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Using Piecewise-Polynomial Representations
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Abstract—We present algorithms for automated macromo-
deling of nonlinear mixed-signal system blocks. A key fea-
ture of our methods is that they automate the generation of
general-purpose macromodels that are suitable for a wide range of
time- and frequency-domain analyses important in mixed-signal
design flows. In our approach, a nonlinear circuit or system is
approximated using piecewise-polynomial (PWP) representations.
Each polynomial system is reduced to a smaller one via weakly
nonlinear polynomial model-reduction methods. Our approach,
dubbed PWP, generalizes recent trajectory-based piecewise-linear
approaches and ties them with polynomial-based model-order re-
duction, which inherently captures stronger nonlinearities within
each region. PWP-generated macromodels not only reproduce
small-signal distortion and intermodulation properties well but
also retain fidelity in large-signal transient analyses. The reduced
models can be used as drop-in replacements for large subsystems
to achieve fast system-level simulation using a variety of time- and
frequency-domain analyses (such as dc, ac, transient, harmonic
balance, etc.). For the polynomial reduction step within PWP,
we also present a novel technique [dubbed multiple pseudoinput
(MPI)] that combines concepts from proper orthogonal decom-
position with Krylov-subspace projection. We illustrate the use
of PWP and MPI with several examples (including op-amps and
I/O buffers) and provide important implementation details. Our
experiments indicate that it is easy to obtain speedups of about
an order of magnitude with push-button nonlinear macromodel-
generation algorithms.

Index Terms—Nonlinear macromodeling, piecewise polynomial
(PWP).

I. INTRODUCTION

C IRCUIT simulators and other electronic-design-
automation tools today are being increasingly challenged

by the ever-growing size and complexity of mixed-signal
integrated systems. To enable an effective verification with
reasonable computation, it has become commonplace to replace
large system blocks with smaller ones or, in other words, to
use macromodels to speed up simulations of interconnected
system blocks. The emergence of Verilog-AMS [1] language
provides powerful modeling capabilities such that designers
can encapsulate high-level behavioral descriptions as well as
structural descriptions of systems and components. However, a
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key bottleneck for any methodologies, including Verilog-AMS,
remains the bottom-up generation of good macromodels.

Conventionally, macromodeling of mixed-signal nonlinear-
system blocks has been accomplished manually, relying on the
designers’ understanding of the specific block being macro-
modeled for its proper abstraction. While manually generating
macromodel continues to be the only option for classes of non-
linear systems for which no alternatives exist (general-purpose
nonlinear macromodeling being a very difficult problem), it is
not an effective methodology for several obvious reasons. The
manually generated macromodels often fail to capture criti-
cal effects stemming from unanticipated interactions between
blocks or from second-order phenomena in device models.
Moreover, the fidelity and the performance of these macromo-
dels are heavily skill-dependent, requiring considerable insights
into the detailed design and operation of the underlying circuits.
Moreover, important transistor-level nonidealities, particularly
for deep-submicrometer technologies, usually become avail-
able only after layout and parasitic extraction and are difficult
to prequantify prior to this stage.

It is in this context that there has been recent interest
in automated computer-aided-design techniques for extracting
accurate yet computationally inexpensive macromodels of cir-
cuit blocks directly from their (layout-extracted) SPICE-level
descriptions. One of the attractions of such automated tech-
niques is that the effects of nonidealities, parasitics, and un-
desired interactions at transistor level can be captured from
the ground up in the generated macromodels. One can gen-
erate macromodel “on demand” with great convenience and
efficiency, which is typically a matter of minutes at the push
of a button as opposed to weeks or months of manual efforts.

There have been many well-established automated macro-
modeling techniques that apply mainly to relatively simple
classes of circuits—linear time-invariant (LTI) systems, such
as large R/L/C interconnect networks (AWE [2], PVL [3]–
[5], PRIMA [6], truncated balanced realization (TBR) [7]–[9],
etc.), and linear time-varying (LTV) systems, such as mixers,
switching-capacitor filters [10], [11], etc. However, many im-
portant effects in mixed-signal applications, such as distortions,
intermodulations, clipping, slewing, etc., cannot be captured at
all by the LTI or LTV systems. These phenomena are due to
fundamental nonlinear behaviors in circuit equations and device
models, which are discarded during linear approximations.

Recently, several techniques have emerged to address the
automated macromodeling of certain nonlinear circuits. For
an important class of nonlinear circuits whose nonlinearities
can be adequately represented as polynomials (e.g., power
amplifiers and sampling systems), a technique based on Volterra
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series expansions was first proposed in [12], followed by several
important extensions [13]–[15]. These approaches essentially
generate macromodels of the linearized system using Krylov-
subspace methods and incorporate higher order nonlinearities
via distortion inputs.

For general nonlinear systems with strong nonlinearities,
a trajectory-based piecewise-linear (TPWL) approach was
first proposed in [16] and has become increasingly popular
[17]–[24]. These methods divide the state space of the nonlinear
system into piecewise regions and reduce each, depending on
the order of approximation, with linear or weakly nonlinear
model-order-reduction (MOR) techniques. There are also tech-
niques that build macromodels directly from simulation data
using data-mining methods (e.g., [25]–[29]), but many of them
are targeting performance verifications, for which the detailed
discussion is beyond the scope of this paper.

In this paper, we present a method that combines the
trajectory-based techniques and the weakly nonlinear MOR
algorithms, as they have complementary advantages and disad-
vantages. The weakly polynomial macromodels capture small-
signal distortions well around the expansion point, but they
become rapidly inaccurate for large input excitations. The
TPWL, on the other hand, captures strong nonlinearities well in
wider range; however, its accuracy in representing weak non-
linearities within each region is limited since any higher order
nonlinearities are due only to the smoothing function, which is
not necessarily consistent with the local Volterra expansions. As
a result, the TPWL-generated macromodels can be useful for
large-signal transient simulations but are often not suited for,
e.g., small-signal distortion analysis. Our method, dubbed PWP
because of its reliance on PieceWise Polynomials, is to follow
the TPWL methodology but approximate each region with
higher order (tensor) polynomials instead of using purely linear
representations. The PWP strives to deliver one macromodel
that can capture strong and weakly nonlinearities simultane-
ously, thus remedying the limitations of previous approaches.
The generated macromodels are targeted for general nonlinear
circuits and can be used as drop-in replacements for virtually
any kind of analyses.

