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Abstract—Standard small-signal analysis methods for circuits
break down for oscillators because small-input perturbations re-
sult in arbitrarily large-output changes, thus invalidating funda-
mental assumptions for small-signal analysis. In this paper, we
propose a novel oscillator ac approach remedying this situation,
thus restoring validity and rigour to small-signal analysis of os-
cillators. Our approach centers around a novel general equation
formulation for circuits that we term the Generalized Multitime
Partial Differential Equations (GeMPDE). While this formula-
tion is broadly applicable to any kind of circuit or dynamical
system, we show that it has unique advantages for oscillators in
that small-input perturbations now lead to small output ones,
thus making small-signal analysis valid. A key feature of our
approach is to solve for bivariate-frequency variables with the
help of novel augmenting-phase-condition equations. Unlike prior
oscillator-analysis methods, which require special handling of the
phase mode, our GeMPDE-based small-signal analysis provides
both amplitude and frequency characteristics in a unified manner
and is applicable to any kind of oscillator described by differential
equations. We obtain speedups of 1–2 orders of magnitude over the
transient-simulation approach commonly used today by designers
for oscillator-perturbation analysis.

Index Terms—Generalized Multitime Partial Differential Equa-
tions (GeMPDE), oscillator ac analysis, small-signal analysis.

I. INTRODUCTION

O SCILLATORS are building blocks in electronic, me-
chanical, optical, and many other types of engineering

systems—examples include voltage-controlled oscillators, dig-
ital clocks, phase-locked loops, motors, engines, lasers, etc.
Analysis of the effects of small perturbations on oscillators is
an important practical and theoretical problem. Small pertur-
bations can, for example, lead to thickening of the oscillator’s
frequency spectrum (an effect known as phase noise) or to
uncertainties in the locations of switching edges (known as
timing jitter) in clocked systems. Effects of such nonidealities
include degradation of throughput and bit-error rate in com-
munication systems and the need for lower clock speeds in
computer systems.

In recent years, the sources of perturbations to oscillator-
based systems have grown in variety. In addition to intrinsic
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device noise perturbations, interference “noise” from imperfect
power-supply/ground lines and chip substrates have become of
substantial concern for designers. Correct and speedy analysis
of oscillators under small perturbations has therefore become
of particular topical importance.

A. Small-Signal Analysis of Oscillators

For nonoscillatory circuits, small-signal linearized analysis
(“AC analysis”) [1], [2] is a useful and fast means for designers
to gain insight into the circuit operation. Because ac analysis
provides information about the circuit’s long-term response to
small periodic inputs via efficient frequency-domain computa-
tions, time-consuming transient analysis is not necessary. AC
analysis has long been used to efficiently analyze sinusoidal
(or periodic) steady-state responses of linear time-invariant
(LTI) circuits. AC analyses are a staple for analog designers,
who apply it to circuits such as amplifiers, first linearizing
the nonlinear circuits about a dc operating point. The concept
of ac analysis has also been profitably extended to nonlinear
circuits operating in large-signal periodic steady state, such as
mixers and switched-capacitor filters (e.g., [3]–[6]). This linear
periodic time-varying (LPTV) ac analysis can capture impor-
tant aspects of periodically driven circuits, such as frequency
translation and sampling.

A similar capability for oscillators for, e.g., finding small
changes in oscillator frequency caused by an external input,
is therefore very desirable. However, as we explain in this
paper, neither LTI nor LPTV AC analysis is applicable to
oscillators; if applied blindly, breakdown due to ill-conditioning
or outright singularity of the ac matrices results. The reason is
that oscillators are different from most other electronic circuits
in that even small-input perturbations lead to, over time, large
changes in phase and timing properties [7]. The fundamental
reason for this qualitative difference (between oscillators and,
say, amplifiers) can be traced to the fact that all oscillators
feature neutral-phase stability—i.e., any periodic solution of
an oscillator, if time-shifted by an arbitrarily delay, is also a
valid solution.1 Because of this property, there is no restor-
ing mechanism that corrects errors in phase caused by small
perturbations with the result that phase errors can accumulate
without bound over time under the influence of a sustained (but
arbitrarily small) perturbation. The numerical manifestation of
this fundamental property of oscillators is ill-conditioning and
singularity of small-signal-analysis matrices.

1For this reason, oscillators are said to have no time reference.
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B. Previous Work

In the absence of the “usual” small-signal-analysis capabil-
ity of SPICE, designers are currently forced to resort to full
transient analysis for oscillator simulations. However, as is
well known [8], transient analysis has disadvantages peculiar
to oscillators. Fundamentally, the tradeoff between accuracy
of results and step-size is much worse for oscillators than for
nonoscillatory circuits like amplifiers and mixers. In particular,
small numerical errors in phase accumulate without limit in
oscillators, resulting in unacceptable accuracy unless extremely
small timesteps (∼400–1000 timesteps per cycle, typically, for
a simulation length of ∼100 cycles) are taken. This makes tran-
sient simulation very much slower than a potential ac analysis,
especially when frequency sweeps are desired: for transient,
an entire nonlinear simulation is required for each frequency
(followed by postprocessing), while the single complex-matrix
solution of ac analysis provides the same information more
accurately. Therefore, it is very desirable to restore validity and
rigour to small-signal analysis for oscillators.

Special techniques have been devised to overcome the ill-
conditioning problem in oscillators (e.g., [7], [9], and [10]). The
best approach, to our knowledge, is a nonlinear-perturbation
approach presented in [7], designed primarily for the phase
components of the oscillator. Recent extensions [8] deflate
away that part of the input that causes phase variations and,
then, apply Floquet theoretic techniques to compute amplitude
components. Deflation of phase components ameliorates the
singularity problem; however, the method is still susceptible
to ill-conditioning caused by imperfect numerical cancellation
[7], [11]. Computationally, full Floquet decomposition can
be expensive as system sizes increase; techniques based on
partial decomposition using Krylov subspace methods, while
substantially faster, exacerbate the imperfect-cancellation is-
sue and while still not providing the full response from all
amplitude modes.

