
An Efficient, Fully Nonlinear, Variability-Aware non-Monte-Carlo Yield Estimation
Procedure with Applications to SRAM cells and Ring Oscillators

Chenjie Gu Jaijeet Roychowdhury

ECE Department ECE Department
University of Minnesota University of Minnesota
Minneapolis, MN, 55455 Minneapolis, MN, 55455

e-mail: gcj@umn.edu e-mail: jr@umn.edu

Abstract— Failures and yield problems due to parameter vari-
ations have become a significant issue for sub-90-nm technologies.
As a result, CAD algorithms and tools that provide designers the
ability to estimate the effects of variability quickly and accurately
are being urgently sought. The need for such tools is particularly
acute for static RAM (SRAM) cells and integrated oscillators,
for such circuits require expensive and high-accuracy simulation
during design. We present a novel technique for fast computation
of parametric yield. The technique is based on efficient, adaptive
geometric calculation of probabilistic hypervolumes subtended
by the boundary separating pass/fail regions in parameter space.
A key feature of the method is that it is far more efficient
than Monte-Carlo, while at the same time achieving better
accuracy in typical applications. The method works equally well
with parameters specified as corners, or with full statistical
distributions; importantly, it scales well when many parameters
are varied. We apply the method to an SRAM cell and a ring
oscillator and provide extensive comparisons against full Monte-
Carlo, demonstrating speedups of 100-1000×.

I. INTRODUCTION

Parameter variations are inevitable in any IC process.
Process steps such as oxidation, doping, molecular beam
epitaxy, etc., are all fundamentally statistical in nature. Design
of functioning circuits and systems has traditionally relied
heavily on the presumption that the law of large numbers ap-
plies and that statistical averaging predominates over random
variations – more precisely, that the statistical distributions of
important process, geometrical, environmental and electrical
parameters cluster closely about their means. Unfortunately,
with feature sizes having shrunk from 90nm to 65nm recently
(with further scaling down to 45nm and 32nm predicted by
the SIA roadmap [1]), this assumption is no longer valid
– in spite of efforts to control them, large variations in
process parameters are the norm today. With transistors having
become extremely small (e.g.: gates are only 10 molecules
thick; minority dopants in the channel number in the 10s of
atoms), small absolute variations in previous processes have
become large relative ones. Lithography-related variability
at nanoscales [2], which affect geometrical parameters such
as effective length and width, further compound parameter
variation problems.

Due to such variations in physical, process or environmental
parameters, electrical characteristics of circuit devices (e.g.,
MOS threshold voltages) change; this leads to undesired
changes in circuit performances. For example, in static RAM
(SRAM) circuits, like the 6T cell in Fig. 5, the threshold
voltages of M2 and M1 determine how well they turn on
and hence determine the charge/discharge rate in read/write
operations. This rate is closely related to SRAM read/write
access time, stability and read/write frequency. As another
example: in ring oscillators, threshold voltage and load capac-
itance variations affect inverter delays significantly, resulting

in changes in oscillation frequency. It is crucial to predict what
fraction of circuits is likely to fail because of variability, so
that measures may be taken to increase the yield of correctly
functioning circuits, to the extent possible via design and
process changes. Reasonably accurate prediction of yield (e.g.,
within a percent or better) is important: over-estimation leads
to fewer working components than expected, while under-
estimation can lead to lowered performance as a result of
design efforts to increase yield.

The simplest way to estimate yield is to apply the well
known Monte-Carlo method [3]. Monte-Carlo samples param-
eters according to their probability distributions and simulates
the circuit for each parameter set to find the circuit perfor-
mance of interest. The number of samples/simulations which
result in acceptable performance is counted; dividing this
number by the total number of samples is the yield. For exam-
ple, Fig. 10(b) shows results from Monte-Carlo simulation on
a three-stage ring oscillator. The green points represent those
MOS threshold voltages that yield an acceptable oscillator
frequency variation (within 2.5% of nominal). While Monte-
Carlo has the advantages of simplicity and extremely general
applicability, its main limitation is that it can require very
large numbers of expensive simulations for accurate yield
estimation.

The computation required for Monte-Carlo type yield esti-
mation methods is significantly exacerbated if each individual
simulation is expensive. For example, transient analyses with
many timepoints, or RF analyses such as harmonic balance
[4], are significantly more expensive than DC and AC anal-
yses. Whether such analyses are required depends on the
circuit and performance of interest. While, for example, op-
amp performances can usually be determined via DC/AC
analyses, transient/RF analyses are essential for circuits such
as SRAM cells and oscillators. Transient simulations are
required for finding SRAM read/write access times, while
harmonic balance, shooting, or extremely expensive transient
simulations [5]–[7] are typically needed for finding oscillator
frequencies. As a result, alternatives to Monte-Carlo for
calculating parametric yield are particularly important for such
circuits.

Fig. 1. Boundaries in parameter space and performance space.

In order to overcome the disadvantages of brute-force
Monte-Carlo, various techniques have been proposed to im-

prove its efficiency. Techniques like importance sampling,
stratified sampling (or its extension Latin hypercube sampling
[8]) and control variates [9], [10] try to reduce the variance of
sample points, so that fewer samples are required to achieve
the same accuracy. However, such techniques for smarter
sampling have their limitations; e.g., importance sampling is
most useful only when few parameters are considered and the
yield is very high or low [9], while stratified sampling often
does not achieve very significant reduction in the number of
samples.