Many unique features have been incorporated into PWP in
order to generate broadly applicable macromodels. To improve
its validity, we merge the piecewise regions from multiple
training trajectories to enlarge the state-space coverage. A
novel smoothing function, which is used to achieve superior
smoothness and better convergence, enhances the robustness
of PWP. Our implementations use vector inputs and outputs
to account for loading effects, which is important for system-
level usage of the generated macromodels. Heuristics critical
for macromodel accuracy and efficiency, such as choosing
expansion points along trajectories, generation of linear pro-
jection basis, selection of appropriate training inputs, etc., are
all explored in depth in this paper. From an implementation
and modularity standpoint, the PWP can make use of any
existing polynomial MOR technique (e.g., [10], [14], and [15])
to perform the weakly nonlinear reduction for each piecewise
region. In particular, we present an alternative novel technique,
which is termed the multiple pseudoinput (MPI), which exploits
the idea of combining proper orthogonal decomposition (POD)

within Krylov-based reduction framework. The implementation
of MPI is very easy and straightforward, and its performance is
comparable with the existing methods.

We validate the PWP using a current-mirror op-amp and two
high-speed digital I/O buffers with various types of analysis,
including dc, ac, large-signal transient, and harmonic balance
(HB). The experimental results confirm that the PWP-generated
macromodels can indeed be employed as general-purpose
drop-in replacements in typical mixed-signal design environ-
ments. The macromodels capture strongly nonlinear phenom-
ena (clipping, slewing, etc.), as well as weakly nonlinear ones
(small-signal distortions). On average, the macromodels deliver
speedups of 6−9× over the original circuits in our MATLAB
implementations.

The remainder of this paper is organized as follows. In
Section II, we briefly review the mathematical underpinnings
of the existing macromodeling techniques. The PWP technique
is presented in Section III, followed by the MPI method in
Section IV. Validation of PWP and its generated macromodels
is presented in Section V.

II. PREVIOUS WORK AND BACKGROUND

In this section, we develop necessary background and math-
ematical notations, further reviewing the linear and weakly
nonlinear MOR, TPWL, POD, and concepts from all which are
incorporated into the PWP method.

A. LTI System MOR

The basic idea of MOR for an LTI system is to project high-
dimension state space into a subspace which spans the solution
space effectively. The prevalent algorithms are the Krylov-
based techniques (e.g., [3]–[6], [30]–[42]).

Consider a size n LTI system described by ordinary differen-
tial equation

E
dx

dt
= Ax(t) + Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ R
n is the internal state and u(t) ∈ R

m and y(t) ∈
R

p are the m-input and the p-output waveforms. The matrices
are the following: A ∈ R

n×n, E ∈ R
n×n, B ∈ R

n×m, and
C ∈ R

p×n.
This LTI system can be reduced to size q by a projection

matrix (basis) V ∈ R
n×q through the operation1 x = V z, z ∈

R
q such that

Ê = V TEV Â = V TAV B̂ = V TB Ĉ = CV

leading to the reduced model

Ê
dz

dt
= Âz(t) + B̂u(t), y = Ĉz(t). (2)

The transfer functions of (1) and (2), i.e., H(s) = C(sE −
A)−1B and Ĥ(s) = Ĉ(sÊ − Â)−1B̂, can be expanded with

1In this paper, we mainly consider Arnoldi-based projection. There are also
Lanzcos-based methods, e.g., [4], [5], [30], and [31].
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Taylor series at s = 0

H(s)=−C
[
A−1+s(A−1E)A−1+s2(A−1E)2A−1+· · ·

]
B

(3)

Ĥ(s)=−Ĉ
[
Â−1+s(Â−1Ê)Â−1+s2(Â−1Ê)2Â−1+· · ·

]
B̂

(4)

where the coefficients of s are called moments, and B is usually
called the starting vectors.

The projection basis V is defined by qth-order Krylov sub-
space

Kq(M,R) = span{R,MR, . . . ,Mq−1R} (5)

where M = A−1E, and R = A−1B for LTI system of (1).
It has been proved (e.g., [4] and [5]) that by choosing the

qth-order Krylov subspace (5) as the projection matrix V , the
first q moments of transfer functions of (3) and (4) will match
to each other exactly. Typically, V can be calculated via, e.g.,
the Lanzcos or Arnoldi methods [3], [4], [42].

B. Proper Orthogonal Decomposition

POD is an alternative technique to generate a projection
subspace, and it has been widely applied to many different
MOR problems (e.g., [43]–[49]). The wide applications of POD
are attributed to its nice properties of optimally representing
system data with a small number of POD-basis vectors in the
sense of least square approximation.

To apply the POD, a “snapshot” of the system solution
is first obtained either by experimental measurements or by
numerical simulation. These state-space vectors are then used
to extract orthogonal set of POD-basis vectors which span the
projection subspace. There are actually three different ways of
implementing POD [50]: 1) Karlhunen–Loéve decomposition;
2) principal component analysis; and 3) singular value decom-
position (SVD). In this paper, we adopt the SVD due to its
simplicity and wide availability.

For example, let x ∈ R
n be the solution vector of the system

being macromodeled. By running a transient simulation, one
can assemble the system data as X̄ = [x(t1), x(t2), . . . , x(ts)].
The POD method seeks to find a basis V to maximize the
representation of data points, which is equivalent to finding a
projection basis V to minimize the overall projection error [45]

‖X̄ − V V TX̄‖.

Obviously, the solution to this optimization problem is to
perform the SVD on the data collection X̄ , i.e.,

V = svd(X̄)

where V is given by the dominant singular vectors. Note that
the SVD of full-rank matrix is expensive (O(n3)). However,
the “snapshot” X̄ typically has much less number of columns
than rows (i.e., the system size); thus, the “economy-size” SVD
of X̄ can be performed more efficiently.

The advantage of POD is also its limitation. Because the
POD basis is generated from system response with a specific
input, the reduced model is only guaranteed to be close to the
original system when the input is close to the training input. As
a result, one needs to properly design the excitation signals to
reveal most of the system dynamics.

C. Weakly Nonlinear System Macromodeling

A nonlinear circuit or system can be generally described by
differential-algebraic equation as

q̇ (x(t)) = f (x(t)) + b(t). (6)

As usual, all variables (except time t) are vector-valued. With-
out loss of generality (e.g., [10]), (6) can be expressed as

Eẋ = f(x) + Bu(t), y = Cx (7)

where x ∈ R
n is the unknown state vector, and f(x) is a

nonlinear vector function. u(t) ∈ R
n×m is an m-input to the

system. B and C are the same as the definition in (1). We shall
use (7) all through this paper to describe the nonlinear system.