C. Contributions of This Work

The method proposed in this paper has its roots in a class of
techniques based on the concept of multitime partial differential
equations (MPDEs), which were proposed and used to effi-
ciently simulate systems with widely separated time scales, i.e.,
with fast/slow characteristics. In the MPDE formulation, signal
components with different rates of variation are represented by
their “own” artificial time variables [12], [13]. An extension
(the Warped MPDE or WaMPDE) of MPDE methods has also
been proposed [14] that is able to better analyze amplitude and
frequency modulation (FM) in oscillators. In the WaMPDE,
some “warped” time scales are dynamically rescaled, essen-
tially in order to make the undulations of FM signals uniform so
that they can be sampled efficiently. The concept of time warp-
ing introduced in the WaMPDE was further generalized [14]
to obtain a family of equation formulations collectively termed
the Generalized MPDE or GeMPDE. A key characteristic of the
GeMPDE is that it features “local frequency” variables, which
are themselves functions of multiple time scales. These local
frequencies are linked to multitime “phase variables” through
nonlinear implicit ordinary differential equations (ODEs).

In this paper, we propose a novel and unified approach
for small signal or “ac” analysis of oscillators by exploiting
a special case of the GeMPDE. In this particular GeMPDE
formulation, the frequency is treated as an extra explicit vari-
able with two time scales—an internal “warped” scale and an
external “unwarped” time scale. A set of extra equations, which
we term phase conditions, are proposed and added to the system
to make the numbers of equations and unknowns the same,
thus making it possible to obtain a unique solution. One of the
effects of using this bivariate-frequency variable is to separate
changes in amplitude and frequency, both of which always
remain small if the external perturbation is small.2 Therefore,
linear small-signal analysis of this special GeMPDE becomes
valid. The numerical manifestation of this fact is a well-posed
Jacobian matrix that remains comfortably nonsingular at all
frequencies, as we prove.

By restoring validity to small-signal analysis of oscillators
with the GeMPDE formulation, our method achieves large
speedups over transient solution, just as traditional ac analysis
does for nonoscillatory systems. While our linearized-oscillator
analysis relies on multitime computations for all the “hard
work,” “normal” time-domain waveforms are easily recovered
through simple and fast postprocessing. The postprocessing
step involves the solution of a scalar nonlinear ODE that
relates multitime frequency and single-time phase variables.
Our method provides both frequency and amplitude variations
in a unified manner from the small-signal transfer function
calculated and is applicable to any kind of oscillator.

We validate our oscillator ac (OAC) method on a variety of
LC and ring oscillators. OAC-analysis results show excellent
agreement with carefully run full transient simulations, as
expected but provide speedups of 1–2 orders of magnitude.
We also demonstrate how OAC can predict injection locking
(injection locking [15], [16] is a phenomenon in which an
oscillator’s natural frequency changes, under certain conditions,
to exactly equal that of a small injected signal). OAC cap-
tures this nonlinear phenomenon via the scalar-postprocessing
nonlinear-ODE solution that bridges multitime and single-time
solutions.

D. Organization of the Paper

The remainder of this paper is organized as follows. In
Section II, we review the rank-deficiency problem in the
frequency-domain conversion matrix of oscillators for the
DAE/MPDE and WaMPDE formulations. In Section III,
we propose a well-posed GeMPDE formulation and novel
augmenting-phase conditions. We also prove the nonsingularity
of GeMPDE’s linearization and present the OAC technique in
this section. In Section IV, we apply OAC to a number of os-
cillator circuits and demonstrate improvements in computation
time over transient, as well as its ability to predict injection
locking.

2“Small perturbation” actually means that the input and responses should be
in a range appropriate for linearization to be valid. For example, if a circuit is
only weakly nonlinear, the input can be relatively large.
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II. RANK DEFICIENCY IN PREVIOUS OSCILLATOR

LINEARIZATION APPROACHES

Standard small-signal analysis is not applicable to oscillators
because of their fundamental property of neutral-phase stability,
resulting in singular small-signal matrices [7], [17], [18]. In
this section, we first demonstrate the rank-deficiency problem
in the DAE/MPDE frequency-domain conversion matrix of os-
cillators. We then demonstrate how the WaMPDE formulation
[14] succeeds in correcting the problem at dc but fails to do so at
all other harmonics (we will then go on to show, in Section III,
that the GeMPDE-based approach we present here alleviates
the problem completely, i.e., at all frequencies).

A. Preliminaries

Oscillator circuits under perturbation can be described by the
DAE system

dq(x)
dt

+ f(x) = Au(t) (1)

where u(t) is a small-perturbation signal, x(t) is a vector of
circuit unknowns (node voltages and branch currents), and
A is an incidence matrix that captures the connection of the
perturbation to the circuit. It has been shown in [7] that small
perturbations applied to orbitally stable oscillators can lead to
dramatic changes in output, thus invalidating the fundamental
assumption of small-signal analysis, i.e., that output changes
always remain small.