Modifications to Monte-Carlo that use boundary approxi-
mations for speeding up yield calculation are also available. In
[11], [12], the boundary surface in parameter space separating
success/failure performance regions is approximated by a
series of linear constraints. The utility of the approximate
linear constraints is that testing whether a point is in the
success region is sped up significantly for most (but not
all) Monte-Carlo samples. For those that fail this fast check,
a more computationally expensive check, involving a linear
search between the approximate linear constraints and the
real boundary is performed. However, this method is based
on the assumption that the boundary is convex, which is not
always true in reality (indeed, the boundary for SRAM read
access failure, in Fig. 6(b), is not convex). Furthermore, since
approximations are generated using randomly selected points
on the boundary, it is difficult to guarantee that the linear
constraints will approximate the success region well – i.e.,
the shape of the approximated boundary can be quite different
from that of the real boundary.

The method in [11], [12], like the present work, is con-
cerned with boundaries in the parameter space. Given a region
of desired (e.g., worst-case) performances of the circuit, the
corresponding boundary in the parameter space is determined,
as depicted by the blue (lower) arrow in Fig. 1. Techniques
that solve the reverse problem, as depicted by the red (upper)
arrow in Fig. 1, are important in performance optimization
and tradeoff analysis. In other words, given a region in the
parameter space (such as a hypercube), the problem solved
is to find the corresponding boundary in the performance
space. While this is a different class of problem from the
one being considered here, we note that [13] uses a boundary
approximation technique in the performance space that is
similar to a component of our method (Section III-D, Fig.
3) for boundaries in the parameter space. [13] uses a search
scheme (termed Normal Boundary Intersection (NBI)) to find
equally spaced points on the boundary in the performance
space. However, there are key differences between our method
and NBI, as detailed in Section III-D. Our method, unlike
NBI, adapts the points it chooses to the shape of the boundary.
Further, since we are interested in boundaries in parameter
space, our method uses a line-based (or least-squares-based)
Newton algorithm for finding boundary points, while NBI
uses a sequential quadratic programming algorithm to solve a
min/max problem in performance space.

In this paper, we propose a new method, termed Yield
Estimation via Nonlinear Surface Sampling (YENSS), for
finding parametric yield given tolerance limits for suc-
cess/failure with respect to any circuit performance of interest.
The method does not rely on Monte-Carlo sampling; as such,
it is particularly well suited for circuits that require expensive
computations (such as transient and harmonic balance) for
finding performances. YENSS works by first locating the
boundary separating regions in parameter space that corre-
spond to success/failure of the circuit. If p parameters are con-
sidered, this boundary is a (p−1)-dimensional hypersurface
or manifold. Once this boundary is found, YENSS rapidly
and incrementally calculates the probabilistic volume on one
side of the boundary (i.e., the yield) in a geometrical manner,

by employing analytical formulae for volumes of “tetrahedra”
(or simplices) in p dimensions (rather than Monte-Carlo style
integration, as in prior work such as [14]). This key difference
provides not only computational advantages over Monte-Carlo
integration, but also enables a better error control scheme, as
discussed in Section III-F.

By focusing only on the boundary, YENSS avoids the
expense Monte-Carlo incurs of sampling the entire parameter
space. However, if there are many parameters (i.e., p is
large), fully characterizing a (p − 1) boundary manifold is
also very computationally expensive. YENSS uses an adaptive
technique to calculate only as many points on the boundary as
needed to provide an estimate of yield to a desired accuracy.
By doing so, YENSS avoids redundant/unnecessary simu-
lations in the yield estimation procedure. This is especially
useful when many parameters are considered simultaneously:
the accuracy is controlled by the “yield volume” increment
at each iteration, compared to 1√

N
accuracy improvement in

Monte-Carlo simulation.

A crucial feature of YENSS, that is central to its efficiency
for large p, is its automatic exploitation of linearity of the
boundary. If the boundary is perfectly linear (e.g., a plane
embedded in 3-dimensional parameter space), the computa-
tional expense of YENSS increases only linearly with p.
Because it adaptively estimates the probabilistic volume, the
computation needed by YENSS increases gracefully to handle
boundaries that are not linear. Since failure/success boundaries
in parameter space tend to be close to linear for many practical
problems, YENSS can achieve great speedups over Monte-
Carlo.

For the underlying computations involved in finding points
on the boundary, YENSS uses full SPICE-level transient or
harmonic balance (HB) simulations, with no compromises in
accuracy – a feature particularly important for reliable yield
numbers in SRAM cells and oscillators. Another strength of
YENSS is that it is equally easily able to handle parameters
specified using corners or with probability density functions
(PDFs). We present two different versions of the algorithm
used by YENSS to locate boundary points efficiently, based
on Newton-Raphson and line (bisection) search, respectively
– the latter can be useful in situations where parameter deriva-
tive/sensitivity information, required by Newton-Raphson, is
difficult to obtain.

We demonstrate and validate YENSS on two circuits – a
6T SRAM cell and a three stage inverter-based ring oscillator
– using tolerances on SRAM read access time and oscillator
center frequency, respectively, as performance criteria. We use
the threshold voltages of the MOS devices as the varying pa-
rameters of interest. We provide detailed comparisons against
Monte-Carlo of both accuracy and performance, obtaining
speedups of 100-1000× while at the same time calculating
yield with higher accuracies.

The remainder of the paper is organized as follows. We
formulate the yield estimation problem in Section II and
provide an overview of the flow of our method. In Section III,
we show how to find points on the boundary surface be-
tween success/failure regions efficiently. In Section III-E.1
and Section III-E.2, we derive and explain our procedure for
obtaining sensitivity information from transient and harmonic
balance simulation. In Section III-F, we describe our proce-
dure for calculating the “yield volume” and our adaptive error
control scheme. Finally, in Section IV, we validate YENSS
on an SRAM cell and a ring oscillator.

