three
primary SRAM performance parameters: 1) read access-time, 2)
read static noise margin (SNM) and 3) write SNM [2]–[5]. SRAM
failure can result from increases in read access-time or decreases in
read/write SNM [4], or both. For robust and reliable design of SoCs
and microprocessors, it is of paramount importance to accurately
estimate the probability of SRAM failures (or equivalently, the yield)
caused by Vt variations.

The prevalent method today for computing SRAM yield is Monte-
Carlo simulation. Fig. 1(a) shows a typical and widely used 6-T
SRAM cell. To assess failure probabilities (due to access-time or
read/write SNM failure) via Monte-Carlo, the varying thresholds (Vts)
of transistors are first modeled as random variables having known or
assumed PDFs (probability distribution functions)1 . The distribution

1However, obtaining reliable distributions of parameters from foundries is
notoriously difficult; as a result, the use of min/max bounds and uniform
distributions is typical in practice.

of the performance of interest (e.g., read access-time, read-SNM or
write-SNM), is computed for many parameter samples by means
of repeated simulations – typically highly detailed and expensive
SPICE-level transient simulations, using the most accurate device
models available. The yield is computed by collecting the distribution
of the performance metric into two bins (failed/successful), where
failure/success is gauged using a threshold criterion. For example, if
read access-time is the performance metric of interest, the threshold
criterion is the minimum required voltage difference between the bit-
lines (BL and BL

B and its relevance to access-time
failure/success.

3For concreteness, we use read access-time as the performance of interest
throughout the paper, but we emphasize that any other criterion may also be
employed instead.
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prototypical 6T SRAM cell, we obtain speedups of 11× over Monte-
Carlo.

The remainder of the paper is organized as follows. We first review
basic notions of SRAM read operations and access-time failure in
the presence of variations in Section II. Section III-A presents our
formulation for finding the boundary curve (Vt curve) separating
the pass-fail boundary and develops our algorithm for calculating
the probability of access-time failure. Section III-B provides details
of the Euler-Newton curve tracing method we use for finding Vt
boundary curve. In Section IV, we validate the proposed technique
against Monte-Carlo type simulations and confirm its efficiency and
accuracy.

II. SRAM: READ OPERATION AND ACCESS-TIME FAILURE

A 6T SRAM cell is shown in Fig. 1(a). It is composed of a pair of
cross-connected inverters used for storing the data in the cell, and two
pass transistors (also known as access transistors) used for accessing
or writing the data from/to the SRAM cell. In Fig. 1(a), M1, M5,
M6 and M3 forms the cross-connected inverters; M2 and M4 are
the access transistors. (M1, M3) and (M5, M6) are also commonly
referred to as driver and load transistors respectively. Q and Q

B during read operation.
We can assume that Q = 1 and Q B = 0 is stored inside the SRAM

cell without loss of generality. During the read operation, both bit-
lines BL and BL B are first precharged to vdd(supply-voltage) and
then at the assertion of W L: bit-line BL B starts to discharge through
M2 and M1 as shown in Fig. 1(b) via a path denoted by the blue
arrow; while bit-line BL stays at vdd. A certain minimum difference
in voltages of BL and BL B is required to detect the data stored inside
the cell and therefore, an access-time failure (or detection failure) is
said to occur if the bit-differential(∆BL) is less than the minimum
required at a certain time for giving a correct detection of stored
data value.

Due to the variation in the thresholds of M1 and M2, driving
strengths of these transistors change and affect the required time to
generate some predefined voltage difference between BL and BL B.

Behavior of BL B for varying thresholds of M1 and M2 is shown
in Fig. 2. If the prespecified
minimum bit-differential
∆BLmin is required to occur
at some certain time t f for
the correct detection of the
data stored inside the SRAM
cell, then the BL B2, shown in
Fig. 2, denotes the boundary
between access-time failure and
success as it generates the bit-
differential(∆BL) exactly equal
to ∆BLmin at time t f . Certainly,
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Fig. 2: BL B discharging during read
operation.

