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Abstract—In latest CMOS technologies, Random Telegraph Noise (RTN)
has emerged as an important challenge for SRAM design. Due torapidly
shrinking device sizes and heightened variability, analytical approaches are no
longer applicable for characterising the circuit-level impact of non-stationary
RTN. Accordingly, this paper presents SAMURAI, a computational method
for accurate, trap-level, non-stationary analysis of RTN in SRAMs. The
core of SAMURAI is a technique called Markov Uniformisation, which
extends stochastic simulation ideas from the biological community and applies
them to generate realistic traces of non-stationary RTN in SRAM cells. To
the best of our knowledge, SAMURAI is the first computational approach
that employs detailed trap-level stochastic RTN generation models to obtain
accurate traces of non-stationary RTN at the circuit level. We have also
developed a methodology that integrates SAMURAI and SPICE to achieve
a simulation-driven approach to RTN characterisation in SRAM cells under
(a) arbitrary trap populations, and (b) arbitrarily time-v arying bias conditions.
Our implementation of this methodology demonstrates that SAMURAI is
capable of accurately predicting non-stationary RTN effects such as write
errors in SRAM cells.

I. INTRODUCTION AND MOTIVATION

SRAMs1 find application in several domains including CPU caches, LCD
screens and on-chip memories for both ASICs and FPGAs. This is
because SRAMs offer several advantages over their dynamic counterparts:
they are much faster, they consume less power and they do not need
complex circuitry to periodically refresh their states.
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Fig. 1. A 6T SRAM cell.

Fig. 1 (left) shows the schematic for an SRAM cell that storesone bit
(Q). The core of this SRAM cell is a cross-coupled pair of inverters
formed by the four transistors M3-M6 (Fig. 1 right). The external circuit
can read and writeQ by controlling the pass transistors M1 and M2.

A. RTN as an emerging SRAM design challenge

In deeply scaled technologies, several non-idealities limit the minimum
supply voltage(Vdd) under which an SRAM cell can be operated. Fig. 2
depicts the increase inVdd necessitated by different non-idealities, as a
function of CMOS technology [1]. Each CMOS technology is represented
by a stacked bar, to which the effects of different non-idealities such
as (a)VT shifts due to global and local parameter variations, (b) Neg-
ative Bias Temperature Instability (NBTI), and (c) Random Telegraph
Noise (RTN) are successively added (on top of the nominal supply voltage

1Static Random Access Memories

Fig. 2. Impact of non-idealities (quantified inVdd terms) on SRAM design margins
under different CMOS technologies. Data courtesy: Y. Tsukamoto, Renesas
Electronics Corp., Japan.

that overcomes static noise). Also included is a plot (the downward
sloping dashed line) depicting the scaling ofVdd at different technologies.

As seen from the figure, the impact (inVdd terms) of RTN on SRAMs
has been steadily increasing under continued CMOS scaling.Moreover,
coming on top of the other non-idealities, it is the incremental contribution
made by RTN that is poised to push the minimum supply voltage over the
dashed line that representsVdd scaling. If this happens, RTN would reduce
the SRAM design margin to zero and also render any further voltage
scaling impossible. Therefore, to ensure continued CMOS scaling, RTN
is of enormous significance even though its magnitude is small compared
to other non-idealities.

B. Towards overcoming RTN

Although RTN is a severe limiting factor (as seen from Fig. 2), the
following three observations suggest strategies for coping with it:

Correlation between RTN and NBTI:Recent evidence [1] suggests that
RTN and NBTI are positively correlated. As a result, the total design
margin impact of RTN and NBTI, taken together, is likely to besmaller
than the sum of their individual design margin impacts [1]. In Fig. 2, this
corresponds to an overlap between the top two boxes of each stack, which,
if accurately taken into account, would enable more design choices.