II. OVERVIEW OF OUR METHOD

A. Yield via hypervolume computation

For purposes of illustration, we first consider two uncorre-
lated parameters p1 and p2, with nominal values p1nom, p2nom,
uniformly distributed over [p1min, p1max] and [p2min, p2max]
respectively, as shown in Fig. 2. We assume that the cir-
cuit performs correctly at its nominal point, i.e., the circuit
performance f is fnom when parameters are (p1nom, p2nom).
As the parameters move away from the design point, the
circuit’s performance also changes away from its nominal
value. Therefore, in the parameter space, there exists a region
around the nominal design point where the performance
remains acceptable – this region is depicted by the interior of
the closed curve in Fig. 2, with the portion within the min/max
bounds shown shaded (green). Finding the ratio of this area
to that of the box [p1min, p1max]× [p2min, p2max] provides the
yield.

Fig. 2. Evaluating yield is equivalent to evaluating the area of the shaded
(green) part in the figure.

This notion is easily generalized to the case of multiple
parameters. For the case of 3 parameters, the volume of the
3-dimensional region that corresponds to acceptable perfor-
mance in parameter space needs to be calculated. For N
parameters, the hypervolume of an N-dimensional region in
parameter space is calculated.

For non-uniform parameter distributions (e.g., Gaussian
and truncated Gaussian distributions are popular [10], [15]),
the parameter axes are pre-scaled by the cumulative den-
sity function, such that the scaled parameters are uniformly
distributed (i.e., the axes p1 and p2 in Fig. 2 are replaced
by p̂1 ≡ C1(p1) and p̂2 ≡ C2(p2), respectively, where C1
and C2 are the cumulative distribution functions of the two
parameters). The boundary in the space of original parameters
p effectively becomes mapped to a different boundary in
the “probabilistically deformed parameters” p̂. YENSS then
operates in the p̂ space to find the yield.

For the case of correlated parameters, a principal compo-
nent analysis [16] (PCA) is applied first. PCA de-correlates
correlated parameters and, potentially, can identify a reduced
number of important parameters. Once PCA is performed,
YENSS can be applied on the de-correlated parameters.

Hence, non-uniformly-distributed and/or correlated param-
eters can always be mapped into uniformly-distributed, uncor-
related parameters. The hypervolume inside the boundary in
the new parameter space represents the parametric yield. In
this paper, we focus on the core problem, i.e., that involving
only uniformly-distributed, uncorrelated parameters.

B. Basic flow of our method

In order to calculate the yield volume of the multi-
dimensional region defining the success region, we find sev-
eral points on the hypersurface which separates the success
and failure region – we refer to this as the “boundary surface”

in the following. We use these points to estimate the hyper-
volume of the region enclosed by the boundary surface via a
hyper-polygonal approximation which we refine iteratively.

We first outline the overall algorithm flow of YENSS,
and explain / develop each step in detail in the following
subsections.

The flow of YENSS is:

1) Formulate the boundary surface as a nonlinear scalar
equation (or constraint) in the parameter space:

h(�p; fm) = 0 (1)

(1) expresses the relationship between m parameters
�p and the circuit performance of interest fm in a
general, implicit form. As we show later, this form is
very general, capturing transient simulations, harmonic
balance, etc..

2) Find the intersection of the boundary surface with each
parameter axis.

a) by augmenting equation (1) with parametric equa-
tions (6) of each parameter axis.

b) then solving the system of equations (1) and (6);
the solution is the intersection of the parameter
axis and the boundary surface.

3) Use an analytical volume calculation formula to calcu-
late the initial approximation to the yield – the hyper-
volume of the simplex defined by those intersections.

4) Volume refinement using additional boundary points.
a) Choosing and computing additional points on the

boundary surface.
i) Construct the manifold by connecting the

points already found in previous refinements,
and choose the centroid of this manifold to be
the initial guess Pguess (see Fig. 3 for example)
for the point to be found on the boundary.

ii) Either use MPNR method to solve the inter-
section point;

iii) Or use line search method to solve the inter-
section point.
A) Construct the line which goes through point

Pguess and is perpendicular to the manifold
constructed in 4(a)i.

B) Apply line search method to find the in-
tersection of the boundary and this line,
using Newton-Raphson method, or se-
cant/bisection method.

C) If Newton-Raphson method is used, the
derivatives of function h(·) wrt. parameters
�p need to be evaluated, which are devel-
oped in Section E.1 and Section E.2 for
transient simulation and harmonic balance
simulation, respectively.

D) If calculating the derivatives are computa-
tionally expensive or practically difficult,
bisection or secant mehod is applied to find
the intersection point.

b) Update the yield estimation using newly found
boundary points.
i) The yield volume increment is evaluated by

calculating the simplices defined by the newly
found point and previous boundary points, us-
ing analytical formula , as shown in Section F.

ii) Based on the volume increment, the error is
estimated for the current yield estimation.

iii) If the error estimation is small enough, finish
the algorithm; else, repeat the volume refine-
ment procedure until small error is obtained.

Details of the above steps are presented in the following
sections.

III. DETAILS OF THE ALGORITHM

In this section, we provide details of each of the steps of
the algorithm outlined in Section II.

A. Implicit formulation for the boundary surface (step 1)

We start by expressing the relationship between the perfor-
mance metric and the varying parameters as an implicit scalar
equation (1) which encapsulates all the complex nonlinear
dynamics in the circuit. Suppose �p ∈ R

m, then this scalar
equation defines a (m− 1)-dimensional hypersurface in the
parameter space. Our goal is to find points on the surface
efficiently and accurately, as described later.