When the input signal u(t) is small enough, the nonlinear
term f(x) can be adequately represented by polynomial expan-
sions around dc operating point such that

Eẋ = A1x + A2x ⊗ x + A3x ⊗ x ⊗ x + · · · + Bu(t) (8)

where Ai is the ith order derivative, and the symbol ⊗ repre-
sents the Kronecker tensor product.

By Volterra theory [51], the solution of (8) is the summation
of different orders of responses such that

x(t) =
∞∑

i=1

xi(t)

where xi(t) is the ith-order response given by the ith Volterra
kernel hi(τ1, . . . , τi)

xi(t) =

∞∫
−∞

· · ·
∞∫

−∞

hi(τ1, . . . , τi), . . . , u(t − τi)dτ1, . . . , dτi.

More precisely, xi(t) can be recursively obtained by solving
the same linear system under different inputs. As shown in
Fig. 1, the first- through the third-order responses are the
solutions of the following linear systems, respectively

Eẋ1 =A1x1 + Bu(t) (9)

Eẋ2 =A1x2 + A2x1 ⊗ x1 (10)

Eẋ3 =A1x3 + A2(x1 ⊗ x2 + x2 ⊗ x1) + A3x1 ⊗ x1 ⊗ x1.

(11)

Now, the weakly polynomial MOR problem has been re-
casted as the reduction of a series of LTI systems, where
each is n-dimensional, that produce different order responses
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Fig. 1. Block diagram of the solution to weakly nonlinear system based on
the Volterra series expansion.

xi(t). Based on this formulation, several approaches have been
proposed.
1) Separate Projection: The first approach proposed in [12]

is to reduce each LTI system with separated Krylov subspace.
For example, the first-order LTI system of (9) can be reduced
by the projection basis V1 ∈ R

n×q1 generated from the Krylov
subspace Kq(A−1

1 E,A−1
1 B). Then, the response x1(t) was

approximated as x1(t) ≈ V1z1(t) and plugged into the second-
order LTI system of (10), which can now be written as

Eẋ2 = A1x2 + B2u2(t) (12)

where B2 = A2(V1 ⊗ V1) ∈ R
n×q2

1 , and u2(t) = z1(t) ⊗
z1(t) ∈ R

q2
1 . This is actually a similar LTI system as (9)

except that it has a q2
1 input. As a result, the projection basis

V2 ∈ R
n×q2 can be generated similarly from the Krylov

subspace Kq2(A
−1
1 E,A−1

1 B2) with multiple starting vectors
B2. The projection-basis generation for the third-order system
follows analogously.

The main difficulty associated with this method is the rapidly
increasing dimension of the projection basis, resulting in ineffi-
ciently large reduced models.
2) Uniform Projection: To generate a compact model, it was

proposed in [13] that the separated basis V1, V2, . . ., can be
merged via SVD to construct a single uniform basis V , i.e.,
V = svd([V1, V2, . . .]). The goal is to obtain a more compact
basis by “deflating” the subspace while retaining the similar
properties of moment matching.

However, the improvement is not so attractive because the
dimension of the Krylov subspaces for the second- and third-
order systems increases exponentially due to the tenser product,
which leads to the large dimension for merged subspace V even
after the “deflating” process.
3) Nonlinear Model Order Reduction Method (NORM)—

Momentwise Projection: To alleviate this obstruction, the rela-
tionship between moments of different order transfer functions
and the Krylov subspace with corresponding starting vectors
has been studied in depth in NORM [15]. It is shown that there
is some redundancy among the Krylov subspaces of each LTI
system, which can be removed by carefully choosing proper
starting vectors when generating the Krylov subspaces. With
the NORM, one can obtain a compact projection basis that is
tailored precisely according to the moments to be matched,
resulting in a very compact reduced model without loss of
accuracy.

D. Trajectory Piecewise-Linear Method

For general nonlinear model reduction, a TPWL approach
was first proposed in [16] and then extended in several ways
[17], [18], [21]–[24], [26]. The idea is to represent a nonlinear
system as a collage of linear models in adjoining polytopes,
which is centered around the expansion points in the state space.
The essence of the method is outlined as follows.

1) Given a nonlinear system of (7), linearize it at various
expansion points xi, i = 1, 2, . . . , s

Eẋ = f(xi) + Ai(x − xi) + Bu(t), y = Cx.

2) Generate a projection basis Vi for each LTI model and
calculate a common subspace V of the union Vunion =
[V1V2, . . . , Vs] via V = svd(Vunion). The size of V is
usually larger than each Vi but smaller than the size of
the original system.

3) Perform the linear model reduction using V , such as

Êż = f̂(xi) + Âi(z − zi) + B̂u(t), y = Ĉz

where the reduced matrices Ê, Â, B̂, and Ĉ are the same
as in (2), and f̂(xi) = V Tf(xi).

4) The final reduced model is the weighted combination of
all the reduced models

Êż =
s∑

i=1

wi(z)
(
f(zi) + Âi(z − zi) + B̂u(t)

)
, y = Ĉz

where wi(z) is the weight function.

The TPWL has excellent global approximations because of
the piecewise nature but has limited local accuracy for small
signal analysis. Intuitively, when the excitation is small enough
to keep the states stay within one region, the system reduces
to a pure LTI model, and no distortions could be captured.
Nonlinearities induced exclusively by the nonlinear weight
function wi(z) are generated only when states cross boundaries.
Recently, some works [23], [24], [26] have greatly extended the
original TPWL method, making it more scalable and practical.
However, there is still less evidence in literatures to show the
usage of the generated macromodel in other analysis, such
as dc, ac, HB, etc. Moreover, this will be addressed in this
PWP work.

III. PWP APPROACH

In this section, we first present the essential procedure of the
PWP macromodeling algorithm and then discuss the implemen-
tation detail later in this section. To make it more concise, it is
assumed that the projection basis Vi for each polynomial model
has been obtained. We shall delay the discussion of generating
such a basis using the MPI method until Section IV.

A. PWP Representations

Suppose that we have chosen s expansion points
{x1, x2, . . . , xs} from the state space of (7), each of which has
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a quadratic expansion

Eẋ = f(xi) + A
(1)
i x(1) + A

(2)
i x(2) + Bu(t), y = Cx.

Here, x(1) = x − xi, x(2) = (x − xi) ⊗ (x − xi), A
(1)
i , and

A
(2)
i are the first- and second-order derivatives. To simplify our

discussion, we only present the system using quadratic model
(extension to higher order terms is straightforward).