Pessimism of stationary RTN analysis (hence the need for non-stationary
analysis): From measurement data, it is well-known that stationary
RTN analysis harbours considerable pessimism (the difference between
predicted and observed noise power is sometimes as high as 15dB) [2],
[3]. Hence it is likely that non-stationary RTN analysis techniques (such
as the one we propose in this paper) would open up more design choices,
by virtue of being more accurate in real-world (non-stationary) operating
environments.

The case for computational RTN characterisation:RTN is caused by
the random capture and release of charge carriers by traps located in
a MOS transistor’s oxide layer [4], [5]. Analytical approaches to RTN
characterisation are based on the assumption that a large number of active
traps exist in the dielectric. Under this assumption, statistical averaging978-3-9810801-7-9/DATE11/c©2011 EDAA



Fig. 3. Spectral density plots for 25 randomly sampled devices in two CMOS
technologies.

shows that RTN obeys 1/ f characteristics [4], [5]. However, with
increasingly small device sizes, this assumption is no longer valid [6]–
[8]. Indeed, detailed models for trap profiling (corroborated by measured
data) suggest that in deeply scaled CMOS technologies, onlyabout 5-10
traps are active at any given bias point [6], [7]. As a result,the analytical
1/ f fit is often a poor model for highly scaled devices.

Fig. 3 illustrates this point using spectral density plots for 25 device
instances (randomly sampled using the trap profiling model of [6], and
held at constant bias) from two CMOS technologies. While theanalytical
solution is clearly a good fit for the older technology (left), it completely
fails to capture the trap profiles of devices in the newer technology (right).

Although Fig. 3 shows that analytical approaches are no longer applicable,
the encouraging observation is that this represents a clearcase for
computational approaches based on stochastic simulation [9] of trap
activities. These approaches (such as the one proposed in this paper)
are ideally suited to handle the small trap populations in today’s highly
scaled devices. Indeed, computational approaches actually take advantage
of the small trap populations to achieve greater efficiency.

C. What does accurate RTN characterisation entail?

The design of RTN-tolerant future generation SRAMs dependscritically
on our ability to leverage the above three observations. Forthis we need:

An accurate model for RTN:It is known that both RTN and NBTI
originate due to traps in the MOS oxide layer. The correlation between
RTN and NBTI is most likely due to thiscommon root cause[1].
Therefore, an RTN model based on first principles (i.e., the capture and
emission of electrons by traps in the oxide layer) is likely to succeed
in accurately capturing the NBTI correlation. Whereas detailed equations
describing RTN generation from first principles at the device level are
already available [5], [6], this paper, to the best of our knowledge, is the
first attempt at incorporating such sophisticated models into a tool for
RTN characterisation at the circuit level.

A computational method for predicting the circuit-level impact of non-
stationary RTN: Today, the most advanced computational approach for
RTN is that of Ye et. al. [10], which works by generating RTN-like
waveforms starting from ideal white-noise sources. The main advantage
of this method is that it integrates RTN simulation with SPICE-level
circuit simulation. However, a key drawback of this method is that it
is incapable of taking into account the bias-dependent, non-stationary
statistics of RTN, which play a crucial role during SRAM operation (see
next subsection). Moreover, the white noise sources drastically reduce the
efficiency of this method from a simulation perspective. Indeed, to date,
the only reported SRAM application of this method has been toanalyse
the simplest case ofa single trapin an entire SRAM cell, and that too
operating under constant bias assumptions.

By contrast, we develop a technique (§III) for generating genuinely non-
stationary RTN. This technique, based on uniformisation [11]–[13] of a

trap-level Markov chain model (§II), provably generates RTN traces that
are (stochastically) exactly identical to the RTN physically measured on
fabricated SRAMs. Hence the title of this paper, SAMURAI, which stands
for SRAM Analysis byMarkov Uniformisation with RTN Awareness
Incorporated. While being a computational method based on trap-level
first principles, SAMURAI is capable of accurately simulating non-
stationary RTN at the circuit level under (a) arbitrary trappopulations,
and (b) arbitrarily time-varying bias conditions. Moreover, we are able
to integrate SAMURAI with SPICE, without encountering efficiency
issues, to conduct full-fledged RTN analysis of SRAMs with varying
trap populations under realistic, non-stationary operating environments.