Re-write equation (1) in (2), we can see that the boundary
equation defines the surface on which the circuit performance
is the worst-case performance, i.e., the surface separates the
failure/success region.

h(�p; fm) ≡ fm(�p)− fworst = 0 (2)

Depending on the problem or circuit being considered,
equation (1) will encapsulate different kinds of analyses.
We next provide two examples of such systems, for transient
simulation (applied to SRAM cells) and oscillator harmonic
balance (applied to ring oscillators).

1) SRAM read access (transient simulation up to a fixed
time): An example of formulating the boundary equation
based on transient analysis is the SRAM read access time
constraint (shown in equation (3)). Given a read access time
t f , the voltage difference between node BL and BLB ∆BL at
time t = t f can be calculated through performing a transient
analysis on the SRAM circuit. If this voltage difference is
smaller than the minimum voltage difference ∆BLmin which
can be sensed by the sense amplifier, the read failure will
occur. Therefore, expressing the above description in the form
of (2), we obtain the equation defining the boundary surface
(3)

h(�p; fm) ≡ h(�p;∆BL) ≡ ∆BL(�p)t=t f −∆BLmin = 0 (3)

2) Oscillator center frequencies (autonomous harmonic
balance): An example of formulating the boundary equa-
tions based on harmonic balance simulation is the oscillator
frequency constraint. As is shown in equation (4), fnom is
the nominal frequency of the oscillator at the design point,
and ∆ f is the maximum allowed frequency deviation. The
free-running frequency of the oscillator fo(�p) is calculated
via running a harmonic balance analysis, on the circuit with
parameters �p. Whether this frequency is out of or in the
acceptable frequency region [fnom−∆ f , fnom +∆ f] determines
whether the oscillator circuit fails or not. So equation (4)
defines the surface on which the points correspond to the
circuit whose output frequency is the worst case frequency
fnom ±∆ fm, i.e., the boundary surface.

h(�p; fm) ≡ h(�p; fo) ≡ fo(�p)− (fnom ±∆ f) = 0 (4)

B. Find the intersections of the boundary surface with each
parameter axis (step 2)

After the scalar equation for the boundary curve is formu-
lated, the first step is to find the intersections of the bound-
ary surface with each parameter axis. We assume that the
boundary surface will intersect the axes; this is a reasonable
assumption for realistic problems, motivated by the fact that
if only one parameter is allowed to vary to change the circuit

performance, there will always be a parameter value which
will make the circuit fail.

To solve the intersections of the boundary surface (defined
by equation (1)) with a specific parameter axis (say pi), we
fix the other parameters at their nominal parameter values
p j = p jnom, j �= i. So the only unknown in the equation is
now a scalar pi, rather than a vector �p, and we can find the
intersections using Newton-Raphson method. To use Newton-
Raphson method, dh

d p need to be calculated – how to calculate
this quantity will be discussed in Section E.1 and Section E.2.

Newton-Raphson has faster convergence than other meth-
ods, but it requires the Jacobian matrix of the equations.
Since this step of our method requires solving for only the
scalar unknown pi, it is also possible to use robust methods
that do not require Jacobian calculation (which can, in many
situations, be inconvenient to implement, since parameter
sensitivity code is required), such as bisection or secant
methods [17]. This option can be very valuable for quick
practical implementation; however, if parameter sensitivities
and the Jacobian matrix are available, we prefer Newton-
Raphson, on account of its quicker convergence and higher
accuracy.

C. Initial estimation to the yield volume (step 3)

Based on the intersections of the boundary surface with
each parameter axis, the initial approximation of the “yield
volume” can be calculated using an analytical formula, as
shown in equation (5), which shows that the hypervolume of
a parallelotope and a simplex defined by N +1 points xi, i =
(1 . . .N + 1) in N-D space can be evaluated by calculating a
determinant composed of coordinates of all the points.

Cparallelotope =

x1,1 x1,2 · · · x1,N 1
x2,1 x2,2 · · · x2,N 1

...
...

...
...

...
xN+1,1 xN+1,2 · · · xN+1,N 1

Csimplex =
1

N!
Cparallelotope

(5)

D. Centroid computation and line intersection with surface
(step 4a)

The procedure in B to find the intersection points can also
be formulated as a line search method. Actually, it is a special
case of finding the intersections of the boundary surface with
any straight line, which will be needed in the refinement step,
as shown in the algorithm flow.

Since the scalar equation h(�p, fm) = 0 has m unknowns,
to force the solution to be the intersection of the boundary
surface and a straight line, we must augment this equation
with another m− 1 linear equations that define the straight
line in m-D space. Because a line in m-D space can always
be expressed in the form of parametric equations, equivalent
to m− 1 linear constraints, we augment the scalar equation
with m parametric equations (6) of the line, with one more
unknown s introduced. In equation (6), �p0 is the coordinate of
a point the constraint line (parameter axis in this case) goes
through, �u is the unit vector denoting the direction of the line.

�p = �p0 + s�u (6)

For example, the parametric equation of p1 axis can be written
as:

p1 = s
pi = 0,(2 ≤ i ≤ m)

(7)

So the augmented equations are no longer under-determined,
and the solution will be constrained on this straight line.
Therefore, using Newton-Raphson method we can search the
line, and find the intersection. Or we can apply bisection or
secant method to do the line search if Newton-Raphson has
some convergence problem.

After the intersections with each parameter axis are found,
we start our procedure iteratively to find additional points on
the boundary and to update the yield volume. Based on the m
intersection points, we use an (m−1)-D manifold connecting
those points to approximate the boundary.

The key problem here is to ensure the points to be found
are a good representation of the boundary surface, e.g.. the
points on the boundary are equally spaced. To align all the
points evenly on the boundary surface, we again apply the
line constraint on the solution using equation (6) such that the
line goes through the centroid of the points got from previous
iterations, and is perpendicular to the manifold we have
already constituted. Then line search with Newton-Raphson
method can be applied to solve the augmented system.