To more conveniently perform small-signal analysis of oscil-
lators, we first recall the MPDE [12], [13] forms of (1), which
separate the input and system time scales. This leads to a form
of the linear time-varying transfer function useful for small-
signal analysis, as we show shortly. The MPDE form of (1) is[

∂

∂t1
+

∂

∂t2

]
q (x̂(t1, t2)) + f (x̂(t1, t2)) = Au(t1) (2)

where x̂(t1, t2) is the bivariate form of x(t) in (1).
We will also need the WaMPDE formulation [14], an ex-

tension of the MPDE originally proposed to address efficiency
problems the MPDE faces when encountering strong FM in os-
cillators. Following [14], the WaMPDE corresponding to (1) is[

∂

∂t1
+ ω(t1)

∂

∂t2

]
q(x̂) + f(x̂) = Au(t1) (3)

where ω(t1) is a local-frequency variable, which is a function
of the unwarped time scale t1. t2 is a dynamically rescaled
(warped) time scale, which makes the undulation of FM
uniform. Using the WaMPDE form separates changes in ampli-
tude and frequency and, as will become clearer shortly, helps
alleviate the rank-deficiency problem in the frequency-domain
small-signal analysis matrix of oscillators to some extent.

B. Singularity of the MPDE Conversion Matrix at
Frequencies s = iω0,∀i

We assume that x∗(t2) is the unperturbed steady-state os-
cillatory solution of (2), i.e., the solution when u(t1) = 0.

Linearizing the MPDE (2) around x∗(t2), we obtain

[
∂

∂t1
+

∂

∂t2

]
(C(t2)∆x̂(t1, t2)) + G(t2)∆x̂(t1, t2) = Au(t1).

(4)

Here, C(t2) = (∂q(x̂)/∂x̂)|x∗ and G(t2) = (∂f(x̂)/∂x̂)|x∗ .
Performing a Laplace transform with respect to t1, we further
obtain[

s +
∂

∂t2

]
(C(t2)∆x̂(t1, t2)) + G(t2)∆x̂(t1, t2) = AU(s).

(5)

We can expand the t2 dependence in a Fourier series, and

using the Toeplitz matrix (T) and vector
FD

V terminology from
[11], we obtain a convenient matrix representation for the
time-varying small-signal transfer function of the oscillator
[17], [19]

[
FD

Ω (s)TC(t2) + TG(t2)

]
︸ ︷︷ ︸

HB
J (s)

FD

V ∆X (s) =
FD

V A U(s) (6)

where

TC(t2) =




...
...

...
· · · C0 C−1 C−2 · · ·
· · · C1 C0 C−1 · · ·
· · · C2 C1 C0 · · ·

...
...

...




TG(t2) =




...
...

...
· · · G0 G−1 G−2 · · ·
· · · G1 G0 G−1 · · ·
· · · G2 G1 G0 · · ·

...
...

...




FD

Ω = ω0




. . .
−I

0I
I

. . .




FD

Ω (s) =
FD

Ω + sI

FD

V ∆X (s) =
[
. . . ,∆XT

−1,∆XT
0 ,∆XT

1 , . . .
]T

and
FD

V A = [. . . , 0, AT, 0, . . .]T (7)

where
HB

J (s) is often called the frequency-domain conversion
matrix [17], [19].

Lemma 2.1:
HB

J (s) loses rank by 1 ∀s = iω0, where ω0 is
the frequency of a free-running oscillator.

Proof: See the Appendix. �
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This implies that
HB

J (s) is singular at dc and every harmonic.

Note that at dc (i.e., s = 0),
HB

J (0) is actually the steady-state
Jacobian of harmonic balance (HB) [20].

C. WaMPDE Restores Full Rank to Conversion Matrix at DC

In the WaMPDE formulation, x̂ captures the amplitude of
circuit unknowns and ω(t1) (the “local frequency”) captures
frequency changes explicitly and separately from the amplitude
components. We assume that (3) has an unperturbed steady-
state solution (x∗(t2), ω0). Linearization of (3) around (x∗, ω0)
yields[

∂

∂t1
+ ω0

∂

∂t2

]
(C(t2)∆x̂(t1, t2)) + G(t2)∆x̂(t1, t2)

+ ∆ω(t1)
∂

∂t2
q(x∗) = Au(t1). (8)

Following the same procedure as in Section II-B, we obtain
a frequency-domain discretized system[(

FD

Ω (s)TC(t2) + TG(t2)

)
,
FD

V q̇∗(t2)

]
︸ ︷︷ ︸

HB
J A(s)

(
FD

V ∆X (s)
∆ω(s)

)

=
FD

V A U(s) (9)

where
HB

J A (s) is the augmented HB Jacobian with offset s (or

augmented conversion matrix). Compared with (6),
HB

J A (s) is

augmented with the right column
FD

V q̇∗(t).

Lemma 2.2:Augmenting
HB

J(s) by a column
FD

V q̇∗(t) (
HB

JA (s))
restores full rank only in the case s = 0.

Proof: See the Appendix. �
Note that at s = DC,

HB

J A (s) with an appropriate phase-
condition row is actually the steady-state Jacobian for oscillator
HB [18], [20]. It is because this matrix is nonsingular that HB
can solve for the oscillator’s steady state.

III. SMALL-SIGNAL LINEARIZATION OF THE GEMPDE

For valid small-signal analysis, it is essential that the
Jacobian matrix is full rank at all frequencies. In this section, we
propose a special GeMPDE formulation and prove that it solves
the rank-deficiency problem of the Jacobian matrix completely
with the use of new phase conditions. We first obtain a new
small-signal transfer function under this formulation, and then,
show how both phase/frequency and amplitude characteristics
of oscillators can be easily recovered from multitime solutions.