D. Non-stationarity of RTN in SRAMs: A closer look

We have already mentioned that non-stationary analysis, being less
pessimistic, often enables more design choices. We now illustrate the
critical importance of non-stationary RTN, in the context of SRAMs.

In an SRAM cell, RTN can produce two adverse effects [14], [15]: (1) it
canslow downwrite operations, and (2) it can causewrite errors2.

RTN
RTN

RTN

Fig. 4. RTN in pass transistor M1 modelled as a glitchIRT N while a 1 is being
written to the SRAM cell.

Consider the pass transistor M1, whose RTN can be modelled asa current
sourceIRTN that opposes the nominal transistor current, as illustrated in
Fig. 4 (right). The top three waveforms in Fig. 4 (left) are the signals
applied to write a 1 to the SRAM cell, while the bottom two waveforms
(numbered 1 and 2) represent two possibleIRTN “glitches”.

Fig. 5. RTN in the pass transistor can either (i) slow down thewrite operation,
or (ii) result in a write error. X-axis: Time (ns). Y-axis: Voltage (V). The solid
line representsQ while the dotted line representsQ.

Fig. 5 shows BSIM-4 SPICE simulations for the differentIRTN scenarios.
The top portion shows that in the absence ofIRTN glitches, the signals

2RTN-induced SRAM read failures have also been reported [16]. SAMURAI
is capable of predicting these too; however, due to space constraints, we do not
discuss read failures in this paper.



Q (the solid line) andQ (the dotted line) settle to their correct values
by the time WL is de-asserted. The middle portion shows that if a glitch
startsafter WL is asserted, but endsbeforeWL is de-asserted, it canslow
down the write operation,i.e., Q does not assume its correct value until
long after WL is reset (hence a read operation initiated in the interim can
upset the stored value). The bottom portion shows that if a glitch starts
just beforeWL is de-asserted, and continues until WL is de-asserted, it
can result in awrite error.

From the above discussion, it is clear that thetiming of RTN glitches
plays a crucial role in deciding whether an SRAM cell is compromised
or not. In other words, there are certaincritical moments(e.g., during
switching) when an SRAM cell is extremely sensitive to RTN spikes [15].
At other times, even a reasonably large RTN spike would not produce
any observable effect. Thus, the key to successful SRAM design lies in
understanding the RTN patterns during suchcritical moments.

Moreover, during suchcritical momentsin an SRAM cell’s duty cycle,
all 6 transistors experience large and rapid bias swings. Under such fast
bias variations, the traditional stationarity assumptions that simplify RTN
analysis are no longer valid. Therefore, especially in the SRAM context, a
non-stationary RTN analysis technique (such as SAMURAI) isthe need
of the hour. In§IV, we show that SAMURAI can indeed predict non-
stationary effects such as SRAM write errors.

E. SAMURAI: Structure, capabilities and summary of results

In previous subsections, we highlighted the need for an accurate, trap-
level, non-stationary, computational RTN characterisation technique, with
application to SRAM design. Against this background, in this paper,
we develop SAMURAI, a computational tool for accurate modelling
and simulation of non-stationary RTN. Starting from first principles (the
capture/release of electrons by MOS oxide traps), SAMURAI generates
accurate RTN traces for entire circuits (such as SRAMs) under arbitrary
trap populations and arbitrarily time-varying bias conditions.

SAMURAI is a computational approach based on Markov Uniformisation
[11]–[13], which is an extension of Gillespie’s stochasticsimulation
algorithm [9] to handle non-stationarity. Such computational approaches
are well-known in the biological community, where they are used for
accurate simulation of biochemical reactions involving a small num-
ber of molecules [9], [17], [18]. Analogously, we use SAMURAI for
accurate simulation of RTN in SRAMs involving a small numberof
traps. Specifically, we have developed a simulation-drivenmethodology
(illustrated in Fig. 8 (left)) that integrates SAMURAI and SPICE to enable
accurate RTN analysis of SRAMs. We have implemented each step of this
methodology and obtained results showing that SAMURAI doesindeed
accurately predict non-stationary RTN effects in SRAMs. Wehave also
validated SAMURAI against analytical results known for stationary RTN.