Another option is to use Moore-Penrose pseudo-inverse
Newton Raphson (MPNR) method [18] to solve the scalar
equation (2) directly, without augmenting additional linear
equations.

For illustration, two iterations of our procedure in the
first quadrant on 2-D parameter plane is shown in Fig. 3(a)
and Fig. 3(b), where the bold curve represents the boundary
curve defined by equation (2). In Fig. 3(a), P01, P02 are two
intersections with parameter axes, calculated in the first step.
Then P1guess is chosen to be the centroid of P01P02, and a
line (the red arrow) perpendicular to P01P02 is applied to
constrain the solution to be the intersection of the line and
the boundary curve. Using P1guess to be the initial guess for
Newton-Raphson solver, it finally converges to P1, as denoted
by the red arrow. In the second iteration, (shown in Fig.
3(b)) P2guess and P3guess are selected to be the centroid of
P02P1 and P01P1, and Newton-Raphson will follow the red
arrow, converging to P2 and P3 respectively. Repeating this
procedure, we will finally get enough points on the boundary
curve needed for yield estimation. Using similar procedure,
this curve-finding scheme can be generally applied to higher-
dimensional problems.

(a) first iteration (b) second iteration

Fig. 3. Finding points on the boundary curve using line search (2 iterations).

E. Sensitivity evaluation based on implicit boundary equation

In order to obtain the quadratic convergence of Newton-
Raphson method, the Jacobian matrix of the system must be
calculated. As shown in (2), the derivative of function h(·) wrt.
�p is just the sensitivity of the circuit performance wrt. �p. So no
matter how h(·) is defined, we can always do differentiation
of h(·) wrt. �p, as shown in (8), in which the unknown is ∂ fm

∂�p .

dh
d�p

=
∂h
∂�p

+
∂h

∂ fm

∂ fm

∂�p
= 0 (8)

Using this notion, Section E.1 and Section E.2 gives the
derivations of the sensitivities of h(�p) wrt. �p, based on
transient simulation and harmonic balance simulation, respec-
tively.

1) Transient simulation based sensitivity evaluation: In
equation (3), the evaluation of the equation is through doing
a transient analysis on the circuit, i.e., doing a numerical
integration on the differential algebraic equations of the circuit
(9)

d
dt

�q(�x)+�f (�x)+�b(t) = 0 (9)

where �x is the unknowns (node voltages and branch currents).
For convenience, we re-write (3) in a clearer way in

equation (10)

h(�p) ≡ ∆BL−∆BLmin =�cT�x(t f ;�p)−∆BLmin = 0 (10)

where �cT is a vector which picks up the voltage difference
∆BL from nodal voltages �x.

In order to apply Newton-Raphson method to solve the
equation, the derivatives of fm(�p) wrt. �p must be calculated.
That is

∂ fm(�p)
∂�p

=�cT ∂�x
∂�p

(11)

So in order to calculate ∂�x
∂�p , we do differentiation to equation

(9) wrt. parameters �p. We get

d
dt

[
∂�q
∂�x

∂�x
∂�p

+
∂�q
∂�p

]
+

∂�f
∂�x

∂�x
∂�p

+
∂�f
∂�p

+
d�b
d�p

= 0 (12)

Equations (12) is a set of differential equations with un-
knowns ∂�x

∂�p , and hence can be solved using any numerical
integration method, such as Backward-Euler method or Trape-
zoid method [19], [20].

Thus, the sensitivities of the nodal voltages and branch cur-
rents wrt. varying parameters, which are required in Newton-
Raphson method, are calculated.

2) Harmonic balance simulation based sensitivity evalua-
tion: As mentioned in Section I, transient analysis on oscil-
lator circuits can be quite inaccurate and inefficient. Instead,
harmonic balance simulation is always performed on this kind
of circuits in practice [4]. Thus calculating the sensitivities
based on harmonic balance method [21] is also desirable when
harmonic balance simulation is used to extract the circuit
performance, such as output frequency of oscillators.

Equations for harmonic balance method [4], with depen-
dency on parameters explicitly shown, can be written as

�H(�X , fo; p) = ΩD�Q(·,�p)D−1�X +D�F(·,�p)D−1�X +�B = 0 (13)

where �X is the Fourier coefficients of the unknowns �x in
circuit differential equations (9), D and D−1 are stacked DFT
and IDFT matrices, �Q(·,�p) and �F(·,�p) are the stacked form
of �q(·) and �f (·) terms in equation (9).

To solve equation (4) using Newton-Raphson method, we
need to know the derivatives of the output frequency wrt. vary-
ing parameters. To get this sensitivity, we do differentiation
wrt. parameters �p to equation (13).

∂ �H

∂�X

∂�X
∂�p

+
∂ �H
∂ fo

∂ fo

∂�p
+

∂ �H
∂�p

= 0 (14)

So the only unknowns in equations (14) are ∂�X
∂�p and ∂ fo

∂�p , and
hence, the sensitivity of the output frequency wrt. parameters

can be calculated by solving the equations[
∂ �H

∂�X
,

∂ �H
∂ fo

][
∂�X
∂�p
∂ fo
∂�p

]
= −∂ �H

∂�p
. (15)

F. Yield volume calculation and error control (step 4b)

When the new points on the boundary curve/surface
are found, we update the hypervolume estimate by
adding/subtracting the hypervolume of the new simplexes
we find. As an example, two iterations of our refinement
procedure is shown in Fig. 4. S0 (area in green) is the original
area estimate after the intersections have been found. After
one iteration, P1 is found, and S1 (area of triangle P01P02P1,
marked in yellow) is added to S0 to refine the area estimate.
After two iterations, P2 and P3 are found, and S2 (area of
triangle P02P1P2, marked in pink) is subtracted and S3 (area
of triangle P01P1P3, marked in blue) is added. So, after two
level of refinements, the yield volume is S0 +S1 −S2 +S3. It
is clear that after several iterations, we can get a fairly well
estimate of the total area under the boundary curve.