The projection basis Vi for each polynomial model can be
constructed from the coefficient matrices using any weakly
nonlinear MOR techniques. Similarly as TPWL [16], a uniform
projection base V is then generated via SVD on the collection
of all basis. If V ∈ R

n×q , a size-q-reduced model is given by

Êż = f̂(xi) + Â
(1)
i z(1) + Â

(2)
i z(2) + B̂iu(t)

where zi = V Txi, z(1) = z − zi, z(2) = (z − zi) ⊗ (z − zi),
and f̂(xi) = V Tf(xi). Similarly, the reduced matrices are Ê =
V TEV , Â

(1)
i = V A

(1)
i V , and Â

(2)
i = V TA

(2)
i V ⊗ V .

The final reduced-order PWP model is obtained by a
weighted combination of these regions such that

Êż =
m∑

i=1

wi(z)
(
f̂(xi) + Â

(1)
i z(1) + Â

(2)
i z(2) + B̂iu(t)

)

y = C

[
m∑

i=1

wi(z)(xi + V (z − zi)

]
(13)

where wi(z) is a smooth weight function, as elaborated in
Section III-E.

Although the general procedure of PWP looks simple at
first glance, a practical implementation of the PWP involves
considerable details that are critical to the model’s accuracy,
stability, and speedup. These implementation details will be
discussed in the rest of the section.

B. Choose Expansion Points

To be useful in practice, a PWP-generated macromodel needs
to cover certain range of state space with limited expansion
regions. To start, one has to choose application-specific inputs
to “train” the algorithm. For example, in this paper, we use
sinusoidal signals with various amplitudes and frequencies as
training inputs to an op-amp example.

An adaptive heuristic strategy to choose expansion points
from one trajectory is summarized as follows.

1) Simulate the full system with a training input.
2) Start from an initial state x0 (usually, the dc state), and

construct an LTI model such that

flinear = f(x0) + A0(x − x0)

where A0 is the Jacobian matrix of f(x) evaluated at x0.

3) Traverse the trajectory, and ensure that the relative error
err = (|f(x) − flinear(x)|/|flinear(x)|) < α, where α is
the predefined error tolerance.

4) If err > α, add the current state x into the expansion point
set. Start from this state, and construct a new LTI model.
Repeat steps 2)–4) until the end of the trajectory.

Here, one can explore tradeoffs between the accuracy and the
speedup by tuning α. A small α could lead to an accurate
model with small errors but less speedup due to large number of
regions. A typical value used in this paper is about 10−3−10−6.

It is noticed that this heuristic approach cannot guarantee
capturing all necessary information. Sometimes, it might miss
some key points that would cause significant runtime error.
Certainly reducing α could bring in more points, but it will
also increase the number of regions. A better way is to rerun
the generated macromodel with the same training input and, if
necessary, add expansion points manually to make the wave-
form match the original. Having this capability of manually
adding the expansion points is particularly useful for some
digital applications [21], [22] to obtain multiple dc solutions
correctly.

C. Merge Multiple Trajectories

The key to generating a widely applicable PWP model is
to maximize the state-space coverage with limited pieces of
regions. This is done by merging regions from different trajec-
tories. To avoid large number of regions, redundancy can be
removed by examining the similarities among the regions using
the following steps.

1) Choose a base set of expansion point, and ensure the
model accuracy for that particular training input.

2) For new points on the new trajectory, check the L2-norm
distances d1 = |xi

new − xj
base|2 between the new point

set and the base set. This can be done efficiently using
vectorized operation in MATLAB.

3) Select the points with L2 distance less than some prede-
fined tolerance δ1. Then, check the L2 distances of the
Jacobian matrices between these selected points and the
base set, i.e., d2 = ‖Ai

select − Aj
base‖2.

4) Remove the points with both d1 ≤ δ1 and d2 ≤ δ2. Ap-
pend the rest of the points into the base set.

5) Repeat steps 2)–4) for all trajectories. The typical value
of δ1 and δ2 may vary from 10−2 to 10−6, depending on
different applications.

D. Uniform Projection Basis

For each region, a unique projection basis Vi ∈ R
n×qi

(qi � n) is generated by certain weakly polynomial MOR
technique. The projection operation x = Viz (x ∈ R

n, z ∈ R
qi)

implies that z is the local coordinate of x in the subspace
spanned by column vectors of Vi. Thus, the reduced mod-
els are actually defined in different local coordinate systems.
When simulating the macromodel in the reduced space, it
is important to do it in one common subspace (coordinate
system), which is possibly larger but contains all the un-
derlying (smaller) subspaces. Otherwise, one cannot ensure
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a smooth transition (among different coordinate systems) by
only using the weight function. A straightforward way of
finding such a common subspace is to collect dominant in-
formation from Vunion = [V1, V2, . . . , Vs] via SVD, i.e., V =
svd(Vunion), and to keep only q (q < n) dominant singular
vectors.

It is possible that the dimension of the common subspace
may also increase when including more and more regions
from the combined trajectories. One may argue that finally, the
dimension could be close to the system size, making the MOR
meaningless. If so, it simply means that the solution space can
hardly be reduced, for which none of these MOR techniques
would work. Fortunately, circuits are highly connected system,
and the number of truly independent variables (or order of
freedom) is usually small compared with the system size.

Another key observation when performing the SVD is that
the singular value always has a deep cut at certain position,
indicating the existence of such a common subspace. However,
the dimension of the common subspace is usually larger than
each individual projection base, which puts a limit on the size
of the final reduced model.2

E. Choice of Weight Functions

Weight functions play a key role in all trajectory-based
approaches. Basically, each state calculated by the macromodel
is the result of interpolation from all nearby linear/polynomial
models. It is the weight function that amplifies the contribu-
tions from right neighbors and suppresses the “noise” from
the others. Therefore, the value of the weight function wi(z)
should be close to one when the state vector z approaches the
center point zi and should rapidly attenuate to zero as z leaves
zi. Additionally, weight functions should be continuous and
differentiable, which is necessary to ensure the convergence of
the transient simulation.

Although there is a considerable choice in functions satisfy-
ing this requirement, it is not trivial to make up a good weight
function. In the original TPWL [16], the weight function wi(z)
of current state z is calculated as the following procedure.

1) For i = 1, . . . , s, compute di = |z − zi|2.
2) Take m = min(di) item. For i = 1, . . . , s, compute

ŵi(z) = e−βdi/m, where β is a constant, e.g, β = 25.
item Normalize ŵi(z) such that S(z) =

∑
ŵi(z) and

wi(z) = ŵi(z)/S(z).