A. GeMPDE Formulation

The GeMPDE, outlined in [14], is[
Ω̂(t1, . . . , td) ·

[
∂

∂t1
, . . . ,

∂

∂td

]]
q (x̂(t1, . . . , td))

+ f (x̂(t1, . . . , td)) = b̂(t1, . . . , td) (10)

where d is the number of artificial time scales, the “phase”
functions Φ̂(t1, . . . , td) and the “local-frequency” functions
Ω̂(τ1, . . . , τd) are defined as

Φ̂(t1, . . . , td) =


 τ1

...
τd




=


 φ̂1(t1, . . . , td)

...
φ̂1(t1, . . . , td)


 (11)

Ω̂(τ1, . . . , τd) =


 ω̂1(τ1, . . . , τd)

...
ω̂1(τ1, . . . , τd)


 (12)

where Φ̂ and Ω̂ is related by a nonlinear implicit ODE(
∂

∂t1
+ · · · + ∂

∂td

)
Φ̂(t1, . . . , td) = Ω̂

(
Φ̂(t1, . . . , td)

)
. (13)

This relation is the generalization of the fact that phase is the
integral of local frequency.
Theorem 3.1: If (Ω̂, x̂) is a solution of (10), then the one-

time waveform defined by x(t) = x̂(Φ̂(t, . . . , t)) solves the
underlying DAE system, if b(t) = b̂(Φ̂(t, . . . , t)).

Proof: See [14]. �

B. Small-Signal Linearization of the GeMPDE

To facilitate small-signal analysis, we use a special case
of the GeMPDE. In this particular GeMPDE formulation, the
frequency ω is treated as an extra explicit variable that is a
function of two time scales: an internal warped time scale (t1)
and an external unwarped time scale (t2). The special bivariate
GeMPDE form of (1) is[

∂

∂t1
+ ω̂(t1, t2)

∂

∂t2

]
q (x̂(t1, t2))

+ f (x̂(t1, t2)) = b(t) = Au(t1). (14)

Lemma 3.1: If (ω̂, x̂) is a solution of (14), then the one-time
waveform defined by x(t) = x̂(t, φ̂(t, t)) solves the underlying
DAE system if b(t) = b̂(t, φ̂(t, t)), where φ̂ and ω̂ are related by

∂φ̂(t, t)
∂t

=
∂φ̂(τ1 = t, τ2 = t)

∂τ1
+

∂φ̂(τ1 = t, τ2 = t)
∂τ2

= ω̂
(
t, φ̂(t, t)

)
. (15)

Proof: See the Appendix. �
Defining φ(t) = φ̂(t, t), we can rewrite the phase-frequency

relation (15) as

dφ(t)
dt

= ω̂ (t, φ(t)) . (16)

This equation relates the multitime frequency and the single-
time phase variable. The single-time phase is then used to
obtain a single-time solution from MPDE solutions using
Lemma 3.1.
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We now linearize this special case of the GeMPDE. We
first note that the unperturbed steady-state solution of the
WaMPDE (3) (x∗(t2), ω0) also solves the GeMPDE (14). We
can then linearize (14) around (x∗(t2), ω0) to obtain the lin-
earized GeMPDE:[

∂

∂t1
+ (ω0 + ∆ω(t1, t2))

∂

∂t2

]
q (x∗ + ∆x̂(t1, t2))

+ f (x∗ + ∆x̂(t1, t2)) = Au(t1) (17)

i.e.,[
∂

∂t1
+ ω0

∂

∂t2

]
(C(t2)∆x̂(t1, t2)) + G(t2)∆x̂(t1, t2)

+ ∆ω(t1, t2)
∂

∂t2
q(x∗) = Au(t1). (18)

Following the same procedure as in Section II-B, we continue
to obtain a frequency-domain discretized system

[(
FD

Ω (s)TC(t2) + TG(t2)

)
,Tq̇∗(t2)

]
︸ ︷︷ ︸

HB
J Ge(s)


 FD

V ∆X (s)
FD

V ∆ ω(s)




=
FD

V A U(s). (19)

Comparing with (9), we note that now the Jacobian is aug-
mented by several more columns (N columns of Tq̇∗(t2), where
N is the number of harmonics used in our truncated Fourier

series). In this case, the size of
HB

J Ge (s) is nN × (n + 1)N ,
where n is the number of circuit unknowns.

Lemma 3.2: The augmented matrix
HB

J Ge (s) (augmenting
HB

J (s) by columns of Tq̇∗(t2)) is full rank at all frequencies.
Proof: See the Appendix. �

This implies that
HB

J Ge (s), if properly augmented with
linearly independent rows (as shown in the following), can
be nonsingular at all frequencies. As a result, if the pertur-

bation signal is small, then both
FD

V ∆X (s) and
FD

V ∆ω (s)
remain small, making linear small-signal analysis of this special
GeMPDE valid.

C. New Phase Conditions

Since we have augmented
HB

J (s) by N columns above, we
have N more unknowns than equations. We require N more
equations in order to obtain a unique solution. We will term
these equations phase conditions. While there is considerable
apparent freedom in choosing phase conditions, they need to
satisfy a number of conditions in order to be useful from the
standpoint of small-signal analysis. In particular, the phase-

condition rows that augment
HB

J Ge (s): 1) must be full rank
themselves and 2) in addition make the entire augmented
Jacobian matrix full rank.

We now propose the following phase-condition equations to
satisfy these characteristics:

ω(t1, t2)
∂

∂t2
x̂l =

∂xls(t2)
∂t2

(20)

where l is a fixed integer. x̂l denotes the lth element of x̂, while
xls is the lth element of the steady-state solution xs(t2).

It is interesting to note that these phase conditions (20) are a
generalization of

ω0
dxl

dt2
|t2=0 = 0 (21)

a phase condition standardly used in oscillator steady-state
methods [14]. The physical meaning of this phase condition
is that the unknown xl has a zero derivative at t2 = 0 at the
steady state. In steady-state methods, the equation system of
an oscillator has only one extra unknown, the oscillator’s fre-
quency. Thus, only one augmenting-phase-condition equation
is required to make the system “square.” Also, the use of a
scalar ω0 within the phase equation is not important since the
right-hand sized is zero (however, this is not true for GeMPDE
formulations).