II. THE RTN GENERATION MECHANISM: FROM TRAPS TO
MARKOV CHAINS

A. Origins of RTN: Traps in the dielectric

As mentioned before, RTN is caused by the random capture and release
of electrons by traps located in the MOS oxide layer (as shownin Fig. 6).
At any given moment, an oxide trap can be in one of two possible
states, (a) filled (i.e., the trap has captured an electron from the inversion
layer), or (b)empty(i.e., the trap has released any previously captured
electron back into the inversion layer). For a given trap, the evolution
of its state over time (betweenfilled and empty) is inherently random,
i.e., it is a stochastic process. The parameters of this stochastic process
depend on three factors: (a) the vertical distanceytr of the trap from the
oxide-semiconductor interface, (b) the trap energy levelEtr , and (c) the
instantaneous gate biasVgs(t) of the device [6]. It is this dependence on
Vgs(t) that makes the trap statistics, and hence the induced RTN, non-
stationary.

Fig. 6. Left: Traps in a MOS transistor’s oxide layer. Right:A time-
inhomogeneous two-state Markov chain model for a single trap.

B. Traps as time-inhomogeneous two-state Markov chains

Given that a trap is empty (filled) at timet, the probability that it will
become filled (empty) by timet+dt (i.e., it will capture (emit) an electron
in the small time intervaldt) is given byλc(t)dt (λe(t)dt), whereλc(t)
(λe(t)) is a time-varying function called thecapture (emission) propensity
of the trap.

The above stochastic model governing the activity of a single trap can be
described by a two-state time-inhomogeneous Markov chain,as shown
in Fig. 6 (right). The two states in this Markov chain are designated 0
(empty) and 1 (filled), while transitions between states arelabelled by
the corresponding propensity functions.

The functionsλc(t) andλe(t) depend on the instantaneous biasVgs(t), and
also on the trap characteristicsytr andEtr . Detailed equations describing
these dependencies can be found in [6], from which we obtain:

λc(t)+λe(t) =
1

τ0eγytr
(1)

β (t) = λe(t)/λc(t) = g e
ET−EF

kT (2)

[where(ET −EF )|t = function(Etr ,ytr ,Vgs|t ,device parms)]

From the above equations, it is seen that thesumλc+λe is constant with
time, depending only onytr , the time constantτ0 for traps at the silicon
interface and the tunnelling coefficientγ . However, theratio β = λe/λc

at time t is a complex function (whose exact form is given in [6]) of
the instantaneous biasVgs|t . Because theratio β is time-varying, the trap
statistics are non-stationary. (Hereg is the trap degeneracy factor,k is
the Boltzmann constant andT is the temperature.)

C. From trap occupancies to RTN currents

The evolution of the state ofa single trapis governed by the stochastic
model above. In a MOS transistor, there may existmultiple such traps.
Given a trap occupancy functionfor the device,i.e., a description of
how the state of each trap evolves over time, detailed modelsexist for
predicting the noise currentIRTN(t) in the device. For example, one model
(currently used by SAMURAI) is the following equation [19]:

IRTN(t) =
Id(t)

WLN(t)
Nf illed(t) (3)

where Id is the nominal drain current (without RTN),W and L are
the device dimensions,N is the number density of charge carriers and
Nf illed(t) is the number of device traps filled at timet (which can be
calculated from the trap occupancy function). More complexmodels have
also been suggested (e.g., [20]) which, if needed, can be incorporated into
SAMURAI just as easily.