The initial experiment of using this weight function shows
some problems during the transient simulation. Sometimes, the
error is large when the current state is away from most of the
expansion points, i.e., on the border of the space that is covered

2It is interesting to note that, recently, a grouping strategy has been proposed
in [23] and [26], where the projection basis is generated from a “group”
of local regions instead of calculating a common subspace from all regions
via SVD. Therefore, it can deliver more compact macromodels with better
speedups. However, the success of applying “group” seems to rely on the
dense samplings in the state space, which is typically 103−104 points versus
30–40 points in PWP, to ensure smooth transitions from one local subspace to
another.

Fig. 2. Current state on the border of the space covered by the expansion
points.

by the expansion points (Fig. 2). By experiments, we use the
following weight function that seems to be more effective
for PWP:

wi(z) =
[

dmin

di(z)
e
− di(z)−dmin

Dmin

]p

(14)

where di(z) = |z − zi|22, dmin = min(di(z)) for i = 1, . . . , s,
and Dmin is the minimum distance among those center points
{z1, . . . , zs}. Parameter p (typically, p = 1−2) is used to make
the transaction smoother or shaper when switching from one
region to another. The whole weight function is finally normal-
ized to satisfy

∑s
i=1 wi(z) = 1.

The difference of these two weight functions can be illus-
trated using the following trivial test. Let the two center points
be z1 = 0.99 and z2 = 1.01 and have z swept from zero to two.
Ideally, w1(z) should be dominant when z < 1 and so does
w2(z) when z > 1. We plot w1(z) and w2(z) for both of the
weight functions [p = 1 for (14)] in Fig. 3.

One of the problems, as shown in Fig. 3(a), is that the weights
do not attenuate to zero, as expected, when z is away from the
center points.3 This means that when the current state is on the
margin of the space, as shown in Fig. 2, the weight function
is averaging the results from all the regions. This might be
reasonable if it is a mild nonlinear system and if all linearized
models have some similarities. However, experiments show
that it often leads to unpredictable behavior when the system
exhibits strong nonlinear dynamics. In such case, a weight
function, as shown in Fig. 3(b), that picks the best candidate
model while suppressing the “noise” well from the others is
more appreciated to get a stable transient simulation.

F. PWP Versus PWL

In this section, we demonstrate the advantage of PWP over
PWL using an illustrative example. Fig. 4 shows a cascade
NMOS amplifier, each stage of which is biased around Vgs = 3
with a gain that is slightly larger than one. Therefore, all stages
will remain active when excited by the input signals. The whole
circuit has a size of 50.

The training trajectory is obtained by a transient simulation
with a square pulse signal around dc = 3. PWP is applied

3Another problem is that ŵi(z) = e−βdi/m is not well defined at zi as
m → 0. One has to arbitrarily force wi(zi) = 1 to avoid being “divided by
zero.” Moreover, the definition of distance function di(z) = |z − zi|2 is not
differentiable at zi, and it is replaced by di(z) = (|z − zi|2)2.
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Fig. 3. Simple test result of two weight functions. (a) TPWL weight function. (b) PWP weight function.

Fig. 4. Cascade NMOS amplifier.

Fig. 5. Harmonic analysis of the cascade NMOS amplifier.

to generate a macromodel with 17 regions, each of which is
reduced to a quadratic model with a size of 20. This macro-
model is then used in HB analyses with an input u(t) =
3 + A sin(2π100t), where A is swept from 10−8 to 10−1. By
skipping the quadratic term in the PWP model, we simulate the
PWL model again and compare their first two harmonics with
the full model. The results are shown in Fig. 5.

It is clearly shown that the first two harmonics of the
PWP model are virtually identical to that of the full system.
However, the PWL reduces to a pure LTI model when the
input magnitude A is small, and thus, no second harmonic
is captured. Only when the input becomes large will the
second harmonic approach the full system due to the weight
function.

It is out of the question that the PWP is superior to the
PWL in capturing higher order nonlinearities within single
region. However, the PWP relies on higher order derivatives
and requires more CPU time and memory for evaluations.
On the other hand, the PWL model demands less resources
because of its simplicity but fails to capture critical nonlin-
earities. To improve its accuracy, it needs more expansion
regions that may eventually compromise the efficiency. One
has to explore these tradeoffs to generate proper “on-demand”
macromodels.

Finally, it is worth mentioning that the PWP can adopt any
existing weakly nonlinear MOR technique for each piecewise
region. Good candidates include NORM [15] and the tech-
niques in [12] and [14]. Alternatively, we propose another sim-
ple yet effective method, i.e., the MPI approach, as elaborated
in the next section.

To conclude this section, we summarize the procedure of the
PWP algorithm as follows.

Input: system equations of (7), derivative matrices A1 =
(∂f/∂x), and A2 = (∂2f/∂2x).

Output: reduced PWP model of (13).
1) Choose a set of expansion points Xs = {x1, x2,

. . . , xs} by merging the trajectories from multiple
application-specified training, e.g., transient, dc
sweeps, etc.

2) Use any weakly polynomial MOR method (e.g., MPI
(Section IV) or NORM [15]) to get a set of projection
basis {V1, V2, . . . , Vs}. Form a uniform basis via
SVD, i.e, V = svd([V1, V2, . . . , Vs]).
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Fig. 6. Equivalent linear system with multiple inputs.

3) Perform a normal projection-based model reduction
to get a set of reduced polynomial models as (13).

4) Apply the weight function of (14) to construct a final
reduced PWP model as (13).

IV. POLYNOMIAL MOR WITH MPI

In practice, PWP relies on the weakly nonlinear MOR tech-
niques to generate a projection basis for each region. Any
existing approaches (e.g., [12], [13], [15], etc.) can be easily
embedded in the PWP framework, and NORM [15] is known
to be the best approach so far to generate a compact basis. In
this section, we present an alternative to NORM, namely, the
MPI method.

A. Volterra Series Expansion in Time Domain

Our MPI approach was originally inspired by rephrasing the
Volterra series expansion in time domain. As shown in Fig. 1, a
nonlinear system of (8) can be solved by solving the same linear
system recursively with different inputs. By adding (9) to (11),
we have

Eẋ = A1x(t) + A2u2(t) + A3u3(t) + Bu(t)

or in a companion form

Eẋ = A1x(t) + [B A2 A3 ]︸ ︷︷ ︸
Beq


 u(t)

u2(t)
u3(t)




︸ ︷︷ ︸
ueq(t)

(15)

where x = x1 + x2 + x3, u2(t) = x1(t) ⊗ x1(t) + x1(t) ⊗
x2(t) + x2(t) ⊗ x1(t), and u3(t) = x1(t) ⊗ x1(t) ⊗ x1(t). As
shown in Fig. 6, this is an equivalent linear system with multiple
inputs ueq and matrix Beq.