In our GeMPDE formulation, there are N extra unknowns
due to the fact that ω(t1, t2) is a function depending on both
t1 and t2 (N is the number of terms in the truncated Fourier
series). The phase condition is therefore generalized by equat-
ing the scaled derivative of xl to that of xl at the steady state
for N points (i.e., for t2i = (i− 1)/(N)T2, i = 1, 2, . . . , N ).
Here, ω(t1, t2) cannot be omitted, since the right-hand side is
not zero. The simple phase-condition equation used in steady-
state methods becomes a special case of the GeMPDE phase
condition.

Note that, just as for the steady-state case, the choice of
the phase-condition variable xl should be dictated by physical
intuition about the oscillator. For example, choosing xl to
correspond to a dc voltage source (e.g., the power supply) is
inappropriate, since its waveform is constant with time and (20)
will lead to degeneracy and rank-deficiency in the GeMPDE
small-signal matrix. On the other hand, e.g., the capacitor
voltage or the inductor current in an LC oscillator are excellent
choices, since they have periodic time-varying waveforms.

It is obvious that the unperturbed steady state (x∗
l (t2), ω0)

satisfies (20). By linearizing around (x∗
l , ω0) and expanding the

t2 dependence in Fourier series, we obtain

[
FD

Ω TeT
l
,Tẋ∗

l
(t2)

]
︸ ︷︷ ︸

P


 FD

V ∆X (s)
FD

V ∆ω (s)


 = 0. (22)

Lemma 3.3: The phase-condition submatrix P is full rank at
all frequencies.

Proof: See the Appendix. �
This implies that the phase-condition rows that augment

HB

J Ge (s) is full rank.
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Fig. 1. Condition numbers: Original Jacobian matrix (solid line), augmented
Jacobian from WaMPDE (∗), and augmented Jacobian from GeMPDE (o).
The frequency of LC oscillator is 1591.5 Hz. A total of N = 61 harmonics
were used.

Putting the phase conditions and GeMPDE together, we
obtain



(

FD

Ω (s)TC(t2) + TG(t2)

)
, Tq̇∗(t2)

FD

Ω TeT
l
, Tẋ∗

l
(t2)




 FD

V ∆X (s)
FD

V ∆ω (s)




=

(
FD

VA

z

)
U(s) (23)

where z = [0, . . . , 0]T. The corresponding small-signal transfer
function is

FD

V H (s) =


 FD

V ∆X (s)
FD

V ∆ω (s)


 /U(s)

=



(

FD

Ω (s)TC(t2) + TG(t2)

)
, Tq̇∗(t2)

FD

Ω TeT
l
, Tẋ∗

l
(t2)



−1

×
(

FD

V A

z

)
. (24)

Equation (24) is always nonsingular, for all frequencies. This
is confirmed by numerical results: Fig. 1 shows condition num-
bers of the original Jacobian matrix, the augmented Jacobian
from the WaMPDE (with one phase condition) and the aug-
mented Jacobian from the GeMPDE (with N phase conditions;
N is the number of harmonics), using a simple nonlinear
LC oscillator with a negative resistor. As shown, the original
Jacobian becomes singular at s = iw0,∀i; the WaMPDE cor-
rects the singularity problem only at dc, while the GeMPDE
addresses the singularity problem completely at all frequencies.

Fig. 2. Simple 1-GHz LC oscillator with a negative resistor.

D. Obtaining Phase and Amplitude Characteristics

Once the transfer function is obtained by (24), we can obtain
FD

V ∆X (s) and
FD

V ∆ω (s) by applying perturbations at different
frequencies. Multitime waveforms of ∆x and ∆ω are then
obtained by evaluating the Fourier series [using, e.g., the fast
Fourier transform (FFT)]. Phase characteristics are recovered
by solving the phase-frequency relation [(16)]: To obtain the
phase variation from ∆ω, we linearize (16) around (φ0, ω0).
Using φ0 = ω0t, we have

d∆φ(t)
dt

= ∆̂ω (t, ω0t + ∆φ(t)) . (25)

Finally, the one-time form of the amplitude variations ∆x(t)
can be recovered using Lemma 3.1

∆x(t) = ∆̂x (t, φ(t)) (26)

where φ(t) = ω0t + ∆φ(t). The overall solution of the oscilla-
tor is given by

x(t) = x∗ (φ(t)) + ∆̂x (t, φ(t)) (27)

where x∗ is the steady-state oscillatory solution.
In summary, the flow of the autonomous ac analysis process

is outlined below:

Flow of oscillator ac algorithm
1) Solve for the steady-state solution (x∗, w0) using HB or

shooting.
2) Calculate the GeMPDE transfer function numerically

using (24).
3) Obtain multitime time-domain waveforms of ∆x and ∆ω

at a given frequency (via FFTs or brute-force evaluation
of a sum of sinusoidal components).

4) Solve (25) numerically for the phase variation.
5) Solve (26) numerically for the amplitude variations.
6) Finally, generate the overall solution using (27).

E. Using OAC to Predict Injection Locking

Although our method is based on linearization, it can cap-
ture injection locking because the scalar phase (25), which is
automatically available using our special form of GeMPDE, is
nonlinear. When an oscillator locks to the perturbation signal,
its phase follows that of the perturbation signal, i.e.,

ω0t + ∆φ(t) = ω1t + θ (28)
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Fig. 3. Harmonic transfer functions: The frequency sweeps from dc to 1.2 × 109 Hz. (a) Harmonic transfer functions of the capacitor voltage. (b) Harmonic
transfer functions of the local frequency.

where ω0 is the frequency of the free-running oscillator, ω1

is the perturbation frequency, and θ is a constant representing
the phase difference between the locked oscillator and the
perturbation signal. Hence

∆φ(t) = (ω1 − ω0)t + θ = ∆ω0t + θ. (29)

In other words, if the oscillator is in lock, the phase ∆φ(t)
should change linearly with a slope of ∆ω0. By examining
the waveform of ∆φ(t) obtained from (25), injection locking
in oscillators can be easily predicted via our new small-signal
analysis.