BL B1 will take more time than t f to create the minimum required
bit-differential(∆BLmin) and therefore, denotes a case of access-time
failure; while BL B3 and BL B4 are successful candidates as they
generate the bit-differential(∆BL) larger than ∆BLmin at time t f .

There is one more candidate which affects the access-time by
a considerable amount and i.e the leakage in bit-line BL; which
ideally, should stay at vdd during read operation, but droops due
to leakage currents feeding other un-accessed SRAM cells connected
to the same column in a memory array and storing the data inverse
of the accessed cell (refer to Fig. 3(a) and Fig. 3(b)). In Fig. 3(b),
BL2 depicts the droop in voltage of BL due to leakage currents and
clearly shows the increase in access-time in the generation of desired
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Fig. 3. (a) BL leaking through un-accessed SRAM cells in a memory
column. (b) Increase in access time due to BL leakage.

bit-differential(∆BL) voltage; which is now happening at time t f n but
could have occurred at time t f in absence of leakage currents.

Therefore, one should not only monitor the actively discharging
bit-line(like BL B in our case) to make the decision of access-time
success or failure, but should also monitor the other bit-line (BL),
whose voltage may droop due to leakage currents.

Hence, if the required minimum prespecified voltage difference
between BL and BL B at a certain time t f is given as ∆BLmin, then
the probability of access time failure can be given as follows:

Paccess− f ailure = P(∆BL(t f )< ∆BLmin(t f )) (1)

where, ∆BL(t f ) is the actual bit-differential at time t f and ∆BLmin(t f )
is the minimum required bit-differential at time t f for correct detec-
tion of the stored data inside the SRAM cell.

In the next section, we will propose an efficient methodology of
finding the probability of access-time failure because of the variation
in the thresholds of M1 and M2 of SRAM cell. Note that the proposed
methodology can easily be extended to find the failure probability due
to the variations in thresholds of all the transistors of SRAM cell.

III. PROBLEM FORMULATION FOR FINDING THE PROBABILITY
OF ACCESS-TIME FAILURE

In this section, we first develop a formulation that directly solves
for those pairs of thresholds of M1 and M2, which results in the
bit-differential of ∆BLmin at a given time t f . The solution will be a
curve(Vt curve) in two-dimensional space of Vt1 and Vt2, where Vt1
and Vt2 denotes the threshold voltages of M1 and M2 respectively.
The Vt curve will divide the two-dimensional region of Vt1 and Vt2
in to two parts: 1) a failure region and 2) a successful region. In the
end, probability of failure will be obtained by measuring the properly
scaled areas of the successful and the failure regions.

A. Problem formulation to find the Vt curve dividing the successful
and the failure regions

Any nonlinear circuit or system can be represented by the following
vector differential algebraic equation [9]:

d
dt
~q(~x)+ ~f (~x)+~bu(t) = 0. (2)

(2) is a size n system; ~x ∈ Rn is the state vector of internal node
voltages and branch currents; ~q ∈Rn and ~f ∈Rn are the charge/flux
and the current terms respectively and ~bu(t) ∈ Rn represents all the
input source voltages and currents. Therefore, a SRAM cell with
varying Vt1 and Vt2 can be written as follows to explicitly show its
dependence on Vt1 and Vt2.

d
dt
~q(~x(t,Vt1,Vt2),Vt1,Vt2)+ ~f (~x(t,Vt1,Vt2),Vt1,Vt2)+~bu(t) = 0. (3)

Let the state transition function of (3) be denoted by ~φ(t;~x0,t0 =
0,Vt1,Vt2), and the initial condition ~x0 =~x(t = t0) be fixed to a given
value. The bit-differential voltage at time t f can be computed as
~cT

BL~x(t f )−~cT
BL B~x(t f ), where ~cT

BL and ~cT
BL B are unit vectors which

selects the BL and BL B node voltages respectively. The condition of
finding those pairs of Vt1 and Vt2, which result in the bit-differential
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voltage equal to ∆BLmin at time t f can be written in terms of the
state transition function as follows:

(~cT
BL−~cT

BL

h(~Vt)≡ h(Vt1,Vt2)≡~cT~φVt (Vt1,Vt2)−∆BLmin = 0. (5)

where ~Vt = [Vt1,Vt2].
Let, the expected range of variations in Vt1 and Vt2 be (Vt1 a,Vt1 b)

h<0

h>0

Failure Region

Successful Region

h=0

Vt1_bVt1_a
Vt2_a

Vt2_b

Vt of M1: (Vt1)

V
t o

f M
2:

 (V
t2

)

Fig. 4: Access-time failure and
successful regions divided by
h(~Vt) = 0 curve.

and (Vt2 a,Vt2 b) respectively. The
solution curve of h(~Vt) = 0 will di-
vide the two-dimensional Vt1−Vt2
space in to two regions as shown
in Fig. 4. Access time failure will
occur for the region where h(~Vt)<
0, i.e. the bit-differential voltage is
less than the ∆BLmin at time t f . On
the other hand, h(~Vt ) > 0 denotes
the region, where the bit-differential
voltage is larger than the prespeci-
fied ∆BLmin at time t f and thus, the

access-time is smaller than t f . Also,
it should be noted that the decrease
in thresholds of M1 and M2 makes them stronger in discharging
BL B, therefore, the successful region will be towards lower values
of Vt ’s and the failure region will occur for higher values of Vt ’s as
depicted in Fig. 4 also.

If Vt1 and Vt2 are uniformly distributed, then the probability of
access-time failure can be calculated as

Paccess f ailure =
Area(successful + failure)−Area(successful)

Area(successful + failure)
(6)

We also want to emphasize the point that we have assumed the
uniform distribution for Vt1 and Vt2 for the sake of simplicity in
presenting our idea of using Vt curve for the estimation of probability
of failure. If any other PDFs of varying Vts are given, it can easily
be incorporated in (6) by prescaling the parameter axes by their
respective cumulative distribution functions(CDFs).

But in the end, to find the probability of failure efficiently, we first
need to solve h(~Vt ) = 0 i.e. (5) to get the Vt curve. In the next section,
we will give the details of solving (5).

B. Solving for underdertermined nonlinear equation via Moore-
Penrose based Newton-Raphson and Vt curve tracing by Euler-
Newton.

Since (5) is an underdetermined scalar nonlinear equation with two
unknowns Vt1 and Vt2, a modified Newton-Raphson, using the Moore-
Penrose pseudo-inverse [10] can be applied as an iterative solver for
(5).

Intuitively, Moore-Penrose pseudo-inverse Newton-Raphson
(MPPI-NR) starts with an initial guess of (Vt10 ,Vt20 ) and converges
to a solution (V c

t1,V
c
t2) of (5). A solution curve of (5) is shown in

Fig. 5(a), where A denotes the initial guess, while B denotes the
point on the solution curve.

In order to solve (5) using MPPI-NR to get one solution of (5), it
is necessary to perform three tasks: 1) evaluate h(Vt1,Vt2) given any
(Vt1,Vt2), 2) evaluate

[
dh(~Vt)

d~Vt

]
=
[

dh(~Vt)
dVt1

,
dh(~Vt)
dVt2

]
, a 1x2 matrix, and 3)

compute the Moore-Penrose pseudo inverse of
[

dh(~Vt)

d~Vt

]
.

h(Vt1,Vt2) is evaluated simply by running a transient simulation
with the given (Vt1,Vt2) and then evaluating (5). To compute

[
dh(~Vt)

d~Vt

]
,

we need to evaluate
[

d
d~Vt

~φ(t f ;~x0,0,Vt1,Vt2)
]
.

Next, noting that
[

d~φ
d~Vt

]
=
[

d~x(t,Vt1,Vt2)
dVt1

,
d~x(t,Vt1,Vt2)

dVt2

]
, we first evaluate

d~x(t,Vt1,Vt2)
dVt1

; computation of d~x(t,Vt1,Vt2)
dVt2

follows a similar procedure.