III. THE SAMURAI CORE: RTN TRACE GENERATION BY
MARKOV UNIFORMISATION

The previous section described how to compute the RTN current given the
trap occupancy function. This section describes a technique forcomputing
the trap occupancy function.

For a device with multiple traps, each trap can be thought of as a separate
two-state time-inhomogeneous Markov chain. In order to generate real-



istic RTN traces under time-varying bias conditions, SAMURAI carries
out non-stationary stochastic simulation (Algorithm 1) ofeach of these
Markov chains. The trap occupancy function thus computed isused to
generate a realistic RTN traceIRTN(t).

Algorithm 1 : Non-stationary RTN generation in SAMURAI

Input : Trap profile, Bias{Vgs(t), Id(t) . . .}, t0, t f
Output : RealisticIRTN(t) trace in time interval[t0, t f ]
foreach trap tr in the devicedo1

computeλc(t), λe(t), t ∈ [t0, t f ], for tr (use Eq. (1), (2));2

λ ∗ = λc(t0)+λe(t0);3

curr time = t0; curr state = tr.init state;4

times = [curr time]; states = [currstate];5

while curr time< t f do6

next cand time = curr time + exprand(1/λ ∗);7

curr time = next cand time;8

if curr time> t f then break;9

if curr state == 1 then10

λnext= λe(curr time)11

else12

λnext= λc(curr time)13

end14

bool changethe state =rand()< λnext/λ ∗;15

if change the statethen16

times.append(currtime);17

states.append(currstate);18

curr state = (currstate == 1) ? 0 : 1;19

times.append(currtime);20

states.append(currstate);21

end22

end23

trap occupancy[tr] = [times, states];24

end25

computeIRTN(t) from trap occupancy[tr] (use Eq. (3))26

Algorithm 1 takes as input, (a) thetrap profile of the device (i.e., the
position ytr and energyEtr of each trap), and (b) the time-varying
bias conditions. It produces as output anIRTN(t) trace whose statistics
are exactly identicalto the time-varying RTN statistics under the non-
stationary model of the previous section.

Briefly, the algorithm works by generatingmore trap activity than
necessary, and thendiscarding some of the generated activity so that
the time-varying trap statistics are exactly preserved. Line 3 computes
λ ∗, which is an upper bound on the functionsλc(t) and λe(t). In
each iteration of the while loop (line 6), acandidate eventis generated
(line 7) corresponding to astationary two-state Markov chain with both
propensities set toλ ∗. Thus, the original non-stationary Markov chain is
first uniformisedinto a stationary (but high rate) Markov chain. In line 15,
a probabilistic decision is made to eitherkeepor discard the generated
event, which exactly restores the non-stationarity of the original Markov
chain. That this algorithm exactly preserves the original Markov chain’s
non-stationarity is proved in [11]–[13].

Although Algorithm 1 generatesIRTN(t) traces only for asingle device,
it can be straightforwardly extended to investigate the effect of RTN on
entire SRAM cells(as we do in the next section).

IV. RESULTS

In this section we present two kinds of results, (a)validation results
that demonstrate excellent agreement between SAMURAI’s predictions
and analytical expressions known for stationary RTN, and (b) simulation
resultsshowing that SAMURAI can accurately predict the effects of non-
stationary RTN in SRAM cells.

A. Validation results

SAMURAI is primarily intended for non-stationary RTN analysis under
arbitrarily time-varying bias conditions. Although analytical expressions
are not available for such a general case, they are known for the restricted
constant bias case [3], [5]. Here we validate SAMURAI against these
expressions for a wide range of trap configurations.

◦ We run three validation experiments, using typical values for the 3
parameters that affect the trap capture/release statistics, namely,Vgs,
Etr , and ytr . In each experiment, we fix two of these parameters and
sweep the third over an appropriate range. Hence we generatea variety
of trap configurations, which are then simulated under constant gate
bias using Algorithm 1.

◦ Algorithm 1 returns a traceIRTN(t). From this trace, we numerically
estimate the autocorrelation functionR(τ) = E[IRTN(t)IRTN(t + τ)].