In order to apply MOR to the equivalent linear system of
(15), we can generate the Krylov projection bases using Beq

as the starting vectors. However, the kth-order derivative Ak

would have nk columns, prohibiting the direct usage of A2

and A3 even if they are very sparse in general. This can be
remedied by exploiting the intrinsic correlations in u2(t) and
u3(t) in time or frequency domain. For example, if u2(t) can be
expressed as a linear combination of small number of vectors,
such as

u2(t) = U2ũ2(t)

where u2(t) ∈ R
n2

, U2 ∈ R
n2×q2 , ũ2(t) ∈ R

q2 , and q2 � n2,
then A2u2 = A2U2ũ2 = B2ũ2, where B2 would only have

q2 columns. Therefore, the equivalent linear system of (15)
becomes

Eẋ = A1x + [B B2 B3 ]︸ ︷︷ ︸
Beq


 u(t)

ũ2(t)
ũ3(t)




︸ ︷︷ ︸
ueq(t)

(16)

where u3 = U3ũ3, and B3 = A3U3 ∈ R
n×q3 . The total number

of columns in Beq would have been reduced from m + n2 + n3

to m + q2 + q3, where m is the number of inputs to the original
system.

For simplicity, consider only expanding the system to the
quadratic model such that u2(t) = x1(t) ⊗ x1(t), where x1(t)
is the response of the first-order LTI system (9). This moti-
vates us to represent x1(t) with a compact basis, i.e., x1(t) =
V1z1(t), V1 ∈ R

q1 , such that u2(t) = V1 ⊗ V1z1(t) ⊗ z1(t). It
follows that U2 = V1 ⊗ V1, ũ2(t) = z1(t) ⊗ z1(t), and B2 =
A2(V1 ⊗ V1) ∈ R

n×q2
1 . This is the essential idea behind the

weakly polynomial MOR techniques that are discussed in
Section II-C, where V1 is obtained from the Krylov subspace
using B as the starting vectors.

Alternatively, V1 can also be calculated using the POD
approach, as discussed in the next section.

B. MPI Approach With POD Basis

To simplify the discussion, we illustrate the MPI method
using the quadratic expansion of (8), i.e.,

Eẋ = A1x + [B A2 ]︸ ︷︷ ︸
Beq

[
u(t)
u2(t)

]
︸ ︷︷ ︸

ueq(t)

(17)

where A2 ∈ R
n×n2

is the second derivative of f(x), and
u2(t) = x1(t) ⊗ x1(t).

The POD basis can be calculated either from the time
or frequency domain. In the time domain, we first solve
x1(t) by running several steps of transient simulation for
the LTI system of (9), collecting the samplings in X̄ =
[x1(t1), x1(t2), . . . , x1(ti)]. The POD basis is then given by
SVD, i.e., V1 = svd(X̄) ∈ R

n×q1 and x1(t) ≈ V1z1(t). The
equivalent LTI system of (17) now becomes

Eẋ = A1x + [B B2 ]︸ ︷︷ ︸
Beq

[
u(t)
ũ2(t)

]
︸ ︷︷ ︸

ueq(t)

where B2 = A2V1 ⊗ V1, and ũ2 = z1 ⊗ z1. This LTI system
can be further reduced through the Krylov-subspace projection
with multiple starting vectors Beq = [B,B2].

This method is easily extended to higher order systems, for
which the POD basis can be calculated more easily in the
frequency domain. For example, to generate V2 for the second-
order LTI system of (12), one can get “snapshot” X̄2 in the
frequency domain by calculating H2(si) = (siE − A1)−1B2

for selected frequency points si, where B2 = A2(V1 ⊗ V1).
Once V1 and V2 are available, one can replace x1(t) = V1z1(t)
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Fig. 7. Current-mirror op-amp with 50 MOSFETs and 39 nodes.

Fig. 8. Tapered CML buffer.

and x2(t) = V2z2(t) in (15), formulate the equivalent LTI
system in companion form as (16), and reduce it using the
Krylov-subspace projection via Lanzcos or Arnoldi process
with multiple starting vectors (e.g., [5]).

The benefit of using the POD basis is twofold. When apply-
ing the POD to the time-domain data, one can choose the input
to the LTI system of (9) the same as the training input to the
nonlinear system. Due to the “near optimal” property of the
POD basis, it can effectively capture the LTI system dynamics
under such an excitation. When generating the POD basis from
the frequency-domain data, it boils down to the Poor Man’s
TBR (PMTBR) method [8], where it is shown that the POD
basis converges quickly to the dominant eigenvectors of the
controllability Gramians of the underlying LTI system. It may
also be interpreted as a multipoint moment-matching method,
which will match one moment at each frequency [52]. In fact,
moment-matching is only one of the desirable properties to be
preserved in the macromodels, and the macromodels generated
with the Krylov subspace is not necessary to be optimal. In
many cases, the POD basis (or PMTBR) can lead to a better
reduced model in terms of accuracy and compactness [8].
Either way, it has the potential of using less dimension of V1,
without sacrificing too much accuracy, to achieve a compact
macromodel for the weakly nonlinear system.

To conclude this section, we summarize the MPI method as
follows.

Input: system equations of (8).
Output: projection basis V .

1) Get the data ensemble X̄1 either from the time
or frequency domain.

2) Generate a POD basis by V1 = svd(X̄1). Keep the
dominant singular vectors.

3) Let B2 = A2(V1 ⊗ V1), and form the equivalent
starting vectors Beq = [B,B2].

4) Generate a qth-order Krylov subspace using Beq.
colspan{V } = Kq(A−1

1 E,A−1
1 Beq).

V. VALIDATION OF PWP

In this section, we conduct in-depth evaluations of the PWP
method using three examples. For each circuit, a PWP macro-
model is first generated, followed by variant macromodel-based
simulations. The results are compared against the full simula-
tions for validation purposes. The PWP-generated macromodel
is further embedded in a larger system to demonstrate its
capability of accelerating system-level simulations. Details of
model generation and speedup numbers are provided at the end
of this section.

A. Examples

1) Op-Amp: The first example is a current-mirror op-amp
(Fig. 7) with 50 MOSFETs and 39 nodes, including a common-
mode feedback block. It was designed to provide about 70 dB
of dc gain, with a slew rate of 20 V/µs and an open-loop 3-dB
bandwidth of f0 ≈ 10 kHz.

2) Current-Mode-Logic (CML) Buffer: The second example
in Fig. 8 is a tapered CML buffer chain that is designed to drive
a 50-Ω transmission line in high-speed digital communications
[53]. Inductive peaking is employed in the first and third stages
to increase the bandwidth. The sizing of each stage and the
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Fig. 9. LVDS buffer with a common-mode feedback loop.