To compute d~x(t,Vt1,Vt2)
dVt1

, we differentiate (3) with respect to Vt1 and
interchange the order of differentiation w.r.t t and Vt1 in the first term,

to obtain:
d
dt

[
d~q
d~x

d~x
dVt1

+
d~q

dVt1

]
+

d~f
d~x

d~x
dVt1

+
d~f

dVt1
= 0. (7)

Since we want to evaluate dh(~Vt)
dVt1

at any given value of (Vt1,Vt2)
(e.g., at (V ∗t1,V

∗
t2)), we define the following terms for notational

convenience:

C†(t) =
d~q(t,V ∗t1,V

∗
t2)

d~x
,G†(t) =

d~f (t,V ∗t1,V
∗
t2)

d~x
,~n1

†(t) =
d~q(t,V ∗t1,V

∗
t2)

dVt1
,

~p1
†(t) =

d~f (t,V ∗t1,V
∗
t2)

dVt1
and ~m1

†(t) =
d~x(t,V ∗t1,V

∗
t2)

dVt1
.

(8)
(7) can be discretized using any integration method (e.g. BE, TRAP
etc.) [9], [11]. The discretization of (7) using BE (for example) will
give

~m1
†
i =

(
C†

i
∆t

+ G†
i

)−1(
C†

i−1
∆t

~m1
†
(i−1)

−~n1
†(ti)+~n1

†(ti−1)−~p1
†(ti)

)
.

(9)
The subscript i denotes that the quantity is being evaluated at t = ti;
∆t = ti− ti−1 is the time step used in the integration.

To start the integration process, we set ~m1
†
0 to ~0, because, ~x0 =

~x(t = t0) do not change with Vt1 or Vt2. Evaluating (9) from t = t1
to t = t f (i.e. i ∈ 1,2, . . . , f ), we obtain ~m1

†
f =

d~φVt (V∗t1,V
∗

t2)
dVt1

and then
dh(V∗t1,V

∗
t2)

dVt1
=~cT d~φVt (V∗t1,V

∗
t2)

dVt1
. Clearly, dh(V ∗t1,V

∗
t2)

dVt2
=~cT d~φVt (V∗t1,V

∗
t2)

dVt2
can be

obtained in a similar way. Finally, denoting the matrix
[

dh(~Vt)

d~Vt

]
by

H(~Vt), its Moore-Penrose pseudo-inverse [10] can be expressed as

H(~Vt)
+
∣∣∣
(V ∗t1,V

∗
t2)

= H(~Vt)
t
(

H(~Vt)H(~Vt)
t
)−1

∣∣∣∣
(V∗t1,V

∗
t2)

, (10)

where H(~Vt)
+ and H(~Vt)

t represent the pseudo inverse and transpose
of the matrix H(~Vt), respectively.

To trace the entire solution curve (i.e. all the solutions of (5)), we
employ Euler-Newton(EN) curve tracing methodology, which follows
a standard predictor-corrector methodology [11], using Euler steps
as predictors and MPPI-NR steps as correctors. Taking an Euler
predictor step involves computing the tangent vector to the solution
curve at a previously known point on the curve, and extrapolating
to a new point along the tangent. The MPPI-NR is then used as a
corrector that uses this new point as its initial guess and converges to
a nearby solution point on the curve. The EN curve tracing procedure
is depicted graphically in Fig. 5(b), where the blue and red arrows
denote the Euler predictor steps and the MPPI-NR corrector steps,
respectively.
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Fig. 5. (a)Convergence of a point via Newton-Raphson on the solution
curve (Vt curve). (b) Curve tracing using the Euler-Newton method.

We have already given details above for evaluation of MPPI-NR
steps. For the Euler step, the key quantity we need to evaluate is a
unit tangent vector at any given point (Vt1

c,Vt2
c) on the curve. The

unit tangent vector at point ~Vt
c = (Vt1

c,Vt2
c), denoted by T

(
H(~Vt)

)

can be computed as follows [10]:

T
(

H(~Vt)
)∣∣∣
~Vt=~Vt

c
=

(− dh(~Vt)
dVt2

dh(~Vt)
dVt1

)
1√(

dh(~Vt)
dVt1

)2
+
(

dh(~Vt)
dVt2

)2

∣∣∣∣∣∣∣∣
~Vt =~Vt

c

.