◦ We also translate the above time-domain results into frequency domain
by computing the stationary power spectral densityS( f ) numerically
from R(τ).

◦ We plot the above waveformsR(τ) and S( f ) alongside analytical
expressions obtained from [3], [5]. To get an idea of the relative
importance of RTN, we also plot the stationary power spectral density
of thermal noise in the device using the modelSthermal( f ) = 8

3kTgm

(wherek is the Boltzmann constant,T is the temperature andgm is the
device transconductance at the applied bias).

The results are presented in Fig. 7 (a to f). In all these plots, τ is measured
in seconds,R(τ) in A2, all frequencies are inHz and all spectral densities
are in A2/Hz. From Fig. 7, it is seen that the RTN traces predicted by
SAMURAI closely match analytical expressions in both the time domain
(autocorrelation plots (a)-(c)) and the frequency domain (spectral density
plots (d)-(f)).

B. SRAM simulation results

Fig. 8 (left) shows a flowchart illustrating our methodologyfor analysing
non-stationary RTN in SRAMs. This methodology combines SAMURAI
with SPICE, resulting in an accurate, trap-level, simulation-driven strategy
for SRAM design in the presence of RTN.

◦ First we simulate the SRAM cell (on a test pattern of reads andwrites)
without RTN in SPICE. This enables the generation of time-varying
biasses (to be used as input to SAMURAI).

◦ Next, we use SAMURAI to generate RTN traces for each transistor in
the SRAM cell, under the biasses obtained from SPICE. In addition to
the biasses, this step requires a trap profile for each device, which is
either obtained from measurement data [7] or generated using statistical
trap profiling models proposed in the literature [6].

◦ We model the RTN traces generated above as current sources between
the drain and source of each device (similar to Fig. 4 (right)). We
again carry out SPICE simulation of the SRAM cell (on the sametest
pattern), this time including theIRTN of each transistor.

◦ If the second SPICE simulation predicts write errors or unacceptable
slowdown in SRAM operation, it is immediately clear that theSRAM
cell is compromised due to RTN (eitherVdd must be increased or the
SRAM cell must be re-designed). Otherwise, the analysis is repeated
with a new test pattern (or a conclusion is reached that the SRAM cell
is indeed robust to RTN).

In Fig. 8 (right), we have implemented each step of the above methodol-
ogy (in 90nm technology using BSIM-4 device models and SpiceOPUS
[21] for circuit simulation) and presented the results in 5 plots (labelled
(a)-(e)) alongside the flowchart, with arrows pointing fromthe flowchart
stages to the relevant plots. We have illustrated the entiremethodology
using the bit pattern [1,1,0,1,0,1,0,0,1] written to the SRAM cell. As seen
from plot (a), this bit pattern is successfully written to the SRAM cell if



Fig. 7. Plots showing that the RTN traces generated by SAMURAI closely match analytical predictions in both the time domain (autocorrelation plots (a)-(c)) and
the frequency domain (spectral density plots (d)-(f)).

there is no RTN.

Plots (b) and (c) show the trap occupancy functions returnedby SAMU-
RAI for transistors M5 and M6 respectively (here we have usedthe
statistical trap profiling model proposed in [6]). As is to beexpected
[3], the transistor M5 (whose gate voltage isQ) exhibits a high degree of
trap activity when Q is high, but very little trap activity when Q is low.
The opposite is true for transistor M6, whose gate voltage isQ. Thus,
SAMURAI is able to accurately predict the time-varying (non-stationary)
statistics of trap activity under rapidly switching bias conditions. (For
illustrative purposes, an exploded view of the trap activity during a small
time interval from each of these plots is also shown.)