Fig. 4. Illustration of yield volume update scheme.

According to how much area/volume increment we get
in a new iteration, we have an estimate of the error of the
current estimate. Based on the this volume increment, YENSS
adaptively decides whether to continue further iterations,
depending on the accuracy wanted. For example, in Fig. 4
if S2 is small enough (smaller than accuracy wanted), there
is no need to find more points on curve P02 −P1; but if S3 is
still large, we can continue our curve-finding scheme to find
more points on curve P1 −P01, until the designated accuracy
is reached.

This automatic error control scheme helps to avoid redun-
dant simulations that give unnecessary high accuracy. If the
curve is a line, the error calculated by this scheme after one
refinement is 0, and the algorithm terminates, with the highest
accuracy. This explains how this error estimation works and
why YENSS is extremely efficient if the performance function
varies linearly with parameter variations.

IV. VALIDATION

In this section, we apply YENSS to a 6T SRAM cell (vary-
ing 2 parameters) and a three-stage ring oscillator (varying 3
and 6 parameters) and validate its applicability. We provide
comparisons against extensive Monte Carlo simulations to
validate accuracies and to gauge computational advantage.
We vary the all-important threshold voltages of the MOS
transistors in the circuit as parameters; the method applies

to any other parameters (e.g.gate length, width, load capac-
itor, etc.), of course. All simulations were performed using
a MATLAB/C/C++-based circuit/system simulation environ-
ment, on an 2.4GHz Athlon XP-based PC running Linux.

A. SRAM yield with respect to access failure

Fig. 5 shows a typical SRAM 6T cell, which is composed
of two driver MOSFETs (M1 and M3), two load MOSFETs
(M5 and M6) and two access MOSFETs (M2 and M4). As
colored by red, M1 and M2 (and equivalently M3 and M4) are
critical devices that determines the access time of the SRAM.

While reading an SRAM cell, the access time is defined as
the time required to produce a voltage difference between BL
and BLB that is large enough for the sense amplifier to sense.
(normally defined by ∆BLmin � 0.1V dd) So if the access time
is longer than the prescribed maximum allowed value Tmax,
then an access time failure is said to have happened. In other
words, if at time t = Tmax, the voltage difference between
node BL and BLB is still smaller than ∆BLmin, the access
failure is happened. Thus we can formulate the success/failure
boundary curve for SRAM access failure by equation (16),
where Φ(·) is the state-transition function defining the node
voltages and branch currents in the circuit, which is calculated
by performing a transient simulation; (�cT

BL−�cT
BLB) is the vector

which select the voltage difference between node BL and
BLB. In (16), we only consider threshold voltage variations
of MOSFET M1 and M2, and variations of other MOSFETs
can be included in a similar manner.

h(Vth1,Vth2) ≡ (�cT
BL −�cT

BLB)�Φ(Tmax;Vth1,Vth2)−∆BLmin = 0.
(16)

Vdd

Q=1

M6

M3

M5

M1

M2
Q_B=0

BL_B=1

WL=1

M4

BL=1

Fig. 5. SRAM 6T cell.

Assuming that ∆BLmin = 168mV at Tmax = 3.508ns, we first
vary the threshold voltage of M1 (Vth1) and M2 (Vth2), and run
simulations with different (Vth1,Vth2) pairs. Fig. 6(a) depicts
h(Vth1,Vth2) (i.e., ∆BL − ∆BLmin) surface over ((Vth1,Vth2)
parameter space. From this surface generated by bruteforce
simulations, the boundary curve can be identified, as shown in
Fig. 6(b). There are two problems for the bruteforce method:
(1) the accuracy is limited by the step size on each parameter
axis - each point generated in this method does not lie exactly
on the boundary curve, and this is obviously observed in Fig.
6(b); (2) the number of simulations can be too large to be
affordable. Although some heuristics can be applied, (such as
skip simulate the “safe” area where Vth1 and Vth2 are both
small), the computational cost is still expensive.

We then apply our method to find the boundary curve
directly. Fig. 7 shows the results of YENSS using different
level of refinements, and Monte Carlo simulation, supposing
the min/max bound for threshold voltage is 0.1V-0.7V. In Fig.
7(a), only 3 levels of refinements are performed – 7 points
(marked on the curve) on the boundary curve is obtained. So
the boundary curve we got is somewhat not smooth compared
to the real boundary curve. Fig. 7(b) and Fig. 7(c) shows the
results when 4 and 5 levels of refinements are done, and an
almost perfect boundary curve is obtained, as compared to
that found by Monte Carlo simulation in Fig. 7(d).

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0

0.2

0.4

vth2vth1

∆
B

L
 −

 ∆
 B

L
m

in

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vth1

V
th

2

(b)

Fig. 6. Brute force simulation to get the boundary curve.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vth1

V
th

2

(a) YENSS (3 refinements)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vth1

V
th

2

(b) YENSS (4 refinements)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vth1

V
th

2

(c) YENSS (5 refinements)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Vth1

V
th

2

(d) Monte Carlo

Fig. 7. Simulation results of YENSS and Monte Carlo on SRAM access
time constraint.

Detailed comparisons between YENSS and Monte Carlo
method is shown in Table I. To achieve an accuracy of
1%, Monte Carlo method needs over 6000 simulations to be
95% certain about this accuracy. However, only 3 levels of
refinements using YENSS, though the curve is not smooth in
Fig. 7(a), 1% accuracy is obtained, with 255× speedup over
Monte Carlo method.