Fig. 10. PWP-model generation for the op-amp.

parameters are optimized to minimize the buffer delay [54]. The
circuit size of this example is 28, and Vdd = 1.8 V.

3) Low-Voltage Differential-Signaling (LVDS) Buffer: The
third example in Fig. 9 is an LVDS output buffer (Vdd =
3.3 V) with a common-mode feedback loop [55], which is also
commonly used in digital communications. The common-mode
voltage of inputs is enforced by Vref to be around 1.25 V. It is
designed to drive a 50-Ω with about 0.5-V voltage swing. The
size of the circuit is 18.

For all the aforementioned examples, the MOS devices
were modeled using a smooth bulk-referred version of the
Schichman–Hodges (MOS Level 1) equations, plus considering
the channel-length-modulation effect. It should be noted that
the PWP-generated macromodels automatically abstract rele-
vant features of all underlying device models in the original
circuit, no matter how simple or complex they are. Finally, all
circuit simulations and verifications represent apple-to-apple
comparisons in a MATLAB prototyping environment running
on a 1.8-GHz Pentium-4 Linux box.

B. PWP-Model Generation

1) Op-Amp: The PWP model of the op-amp was generated
with four inputs and four outputs, as shown in Fig. 10. Besides
the original two inputs (Vin1 and Vin2) and two outputs (Vo1 and
Vo2), another two inputs (Io1 and Io2) and two outputs (Iin1

and Iin2) were added to capture bidirectional loading effects,
such that the generated macromodel can be used as drop-in
replacement and simulated with peripheral circuits.

As mentioned in Section III, the expansion points were
chosen along the trajectory with certain training input. The
choice of training input was dictated by a desire to exercise
the circuit through all its important nonlinear and dynamical
behaviors. In this test, we obtain multiple trajectories using
transient simulation with step function and several sinusoidal
inputs (amplitude varying from 10−6 to 10−1 and frequency

Fig. 11. PWP-model generation for the IO buffer circuits.

TABLE I
MACROMODEL SIZE AND GENERATION TIME FOR THE

OP-AMP AND BUFFER CIRCUITS

varying from 102 to 105) as well as some dc sweeps of the full
circuit.

Each individual polynomial is reduced to size 12 with the
MPI method. These projection bases are then combined, and
a common subspace with a size of 24 is obtained via SVD.
Eventually, the PWP-generated macromodel has 47 piecewise
regions, each of which is approximated by a polynomial model
with a state space of size 24.
2) Buffers: For buffer circuits in digital applications, we are

primarily interested in their switching activities of the buffers
with large signal inputs, which are dominated by the coverage
of piecewise regions and the smoothing function. For such
cases, weak nonlinearities captured by the polynomials inside
each region are not as important as in other applications (e.g.,
op-amps and mixers). Through experimentation, we have found
that using the linear-only models within each region is adequate
for meeting the accuracy requirements.4 The weight function
(14) and the merging of multiple training trajectories, as de-
scribed in Section III-B, are both very important for developing
macromodels that work well in large-signal transient analysis.

Fig. 11 shows the block diagram for the macromodel gener-
ation of buffer circuits in Figs. 8 and 9. The buffer is modeled
with five inputs and two outputs: Two differential inputs track
different input patterns, two loading currents tackle loading
variations, and power grid noise is captured via port Vs. Two
differential outputs are connected to the load. Several transient
simulations of the full buffer circuit with an input pattern
of “010” and different loads (e.g., 50-Ω resistor and 1-pF
capacitor) are used to generate the training trajectories, along
which the piecewise regions are selected and merged.

Finally, the size and the macromodel generation time of three
examples are summarized in Table I.

4Being able to leave out the polynomial terms significantly improves the
macromodel’s efficiency.
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Fig. 12. Singular value of common subspace.

C. Importance of Accurate Common Subspace

It is important to choose the dimension of a common sub-
space according to the singular value drop. We validate this
using the op-amp example.

We generated 32 models along a trajectory with a sinusoidal
training input. For each region, the model size was reduced
from 39 to 8 by the MPI method, i.e., Vi ∈ R

39×8 for i =
1, . . . , 32. Fig. 12 shows the singular value of the collections
of V = [V1, . . . , V32]. It is seen that there is a cut at size 24 (or
25). The insight is that even if the original system could have
a large number of unknowns, they are partially correlated to
each other, and the intrinsic freedom is limited. Therefore, it is
possible to project the system into a subspace that effectively
spans the solution space.

It is important to identify the correct size of the common
subspace. To see the problem, we run a comparison test on
the PWP-generated macromodels with sizes 12 (overcut) and
24, as shown in Fig. 13. It is seen that the size-24 model
matches the original model very well. However, the size-12
macromodel with an overcutting subspace has large errors,
mainly in the second half of the period. This is because the
overcutting subspace excludes the critical information of those
regions presented in the latter half of the training trajectory.
Meanwhile, since the model is not accurate, it has converged
problem during the simulation that makes it much slower than
the size-24 model. In practice, one can detect the dramatic
change of the singular value at runtime to determine the proper
size of the common subspace.

D. Op-Amp: DC and AC Analyses

We first perform the dc-sweep analysis to the open-loop
configuration of the op-amp, and part of the dc operating points
are used to generate the final PWP macromodel. We then
compare the results of the full op-amp with that of the PWP-
generated macromodel. As shown in Fig. 14, two models are
precisely matched.

Next, we compare Bode plots, which are obtained by the ac
analysis, of the PWP-generated macromodel against those of
the full op-amp. Two ac sweeps, which are obtained at different
dc biases, are shown in Fig. 15. The PWP also provides excel-
lent matches around each bias point.

Fig. 13. Transient result of the PWP-generated macromodels with different
model sizes.

Fig. 14. DC sweep of the op-amp.

E. Op-Amp: Distortion Via HB Simulations

When the op-amp is used as a linear amplifier with small in-
puts, distortion and intermodulation are important performance
metrics. One of the strengths of the PWP-generated macro-
models is that weak nonlinearities, which are responsible for
distortion and intermodulation, are captured well. Such weakly
nonlinear effects are best simulated using the frequency-domain
HB analysis, for which we choose the one-tone sinusoidal input
Vin1 − Vin2 = A sin(2π × 100t) and Cload = 10 pF. The input
magnitude A is swept over several decades to verify the valid
range of macromodel, and the first two harmonics are shown in
Fig. 16.