IV. APPLICATION AND VALIDATION

In this section, we apply the GeMPDE-based small-signal
analysis to LC, ring, and cross-coupled CMOS oscilla-
tors. Comparisons with direct SPICE-like transient simu-
lations confirm that our method captures oscillator phase/
frequency and amplitude variations correctly. Speedups of or-
ders of magnitude are obtained, however, over SPICE-like
transient simulation. We also verify OAC’s capability of pre-
dicting injection locking in oscillators. All simulations were
performed using MATLAB on a 2.4-GHz Athlon XP-based PC
running on Linux.

A. One-GHz Negative-Resistance LC Oscillator

A simple 1-GHz LC oscillator with a negative resistor is
shown in Fig. 2. At steady state, the amplitude of the inductor
current is 1.2 mA.

The circuit is perturbed by a current source in parallel with
the inductor. Fig. 3 shows frequency sweeps akin to standard ac
analysis, for both the capacitor voltage and the local frequency.
The transfer functions for the capacitor voltage represent effects
of amplitude modulation (at the capacitor node), while the
transfer functions for the local frequency capture FM. The
horizontal axis is the frequency of the “input” perturbation
signal, just as in LTI AC analysis. As shown, different har-
monics of the outputs have different transfer functions, since
oscillators are LPTV systems [17], [19]. Note that for the

perturbation frequency at the oscillator’s natural frequency ω0,
i.e., 1 GHz, all transfer functions have finite values verifying
that our GeMPDE-based conversion matrix is nonsingular.

Fig. 4(a) shows the phase variation recovered from the bi-
variate form of frequency [using (25)] under a perturbation of
4 × 10−5 sin(1.03w0t). For comparison, we also depict the
phase variation solved from Floquet-theory-based analysis [7]
in Fig. 4(a). The two waveforms have similar shapes but slightly
different values—this corresponds to small tweaks in the orbital
deviation. Fig. 4(b) shows phase variations solved from both
methods for longer simulation time. As shown, the long-range
slopes for the linear growth of the phase deviations from both
methods do not equal to each other (this may be caused by
numerical integration errors during the solution of the phase
equation and is under investigation currently).

Both multitime and recovered one-time forms of amplitude
variation of the capacitor voltage are shown in Fig. 4(c)–(d).
The long-range orbital deviations stay small, as shown in
Fig. 4(d). The capacitor-voltage waveform is obtained using
(27) and compared with full transient simulation in Fig. 5.
As shown, the results from our method match full simulation
perfectly. A speedup of 15 times is obtained in this example.

We also test OAC for predicting injection locking, first
applying a perturbation of the same frequency as the oscillator’s
natural frequency ω0, noting that the phase shift should con-
verge to a constant in this case. We then change the perturbation
frequency to 1.03ω0; in this case, we expect the phase to change
linearly with a slope of 0.03 (in our implementation, the slope is
scaled by 1/ω0, so the slope is ∆ω0/ω0). The perturbations are
increased in strength to ensure that the oscillator is in lock. The
phase variations from the small-signal analysis in both cases
are shown in Figs. 6 and 7. Transient simulation results are also
provided to verify that the oscillator is in lock. As shown in
Figs. 6 and 7, the phase variations from our method change as
expected.

B. Three-Stage Ring Oscillator

A three-stage ring oscillator with identical stages is shown in
Fig. 8. The oscillator has a natural frequency of 1.53 × 105 Hz.
The amplitude of the steady-state load current is about 1.2 mA.
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Fig. 4. Phase and amplitude variations of the capacitor voltage when the perturbation current is 4 × 10−5 sin(1.03w0t). The figure shows the simulation result
for 100–300 cycles. (a) Comparison: phase variation (100 cycles). (b) Comparison: phase variation (300 cycles). (c) Multitime solution of amplitude variation.
(d) One-time solution of amplitude variation (300 cycles).

Fig. 5. Comparison of results from small-signal analysis and full transient simulation [the perturbation current is 4 × 10−5 sin(1.03w0t)]. (a) Result recovered
from small-signal analysis. (b) Detailed comparison (zoom in).
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Fig. 6. Oscillator in lock: The perturbation current is 5 × 10−5 sin(w0t). The figure shows simulation result for 100 cycles. (a) Phase variation from small-signal
analysis. (b) Transient simulation result.

Fig. 7. Oscillator in lock: The perturbation current is 8 × 10−5 sin(1.03w0t). The figure shows simulation result for 100 cycles. (a) Phase variation from
small-signal analysis. (b) Transient simulation result.

Fig. 8. Three-stage oscillator with identical stages.

Fig. 9 shows ac analysis frequency sweeps for both the
capacitor voltage and the local frequency of the oscillator
under a perturbation current, which is connected in parallel
with the load capacitor at node 1. Note that all transfer func-
tions remain bounded when the perturbation frequency is the
oscillator’s free-running frequency ω0, as well as at every
harmonic 2ω0, 3ω0, . . . , etc., the harmonics are not depicted in
the figure.

Fig. 10 shows the phase and amplitude variations at
node 1 (the perturbation current is 5 × 10−5 sin(1.04w0t)).
The waveform at node 1 is compared with full transient simula-
tion in Fig. 11. Again, we see perfect agreement between results
from our method and SPICE-like simulation, with a speedup of
20 in this case.