(11)
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The rectangular matrix in (11) is simply the MPPI-NR Jacobian
matrix at the current solution point, hence is already available; since
it is of size 2, the computation involved in finding the tangent vector
is trivial. An algorithm for Euler-Newton can be found in [8], [10].

IV. RESULTS AND VALIDATION
In this section, we validate our new yield calculation method on the

SRAM cell shown in Fig. 1(a). Our results, which we compare with
the Monte-Carlo simulation technique, confirm that the new direct
Vt curve tracing method for yield provides accurate results, with
computation that is linear in the number of points on the solution
curve desired. We obtain speedups of 11.2× over Monte-Carlo like
simulation. Our results are obtained for MPPI-NR tolerances set such
that the points obtained on the curve are accurate up to 1mV of
precision for bit-differential voltage(∆BL) (the supply voltage was
900mV). All algorithms are implemented in a MATLAB/C/C++
simulation prototyping environment; simulations were performed on
an AMD Athlon64 3000+ based PC, with 512MB RAM, running
linux kernel 2.6.12.

A. Finding the Vt curve separating the failure/success regions
The nominal threshold voltages of M1 and M2 are 500mV. The

supply voltage is 900mV for all simulations. We set the failure
threshold condition to be ∆BLmin = 168mV at t f = 3.508ns in (5).
The solution curve of h(~Vt) = 0 for the above values of ∆BLmin and
t f obtained using our method is shown in Fig. 6(a).
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 o
f M

2 
(m

V
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Region 1

Region 2

(a) Vt curve. (b) ∆BL surface

Fig. 6. (a) Vt curve obtained by Euler-Newton method. This curve
partitions the region of Vt’s of Driver (M1) and Access (M2) transistors
in to the failure and the successful regions. (b) Bit-differential (∆BL)
surface generated using Monte-Carlo style simulations; the plane at the
failure threshold 168mV intersects the surface to produce the same Vt
curve found by our method.

As explained earlier, Region 2 in Fig. 6(a) corresponds to read
access failure, and Region 1 to success. To validate the accuracy of
the Vt curve computed via our Euler-Newton curve tracing method,
we also generated the Vt curve using brute-force Monte-Carlo style
simulations. We analysed the SRAM cell using transient simulations
for many sets of independently-varying threshold voltages Vt1 and
Vt2 for the transistors M1 and M2, respectively, measured the bit-
differential voltage at the threshold time t f = 3.508ns. The plot of
this ∆BL against Vt1 and Vt2 is a surface, shown in Fig. 6(b).

(a) Rotated view. (b) Top View

Fig. 7. (a) Rotated view of Fig. 6(b). (b) Top view of the extracted
contour from ∆BL surface and the superimposition of the Vt curve shown
in Fig. 6(a)

To find the curve in the (Vt1,Vt2) plane corresponding to the
failure criterion, we intersected a plane at ∆BL = 168mV with the
surface, as shown in Fig. 6(b) and Fig. 7(a). The curve obtained

from our Euler-Newton curve tracing method (Fig. 6(a)) is overlaid
on the intersection of the plane and the ∆BL surface in Fig. 7(b).
It is apparent from Fig. 7(b) that the Vt curve obtained by Euler-
Newton exactly matches the Vt contour obtained from the ∆BL
surface, verifying the correctness of our method. For 24 points on Vt
curve, the brute-force Monte-Carlo style method took 3 hours and 21
minutes of computer time, while our Euler-Newton method took 18
min — representing a speedup of 11.2, over an order of magnitude.

B. Probability of access-time failure due to Vt variations
Having efficiently obtained the Vt curve via our Euler-Newton

method, , we now proceed to find the area in Region 1 to obtain
the yield. An additional advantage of our Euler-Newton method is
that it computes “exact” points on Vt curve (instead of the effectively
interpolated ones by Monte Carlo) thus enhancing the accuracy of
yield estimates.