It can be seen that for the entire input range, there is an excel-
lent match of the distortion component from the macromodel
versus that of the full circuit (at very small input magnitudes,
the distortion component of both is dominated by numerical
noise). Note that the same macromodel is used for this HB
simulation as for all the other analyses presented. The CPU time
and the speedups are shown later in Table II.

F. Op-Amp: Slewing/Clipping Via Transient Simulations

Another strength of PWP is that it can capture the effects
of strong nonlinearities excited by large signal swings. To
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Fig. 15. AC analysis with different dc biases. (a) Vin1 = Vin2 = 2.5 V. (b) Vin1 = Vin2 = 2.0 V.

Fig. 16. Harmonic analysis of the current-mirror op-amp. Solid line—full op-
amp; discrete point—PWP model.

TABLE II
MACROMODEL SIMULATION TIME AND SPEEDUPS

demonstrate this, a transient analysis was run with a large fast
step input, and the comparisons of output are shown in Fig. 17.

The slope of the step input was chosen to excite slew-rate
limiting, which is a dynamical phenomenon caused by strong
nonlinearities (saturation of differential amplifier structures).

Fig. 17. Transient analysis of the current-mirror op-amp with fast step input.

To illustrate the clipping due to the power and ground rails,
another transient simulation was run with large input

V +
in = 0.1 sin(2π × 105t), V −

in = 2.5.

Comparisons of the macromodel versus the original are shown
in Fig. 18. The CPU time and the speedup number are listed in
Table II.

G. Op-Amp: Embedded in Negative Feedback Loop

The main purpose of generating macromodels is to use
them as drop-in replacement to speed up simulation with other
circuits. To illustrate this idea, we embedded the op-amp in a
negative feedback loop, as shown in Fig. 19.

A transient-simulation result with large sinusoidal in-
put Vin1 − Vin2 = 4 sin(2π106t) is shown in Fig. 20. The
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Fig. 18. Transient analysis of the current-mirror op-amp with large sinusoidal
input.

Fig. 19. Op-amp embedded in the negative feedback loop, Ri/Rf =
10 K/1 K.

Fig. 20. Large sinusoidal transient simulation of the op-amp in a feedback
loop, revealing slewing effects.

magnitude and the frequency of input signal are chosen such
that the op-amp presents a slewing effect on its output. It was
observed that the PWP-generated macromodel accurately cap-
tures this strong nonlinear effect. In this test, the original system
takes 791 s in the transient analysis, whereas the macromodel-
based simulation takes 102 s, which results in about 7.7×
speedup.

H. CML Buffer: Different Loading Effects

We verify the capturing of different loading effects using the
macromodel from the second example (CML buffer). Three
transmission lines (modeled with lumped RLC network) are

Fig. 21. Voltage waveform across the load. Solid line: Full circuit simulation;
dashed line: Macromodel simulation.

connected to the buffer in the test. The voltage waveforms
across the load at the far end of the transmission line against
the full circuit simulation are shown in Fig. 21. The three cases
are the following:

1) lossless transmission line: Zc = 75 Ω, Td = 0.4 ns,
Zload = Zc, and input pattern “0100101;”

2) lossy transmission line: Zc =100Ω, Td =0.5 ns,
Zdc =2Ω, Zload = Zc, and input pattern “0101100
transmission;”

3) lossy line: Zc = 75 Ω, Td = 0.5 ns, Zdc = 2 Ω, Zload =
1 pF, and input pattern “0110010.”

It is seen that the macromodel is capable of capturing dif-
ferent loading effects, and its accuracy in matching the full
circuit simulation is more than adequate. The relative error is
less than 5% on average. The runtime comparison is shown later
in Table II.

I. CML Buffer: Crosstalk

We further investigate the CML buffer macromodel for
crosstalk simulation. As shown in Fig. 22, two coupled lossy
transmission lines (Zc = 75 Ω, Td = 0.5 ns, and Zdc = 2 Ω)
are driven by two buffers: One is active with an input pattern of
“0101100,” and the other remains quiet.
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Fig. 22. Circuit for the crosstalk simulation.

Fig. 23. Macromodel in the crosstalk simulation. Solid line: Full circuit;
dashed line: Macromodel. (a) Voltage across the load on the active line.
(b) Voltage across the load on the quiet line.

The voltage waveforms on the load impedance at the far end
of both lines are shown in Fig. 23. It is seen that the macromodel
reproduces the dynamic behaviors of the buffer and captures the
crosstalk noise quite well.

The runtime comparison is shown later in Table II.

J. LVDS Buffer: Simultaneous Switching Noise (SSN)

The macromodel of the third example (LVDS buffer in
Fig. 9) is used in this test. As shown in Fig. 24, M identical
drivers are loaded with lossy transmission line (Zc = 100, Td =
0.5 ns, and Zdc = 2 Ω). An ideal power supply Vdd is connected
to the power supply port Vs of drivers through Ls and Rs. In the
simulation, M = 7, Ls = 0.1 nH, and Rs = 1 mΩ. All drivers
have the same input stream “0100101.”

The simulation results, as shown in Fig. 25, confirm that the
macromodel accurately captures the sensitive SSN noise in both
the voltage and current waveforms.

Finally, we summarize the speedup results for all test cases in
Table II. It is evident from the aforementioned three examples
that the PWP-generated macromodels can be profitably used
as general-purpose drop-in replacements with various analysis,
resulting in an order of speedups with little loss of accuracy.
The speedups are mainly due to the two factors: the reduced
system size and the simple model evaluations. Therefore, more
attractive speedups can be expected for large circuits with com-

Fig. 24. SSN validation.

Fig. 25. SSN using the macromodel of the LVDS buffer. Solid line: Full
circuit; dashed line: Macromodel. (a) Voltage waveform at node Vs. (b) Noisy
supply current Idd.

plex transistor models. The generated macromodels are easily
targeted to a variety of model-description languages, includ-
ing MATLAB/Simulink blocks [19]–[22], Verilog-A, VHDL-
AMS, and SPICE subcircuits [23], [26].

VI. CONCLUSION

We have presented a PWP approach for a general-purpose
nonlinear model reduction. Our approach draws inspiration
from and improves upon the previous work in [16], [19],
and [20]. It combines good global and local accuracy prop-
erties, thereby making the reduced models suitable for both
the large-signal transient analysis and the small-signal dis-
tortion analysis. Numerical results confirm these expectations
quantitatively. We have also developed a reliable and easily
implemented weakly polynomial model-reduction technique,
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the MPI method, which combines the POD and the Krylov
subspace to generate a proper projection basis. The PWP has
a considerable potential as an accelerator for the system-level
simulations with large individual blocks.
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