Fig. 12 shows the simulation result when the oscillator is
in lock. Observe that the phase changes linearly, as expected.
Transient simulation results are also provided to verify that the
oscillator is in lock.

C. Four-GHz Colpitts LC Oscillator

A Colpitts LC oscillator is shown in Fig. 13. The circuit has
a free-running frequency of approximately 4 GHz.

We perturb the oscillator with a small sinusoidal voltage
source in series with the inductor L1. Fig. 14 shows frequency
sweeps for both the current through L1 and the local frequency.
All harmonic transfer functions have well-defined finite peaks
around the oscillator’s natural frequency.

Fig. 15 shows the phase and amplitude variations of
the current through L1 when the perturbation current is
2 × 10−3 sin(1.02w0t). The waveform of the current through
L1 is compared with full transient simulation in Fig. 16. As
shown, results from our method match full simulations per-
fectly. A speedup of 100 times is obtained in this example. We
obtain larger speedups for this circuit as compared to prior ones,
since its size is larger.

Fig. 17 shows simulation results when the oscillator is in
lock. Again, our method predicts the injection locking correctly,
as verified by transient simulation.

D. One-GHz Cross-Coupled CMOS Oscillator

A cross-coupled CMOS oscillator is shown in Fig. 18. The
circuit has a free-running frequency of approximately 1 GHz.
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Fig. 9. Harmonic transfer functions: The frequency sweeps from dc to 2 × 105 Hz. (a) Harmonic transfer functions at node 1. (b) Harmonic transfer functions
of the local frequency.

Fig. 10. Phase and amplitude variations of the capacitor voltage when the perturbation current is 5 × 10−5 sin(1.04w0t). The figure shows simulation result
for 100 cycles. (a) Phase variation. (b) Multitime solution of amplitude variation. (c) One-time solution of amplitude variation.

Fig. 11. Comparison of the result from small-signal analysis and full transient simulation [the perturbation current is 5 × 10−5 sin(1.04w0t)]. (a) Result
recovered from small-signal analysis. (b) Transient simulation result.
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Fig. 12. Oscillator in lock: The perturbation current is 5 × 10−5 sin(1.02w0t). The figure shows simulation result for 100 cycles. (a) Phase variation from
small-signal analysis. (b) Transient simulation result.

Fig. 13. Four-GHz Colpitts LC oscillator.

We inject a small sinusoidal current to one of the oscillator
outputs. Fig. 19 shows frequency sweeps for both the output
voltage and the local frequency. Similar to the previous ex-
ample, all harmonic transfer functions have finite well-defined
peaks around the oscillator’s natural frequency.

Fig. 20 shows the resulting phase and amplitude variations
of the output voltage. The waveform at the output is compared
with full transient simulation in Fig. 21. Fig. 22 shows simula-
tion results when the oscillator is in lock. A speedup of 50 times
is obtained in this example.

V. CONCLUSION AND FUTURE DIRECTIONS

We have presented a mathematical formulation and compu-
tational algorithms for rigorously valid small-signal analysis of
oscillators. Our GeMPDE-based OAC method captures ampli-
tude and frequency variations in oscillators under perturbations
accurately and in a unified manner delivering large speedups
over the full transient simulations that were the only compre-
hensive prior alternative. The method operates by splitting up
the oscillator small-signal problem into linear computations

involving a well-conditioned matrix, followed by solution of
a small scalar nonlinear differential equation. The method is
also able to predict injection locking in oscillators, an inherently
nonlinear phenomenon, because of the latter step.

At this point, we feel that the method is already suitable
for evaluation, further development, and deployment by the
community and industry. We emphasize, however, that several
interesting and important theoretical, as well as practical, issues
remain to be explored. These include understanding more pre-
cisely the impact of different phase conditions on matrix con-
ditioning, obtaining concrete connections between the positive
predictive value perturbation projection vector (PPV) equation
for phase derived from Floquet theory [7] and the more general
form of GeMPDE phase (20), and performing a stochastic
analysis of the linearized GeMPDE to obtain potentially new
insights into phase noise and jitter. We are currently investigat-
ing these topics.

APPENDIX

Lemma 2.1:
HB

J (s) loses rank by one ∀s = iω0, where ω0

is the frequency of a free-running oscillator.
Proof: For simplicity in exposition, we assume the oscil-

lator is an ODE—extension to the DAE case is straightforward
using ideas from [11]. From [11, (19)]

(Ω(s) − TM ) = TV T(t)

HB

J (s)TU(t). (30)

Using V T(t) = U−1(t) (from [11, (5)] except here C(t) = I),
we have

HB

J (s) = TU(t) (Ω(s) − TM ) T
−1
U(t). (31)

The singularity or nonsingularity of (Ω(s) − TM ) is the

same as that of
HB

J (s), because they are related by a similarity
transformation.
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Fig. 14. Harmonic transfer functions: The frequency sweeps from dc to 5 × 109 Hz. (a) Harmonic transfer functions of the current through L1. (b) Harmonic
transfer functions of the local frequency.

Fig. 15. Phase and amplitude variations of the current through L1 when the perturbation current is 2 × 10−3 sin(1.02w0t). The figure shows simulation result
for 100 cycles. (a) Phase variation. (b) Multitime solution of amplitude variation. (c) One-time solution of amplitude variation.

Now, note that the structure of (Ω(s) − TM ) is as follows:




. . .

M+(s + jω0)I
M+sI

M+(s− jω0)I
. . .




(32)

where

M = −




0
µ2

. . .
µn


 (33)

and I is the identity matrix of size n× n (n is the number of
circuit unknowns).

(Ω(s) − TM ) loses rank by one ∀s = iω0, so does
HB

J (s).
�



1066 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Fig. 16. Comparison of the result from small-signal analysis and full transient simulation [the perturbation current is 2 × 10−3 sin(1.02w0t)]. (a) Result
recovered small-signal analysis. (b) Transient simulation result.