TABLE I
COMPARISON OF YENSS VS MONTE CARLO FOR SRAM YIELD

number of
method accuracy yield transient simulations speedup

Monte Carlo 10% 0.6173 80
Monte Carlo 1% 0.5730 6640 1×

YENSS
3 levels 1% 0.5756 26 255×
4 levels 0.1% 0.5789 41 162×
5 levels <0.1% 0.5797 66 101×
[22] provides an alternative method using Euler-Newton

curve tracking technique to find this SRAM read access
failure curve, and obtains similar speedups to YENSS. While
efficient in cases when only two parameters are taked into
consideration, it has the difficulty to include more parameter
variations. However, YENSS features the natural extension to
the case of multiple parameters, which is shown in the next
subsection.

B. Oscillator yield estimation considering output frequency

VddVdd Vdd

NMOS1

PMOS1

NMOS2 NMOS3

PMOS2 PMOS3

C1 C2 C3

Fig. 8. Three stage ring oscillator.

The circuit diagram of a three-stage ring oscillator is shown
in Fig. 8. For the nominal threshold voltage (0.3V for all 6
MOSFETS in Fig. 8), the nominal frequency of the oscillator
(calculated via harmonic balance simulation) is 0.9058GHz. In
this case, our objective is to determine the yield of the circuit
if a ±2.5% frequency variation is considered acceptable, given
that the threshold voltage of each MOS device can vary
between min/max bounds from 0.1V to 0.5V.

As a first step, we just vary the threshold voltages of
the MOS devices of the first stage, Vtn1 and Vt p1. We show
the result of bruteforce simulations (via harmonic balance
analysis) wrt. different (Vtn1,Vt p1) pairs in Fig. 9 . From
Fig. 9, it is noticed that the output frequency varies almost
linearly with the threshold voltage variations. This implies
that YENSS will rapidly converge with very few levels of
refinement, as noted before.

0

0.5 0.1 0.2 0.3 0.4 0.5

−5

0

5
x 10

7

Vtp1Vtn1

F
re

q
u

en
cy

Fig. 9. frequency variation vs (Vtn1,Vt p1) surface, generated by bruteforce
simulations.

The boundary between acceptable performance and failure
in the first quadrant of the (Vtn1,Vt p1) plane is shown in Fig.
10(a). This boundary was obtained by allowing YENSS to go
through only 2 refinement levels, thereby obtaining 3 points
on the curve, while still maintaining a good accuracy for the
yield estimation. The ratio of the area to the left of the curve
to the area of the min/max parameter bound box is the “partial
yield” of the chip, corresponding to the first quadrant.

0.3 0.35 0.4 0.45 0.5
0.3

0.35

0.4

0.45

0.5

Vtn1

V
tp

1

(a)

0.35 0.4 0.45 0.5

0.35

0.4

0.45

0.5

Vtn1

V
tp

2

(b)

Fig. 10. Simulation results of YENSS and Monte Carlo on oscillator
frequency constraint (2 parameters).

We further validate YENSS against Monte Carlo (with
accuracy 1%) by color-coding the samples that lead to fre-
quencies remaining in the acceptable range, and being in the
failure range, as shown in Fig. 10(b). The interface curve

extracted from Fig. 10(b) is identical to the result from
YENSS in Fig. 10(a).

Table II shows partial yields obtained using YENSS for
2 - 5 levels of refinement and compares accuracy and speed
against Monte-Carlo. As can be seen, even for 2 levels of
refinement (corresponding to 2-3 orders of magnitude speedup
over Monte Carlo), YENSS is more accurate than Monte
Carlo. At 5 levels, YENSS converges to accuracies of 0.01%
and still is faster by a factor of about 100×, compared to 1%
accuracy of Monte Carlo with 95% confidence interval.

TABLE II
COMPARISON OF YENSS VS MONTE CARLO FOR OSCILLATOR YIELD

partial number of
method accuracy yield HB simulations speedup

Monte Carlo 10% 0.4198 90
Monte Carlo 1% 0.4057 6540 1×

YENSS
2 levels 1% 0.4075 16 409×
3 levels 0.1% 0.4083 24 273×
4 levels 0.02% 0.4085 41 160×
5 levels <0.02% 0.4086 76 86×

We performed the same simulation considering three thresh-
old voltage parameters. Fig. 11(a) shows the result of Monte-
Carlo simulation (1% accuracy with 95% confidence interval).
Results from YENSS are shown in Table III. Similar speedups
and accuracy trends are observed in this case.

0.3
0.35

0.4
0.45

0.3

0.4

0.3

0.35

0.4

0.45

Vtn1Vtp1

V
tn

2

(a)

0.35
0.4

0.45
0.5

0.35
0.4

0.45

0.35

0.4

0.45

0.5

Vtn1Vtp1

V
tn

2

(b)

Fig. 11. Simulation results of YENSS and Monte Carlo on oscillator
frequency constraint (3 parameters).

TABLE III
COMPARISON OF YENSS VS MONTE CARLO FOR OSCILLATOR YIELD

partial number of
method accuracy yield HB simulations speedup

Monte Carlo 10% 0.0976 40
Monte Carlo 1% 0.1190 2841 1×

YENSS
2 levels 1% 0.1235 24 118×
3 levels 0.2% 0.1252 45 63×
4 levels 0.1% 0.1261 106 27×
5 levels <0.1% 0.1266 323 9×

Finally, we consider the variability of the threshold voltages
of all six MOS transistors in the ring oscillator, and calculate
the partial yield, In this example, we sample 105 points using
Monte-Carlo method, but only 103 points lie in the acceptable
region, which makes it extremely inaccurate, and meanwhile
takes too much time. In contrast, 3 iterations of YENSS takes
362 seconds, and get the partial yield 0.0759%, which has a
much better accuracy than Monte-Carlo.