The area inside Region 1 is divided into a number of trapezoids
and their areas calculated via a simple formula and summed up, as
follows (the area in Region 1 is denoted by A1; points on the Vt
curve are denoted by (xi,yi)):

A1 =
n

∑
i=1

1
2

((yi + yi+1)(xi+1− xi)) (12)

Using (6), we calculate the access-time failure probability equal to
be 0.4325. This yield number, depends, of course, on not only
the circuit and the parameter distributions/bounds, but also on the
failure criterion for the bit-differential voltage. We emphasize that
this procedure can be extended to threshold voltage variations in
additional transistors, retaining the same methodology. Also, we
have focused on read access-time for the purpose of concreteness
and illustration; our method is generally applicable to any other
performance metrics, such as read/write SNM.

Acknowledgments
It is a pleasure to acknowledge Sani Nassif (IBM Austin Research

Laboratory), who introduced us to the variability problem for SRAMs
during a visit to the University of Minnesota [12] and has been
a supporter and mentor of this work. Support for this work was
provided in part by MARCO/GSRC, the National Science Foundation
and the Semiconductor Research Corporation. Computational and
infrastructural resources provided by the Digital Technology Center
and the Supercomputing Institute of the University of Minnesota have
been important enablers of this work. Konina Sircar offered a number
of valuable suggestions for improving the manuscript.

REFERENCES
[1] S. R. Nassif. Modeling and Analysis of Manufacturing Variations. In

Proc. IEEE Custom Integrated Circuits Conference, pages 223–228,
2001.

[2] Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy. Efficient Testing of
SRAM With Optimized March Sequences and a Novel DFT Technique
for Emerging Failures Due to Process Variations. IEEE Transactions on
Very Large Scale Integration Systems, 13:1286—1295, November 2005.

[3] X. Li, B. Huang, X. Zhang, and J. B. Bernstein. SRAM Circuit-Failure
Modeling and Reliability Simulation With SPICE. IEEE Transactions
on Device and Materials Reliability, 6:235—246, June 2006.

[4] S. Mukhopadhyay, H. Mahmoodi, S. Bhunia, and K. Roy. Modeling
of Failure Probability and Statistical Design of SRAM Array for Yield
Enhancement in Nanoscaled CMOS. IEEE Transactions on Computer-
Aided Design Of Integrated Circuits and Systems, 24:1859—1880,
December 2005.

[5] Y. Tsukamoto, K. Nii, S. Imaoka, Y. Oda, and S. Ohbayashi. Worst-
Case Analysis to Obtain Stable Read/Write DC Margin of High Density
6T-SRAM-Array with Local Vth Variability. In Proc. IEEE/ACM
International Conference on Computer-Aided Design, pages 398–405,
November 2005.

[6] J. Roychowdhury and R. Melville. Delivering Global DC Convergence
for Large Mixed-Signal Circuits via Homotopy/Continuation Methods.
IEEE Transactions on Computer-Aided Design, January 2006.

[7] S. Srivastava and J. Roychowdhury. Rapid and Accurate Latch Char-
acterization via Direct Newton Solution of Setup/Hold Times. In Proc.
IEEE Design, Automation, and Test in Europe Conference, April 2007.

[8] S. Srivastava and J. Roychowdhury. Interdependent Latch Setup/Hold
Time Characterization via Euler-Newton Curve Tracing on State-
Transition Equations. In Proc. IEEE Design Automation Conference,
June 2007.

[9] L. O. Chua and P. M. Lin. Computer-Aided Analysis of Electronic
Circuits: Algorithms and Computation Techniques. Prentice-Hall, En-
glewood Cliffs, NJ, 1975.

[10] E. L. Allgower and K. Georg. Numerical Continuation Methods.
Springer-Verlag, New York, 1990.

[11] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall series in automatic computation. Prentice-Hall,
Englewood Cliffs, N.J., 1971.

[12] S. Nassif. SRAM Memory Cell Modeling, February 2007. Digital
Technology Center, University of Minnesota.

232MP-12-4