Plot (d) shows the RTN trace generated by SAMURAI for the transistor
M2. Plot (e) shows a SPICE simulation of the SRAM cell (on the same bit
pattern) after including theIRTN current sources for each transistor. Here
we wanted to demonstrate that SAMURAI is indeed capable of predicting
non-stationary effects such as write errors in SRAM cells. However, such
failures are extremely rare events. Therefore, for illustrative purposes,
we have scaled theIRTN trace of each transistor by a factor of 30,
which immediately produced a write error (as seen from plot (e)). In
more deeply scaled CMOS technologies (e.g., 22nm), such artificial
RTN scaling would not be necessary. Moreover, if other sources of
variability (e.g., local/global parameter variations, NBTIetc.) are taken
into account, the incremental effect of RTN would be sufficient to produce
a bit error (without artificial scaling). Also, instead of scaling IRTN, we
note that a similar effect can be achieved by adopting accelerated RTN
testing techniques for SRAMs (such as the one outlined in [14]). That
is, SAMURAI should be run on the SPICE response predicted forthe
SRAM cell under the biasses suggested by accelerated testing techniques.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented SAMURAI, a computational tech-
nique that enables accurate, trap-level, non-stationary analysis of RTN
in SRAMs. The core of SAMURAI is a procedure called Markov

Uniformisation, which extends stochastic simulation ideas from the
biological community to the RTN characterisation problem in SRAMs.
Starting from a two-state time-inhomogeneous Markov chainmodel for
each device trap, we have demonstrated that SAMURAI is capable of
generating non-stationary RTN traces for entire circuits under (a) arbitrary
trap populations, and (b) arbitrarily time-varying bias conditions. To
the best of our knowledge, SAMURAI is the first computationaltool
that incorporates sophisticated, trap-level, stochasticRTN models into
a methodology for circuit level RTN characterisation. Where analytical
expressions are available, SAMURAI closely matches their predictions.
And where analytical expressions are not available, SAMURAI still
enables accurate RTN characterisation by generating realistic RTN traces.
We have also evolved a methodology that integrates SAMURAI and
SPICE to conduct RTN analysis of SRAMs. Our implementation of
this methodology demonstrates that SAMURAI can indeed predict non-
stationary effects such as RTN-induced SRAM write errors.

Against the above accomplishments, we now identify four directions for
future research:

1. Bi-directionally coupled RTN simulation.Throughout this paper, we
have assumed that the biasses for RTN trace generation can bepre-
computed by a SPICE simulation. However, in reality, RTN cannot be
isolated from the rest of the circuit,i.e., both RTN and the circuit states
evolve together, with RTN modulating the circuit voltages/currents
and the circuit simultaneously modulating the stochastic processes
governing RTN generation, thereby forming a bi-directionally coupled
system. For the future, our aim is to accurately simulate such “higher
order” effects associated with RTN.

2. Accounting for other sources of variability.In this paper, we have
discussed the stand-alone impact of RTN on SRAMs. In reality, RTN
occurs on top of other non-idealities such as static noise, local/global
parameter variations, NBTIetc. In future, we would like to properly
account for all these variabilities within our simulation tool.

3. Statistical analysis of RTN for entire SRAM arrays.In this paper, we



Fig. 8. Left: Flowchart illustrating our methodology for non-stationary RTN analysis of SRAMs. Right: Plots showing our implementation of this methodology. All
plots have the same X-axis (time in ns). On the Y-axis, plots (a,e) show voltages (in V), plots (b,c) show the number of filled traps and plot (d) shows current inµA.

have considered the effect of RTN on a single SRAM cell. We view
this as the first step towards predicting the bit-error impact of RTN on
entire SRAM arrays, which are made up of thousands of SRAM cells
that are subject to local and global parameter variations.

4. Applications beyond SRAMs.RTN has been shown to adversely affect
many circuits other than SRAMs. For instance, RTN is thoughtto be
responsible for Variable Retention Time (VRT) in DRAMs [22], [23].
RTN is also known to impact ring oscillators [3]. We also conjecture
that RTN causes cycle slipping in Phase Locked Loops (PLLs).In
future, we would like to extend SAMURAI to conduct RTN analysis
for all these different circuits.
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