Fig. 17. Oscillator in lock: The perturbation current is 4 × 10−3 sin(1.005w0t). The figure shows simulation result for 100 cycles. (a) Phase variation from
small-signal analysis. (b) Transient simulation result.

Fig. 18. One-GHz cross-coupled CMOS oscillator.

Lemma 2.2: Augmenting
HB

J (s) by a column
FD

Vq̇∗(t) (
HB

JA (s))
restores full rank only in the case of s = 0.

Proof:

1) A vector can increase the rank of a rank-deficient
matrix A only when it is not in the column space of A.

2) We need to show that
FD

V q̇∗(t)=
HB

J (ω0i)x for some
nonzero x and ∀i �= 0. Or equivalently, using (31) that

TV T(t)

FD

V q̇∗(t)= TV T(t)TU(t) (Ω(jω0i) − TM ) T
−1
U(t)x

= (Ω(jω0i) − TM ) T
−1
U(t)x. (34)

3) We note that q̇∗(t) = C(t)ẋ∗
s(t). Hence,

FD

V q̇∗(t)=

TCTU

FD

V e1 (see p used in [11, Remark II]). For ODE

case, TV T(t)

FD

V q̇∗(t)= TV T(t)TU

FD

V e1=
FD

V e1 , and de-
note T

−1
U(t)x by y. Then, we have

FD

V e1= (Ω(jω0i) − TM ) y. (35)
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Fig. 19. Harmonic transfer functions: The frequency sweeps from dc to 1.2 × 109 Hz. (a) Harmonic transfer functions of the output voltage. (b) Harmonic
transfer functions of the local frequency.

Fig. 20. Phase and amplitude variations of the output voltage when the perturbation current is 4 × 10−4 sin(1.01w0t). The figure shows simulation result for
200 cycles. (a) Phase variation. (b) Multitime solution of amplitude variation. (c) One-time solution of amplitude variation.

From the structure of (Ω(ω0k) − TM ) (32), we can
see that V

FD
e1

is in the span of (Ω(s) − TM ) for any
nonzero s (simply the first column of the middle block).
Therefore, we can find a nonzero y solving the above for
s �= 0, and hence, a nonzero x. �

Lemma 3.1: If (ω̂, x̂) is a solution of (14), then the one-
time waveform defined by x(t) = x̂(t, φ̂(t, t)) solves the un-

derlying DAE system if b(t) = b̂(t, φ̂(t, t)), where φ̂ and ω̂ is
related by

∂φ̂(t, t)
∂t

=
∂φ̂(τ1 = t, τ2 = t)

∂τ1
+

∂φ̂(τ1 = t, τ2 = t)
∂τ2

= ω̂
(
t, φ̂(t, t)

)
.
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Fig. 21. Comparison of the result from small-signal analysis and full transient simulation [the perturbation current is 4 × 10−4 sin(1.01w0t)]. (a) Result
recovered small-signal analysis. (b) Transient simulation result.

Fig. 22. Oscillator in lock: The perturbation current is 2 × 10−3 sin(1.005w0t). The figure shows simulation result for 200 cycles. (a) Phase variation from
small-signal analysis. (b) Transient simulation result.

Proof:

q̇ (x(t)) =
∂q
(
x̂
(
t, φ̂(t, t)

)
∂t

=
∂q
(
x̂
(
t, φ̂(t, t)

)
∂t1

+
∂q
(
x̂
(
t, φ̂(t, t)

)
∂t2

∂φ̂(t, t)
∂t

=
∂q
(
x̂
(
t, φ̂(t, t)

)
∂t1

+
∂q
(
x̂
(
t, φ̂(t, t)

)
∂t2

× ω̂
(
t, φ̂(t, t)

)

= −f
(
x̂
(
t, φ̂(t, t)

)
+ b̂

(
t, φ̂(t, t)

)
= −f(x) + b(t).

�
Lemma 3.2: The augmented matrix

HB

J Ge (s) (augmenting
HB

J (s) by columns of Tq̇∗(t2)) is full rank at all frequencies.

Proof:

1) We only need to show that ∀s = iω0, there is a vector
(a column of Tq̇∗(t2)) that is not in span of the column

of
HB

J (s). Or equivalently, that there is a column z in
TV T(t)Tq̇∗(t2) such that

z �= (Ω(ω0k) − TM ) T
−1
U x = (Ω(ω0k) − TM ) y.

(36)

2) For the ODE, TV T(t)Tq̇∗(t2) = TV T(t)TUTe1 = Te1.
The structure of Te1 is


e1

. . .
e1

. . .
e1




where e1 = [1, 0, . . . , 0]T of size n.
From the structure of (Ω(ω0i) − TM ) (32), we see

that for s = 0, the middle column of Te1 is not in the span
of (Ω(s) − TM ), for s = −jω0, the column at the left of
the middle column is not in the span of (Ω(s) − TM ), etc.
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Therefore, for all s = ω0i, there is a column in Te1 that
is not in the span of (Ω(s) − TM ), i.e., Te1 increase the

rank of
HB

J (s) by one. �
Lemma 3.3: The phase-condition submatrix P is full rank at

all frequencies.
Proof: ΩFD loses rank by one, because ΩFD has one zero

term along the diagonal. When we augment ΩFD with vectors
which are columns of Tẋ∗(t2), there is at least one column in
Tẋ∗(t2) that is not in the span of ΩFD unless ẋ∗

l (t2) = 0. We
can always find nontrivial steady-state solutions ẋ∗

l (t2). Thus,
augmenting ΩFD with Tẋ∗

l
(t2) restores full rank for the new

phase-condition submatrix. �
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