V. CONCLUSION

In this paper, we have presented a new method termed
Yield Estimation via Nonlinear Surface Sampling that esti-
mates yield rapidly and with SPICE-level accuracy. We have
demonstrated YENSS on SRAM and oscillator circuits with
varying threshold voltages. Using YENSS results in speedups

of two to three orders of magnitude faster than Monte-Carlo
simulation, while achieving higher accuracies.

ACKNOWLEDGEMENTS

We are indebted to Amith Singhee (CMU) for illuminating discussions
and for bringing [13] to our attention. The 6T SRAM cell in this paper was
designed by Shweta Srivastava (Synopsys). Partial support for this work has
been provided by the Semiconductor Research Corporation and the National
Science Foundation (award 0541396). Computational and infrastructural re-
sources from the Digital Technology Center and the Supercomputing Institute
of the University of Minnesota are gratefully acknowledged.

REFERENCES

[1] The International Technology Roadmap for Semiconductors. 2006.
[2] P. Gupta and A.B. Kahng. Manufacturing-Aware Physical Design. In

Computer Aided Design, 2003. ICCAD-2003. International Conference
on, pages 681–687, 9-13 Nov. 2003.

[3] J.F. Swidzinski and Kai Chang. Nonlinear Statistical Modeling and
Yield Estimation Technique for Use in Monte Carlo Simulations [Mi-
crowave Devices and ICs]. Microwave Theory and Techniques, IEEE
Transactions on, 48(12):2316–2324, Dec. 2000.

[4] K. Kundert, J. White, and A. Sangiovanni-Vincentelli. Steady-State
Methods for Simulating Analog and Microwave Circuits. Kluwer
Academic Publishers, 1990.

[5] Xiaolue Lai and J. Roychowdhury. TP-PPV: Piecewise Nonlinear,
Time-Shifted Oscillator Macromodel Extraction For Fast, Accurate PLL
Simulation. In Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM
International Conference on, pages 269–274, Nov. 2006.

[6] J. Roychowdhury. Exact Analytical Equations for Predicting Nonlinear
Phase Errors and Jitter in Ring Oscillators. In VLSI Design, 2005. 18th
International Conference on, pages 516–521, 3-7 Jan. 2005.

[7] A. Demir, A. Mehrotra, and J. Roychowdhury. Phase Noise in Oscilla-
tors: a Unifying Theory and Numerical Methods for Characterisation. In
Design Automation Conference, 1998. Proceedings, pages 26–31, 15-19
Jun 1998.

[8] Mansour Keramat and Richard Kielbasa. Worst Case Efficiency of
Latin Hypercube Sampling Monte Carlo (LHSMC) Yield Estimator of
Electrical Circuits. Circuits and Systems, IEEE International Symposium
on, June 1997.

[9] Michael Lightner Dale Hocevar and Timothy Trick. A Study of Variance
Reduction Techniques for Estimating Circuit Yields. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 1983.

[10] Peng Li. Statistical Sampling-Based Parametric Analysis of Power
Grids. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 25(12):2852–2867, Dec. 2006.

[11] S. Director and G. Hachtel. The Simplicial Approximation Approach
to Design Centering. Circuits and Systems, IEEE Transactions on,
24(7):363–372, Jul 1977.

[12] S. Director, G. Hachtel, and L. Vidigal. Computationally Efficient Yield
Estimation Procedures Based on Simplicial Approximation. Circuits
and Systems, IEEE Transactions on, 25(3):121–130, Mar 1978.

[13] G. Stehr, H. Graeb, and K. Antreich. Performance Trade-off Analysis
of Analog Circuits by Normal-Boundary Intersection. In Design
Automation Conference, 2003. Proceedings, pages 958–963, 2-6 June
2003.

[14] R. Brayton, S. Director, and G. Hachtel. Yield Maximization and
Worst-Case Design with Arbitrary Statistical Distributions. Circuits and
Systems, IEEE Transactions on, 27(9):756–764, Sep 1980.

[15] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah. Parameterized
Block-based Statistical Timing Analysis with Non-Gaussian Parameters,
Nonlinear Delay Functions. In Design Automation Conference, 2005.
Proceedings. 42nd, pages 71–76, 13-17 June 2005.

[16] Christopher. Michael and Mohammed I. Ismail. Statistical Modeling
for Computer-Aided Design of Mos VLSI Circuits. Springer, 1993.

[17] Michael T. Heath. Scientific Computing: An Introductory Survey (second
edition). McGraw Hill, 2002.

[18] Eugene L. Allgower and Kurt Georg. Numerical Continuation Methods.
Springer-Verlag, 1990.

[19] L.O. Chua and P-M. Lin. Computer-aided Analysis of Electronic
Circuits : Algorithms and Computational Techniques. Prentice-Hall,
Englewood Cliffs, N.J., 1975.

[20] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall series in automatic computation. Prentice-Hall,
Englewood Cliffs, N.J., 1971.

[21] R. Stuffle and Pen-Min Lin. New Approaches to Computer-Aided
Determination of Oscillator Frequency Sensitivities. Circuits and
Systems, IEEE Transactions on, 27(10):882–891, Oct 1980.

[22] Shweta Srivastava and Jaijeet Roychowdhury. Rapid Estimation of the
Probability of SRAM Failure due to MOS Threshold Variations. In
Custom Integrated Circuits Conference, 2007., Proceedings of the IEEE
2007, 2007.

