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Abstract—In latest CMOS technologies, Random Telegraph Noise (RTN) 121 ?“ < Min V44
has emerged as an important challenge for SRAM design. Due tcapidly ! " /
shrinking device sizes and heightened variability, analytal approaches are no 17 i

longer applicable for characterising the circuit-level impact of non-stationary
RTN. Accordingly, this paper presents SAMURAI, a computatonal method
for accurate, trap-level, non-stationary analysis of RTN h SRAMs. The
core of SAMURAI is a technique called Markov Uniformisation, which
extends stochastic simulation ideas from the biological comunity and applies
them to generate realistic traces of non-stationary RTN in AM cells. To
the best of our knowledge, SAMURAI is the first computational approach
that employs detailed trap-level stochastic RTN generatio models to obtain
accurate traces of non-stationary RTN at the circuit level. We have also
developed a methodology that integrates SAMURAI and SPICEd achieve
a simulation-driven approach to RTN characterisation in SRAM cells under 90nm 65nm 45nm 32nm  22nm
(a) arbitrary trap populations, and (b) arbitrarily time-v arying bias conditions. CMOS SRAM technology
Our implementation of this methodology demonstrates that 8MURAI is
capable of accurately predicting non-stationary RTN effets such as write Fig. 2. Impact of non-idealities (quantifiedV\q terms) on SRAM designh margins
errors in SRAM cells. under different CMOS technologies. Data courtesy: Y. Tsub@, Renesas
Electronics Corp., Japan.
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I. INTRODUCTION AND MOTIVATION

SRAMSs! find application in several domains including CPU cachesl;)LCtSr]‘gll;ir?g\lledr;:(sjtr:3 ((ejs”rs‘;a)ttijce;gl[is:g.ﬂg Ss(lailr?rfgl\]/ggitiif; r[ie)lr?tt tg::}j] r(?lgzrigs
screens and on-chip memories for both ASICs and FPGAs. Fhis'| . . . '
because SRAMs offer several advantages over their dynamitterparts: As seen from the figure, the impact (faq terms) of RTN on SRAMs

they are much faster, they consume less power and they doeeat nhas been steadily increasing under continued CMOS scallogeover,

complex circuitry to periodically refresh their states. coming on top of the other non-idealities, it is the incretakoontribution
_ made by RTN that is poised to push the minimum supply voltage the
PY WL BL dashed line that represeMgy scaling. If this happens, RTN would reduce
Vdd ™ |_0 the SRAM design margin to zero and also render any furthetagel
scaling impossible. Therefore, to ensure continued CMGfirg; RTN
M3 Io— -o| M, is of enormous significance even though its magnitude islsoaipared
v to other non-idealities.
BL M2 Y WL
Q L°B|- B. Towards overcoming RTN

Ms l_ _| MG M1 |_" Although RTN is a severe limiting factor (as seen from Fig, @je

L L BL following three observations suggest strategies for agppiith it:

Fig. 1. A 6T SRAM cell. Correlation between RTN and NBTIRecent evidence [1] suggests that
RTN and NBTI are positively correlated. As a result, the tatesign
Fig. 1 (left) shows the schematic for an SRAM cell that staves bit margin impact of RTN and NBTI, taken together, is likely to srealler
(Q). The core of this SRAM cell is a cross-coupled pair of investe than the sum of their individual design margin impacts [f]Fig. 2, this
formed by the four transistors M3-M6 (Fig. 1 right). The et circuit  corresponds to an overlap between the top two boxes of eack, sthich,
can read and writ€ by controlling the pass transistors M1 and M2. it accurately taken into account, would enable more desfices.

Pessimism of stationary RTN analysis (hence the need fostaionary
analysis): From measurement data, it is well-known that stationary
In deeply scaled technologies, several non-idealitiedt line minimum RTN analysis harbours considerable pessimism (the difterdetween
supply voltage(Vg) under which an SRAM cell can be operated. Fig. Predicted and observed noise power is sometimes as highdi) 13,
depicts the increase Myy necessitated by different non-idealities, as &l. Hence it is likely that non-stationary RTN analysistaues (such
function of CMOS technology [1]. Each CMOS technology isresnted as the one we propose in this paper) would open up more dels@ces,
by a stacked bar, to which the effects of different non-iiiesl such by Vvirtue of being more accurate in real-world (non-staiy) operating
as (a)Vr shifts due to global and local parameter variations, (b)-Ne§nvironments.
ative Bias Temperature Instability (NBTI), and (c) Randoml€Graph The case for computational RTN characterisatiof®TN is caused by
Noise (RTN) are successively added (on top of the nomingligwoltage the random capture and release of charge carriers by trapsetb in
e ) a MOS transistor’s oxide layer [4], [5]. Analytical apprb@s to RTN
Static Random Access Memories characterisation are based on the assumption that a langieenwf active
978-3-9810801-7-9/DATE1@?2011 EDAA traps exist in the dielectric. Under this assumption, stigal averaging

A. RTN as an emerging SRAM design challenge



L =320nm, W = 1280nm L =32nm, W = 128nm

° Low inter-device variability 7 High inter-device variability trap-level Markov chain modegll), provably generates RTN traces that
0 ° are (stochastically) exactly identical to the RTN phydicaheasured on
-5 -5 fabricated SRAMs. Hence the title of this paper, SAMURAI jgihstands

for SRAM Analysis by Markov Uniformisation with RTN Awareness
Incorporated. While being a computational method based aplavel
first principles, SAMURAI is capable of accurately simutafi non-

With a large number of traps per device,
statistical averaging is meaningful and
produces an excellent 1/f fit.

log10(Spectral density)
1
@
log10(Spectral density)

20 -20 stationary RTN at the circuit level under (a) arbitrary tgampulations,
25 ~25) With only a small number of and (b) arbitrarily time-varying bias conditions. Moregvere are able
ps per device, statl_stlcal i A A ) .

30 I Bt to integrate SAMURAI with SPICE, WlthOL_Jt encounterlng_eﬁl_u:cy
N N issues, to conduct full-fledged RTN analysis of SRAMs withryirg
6 -4 -2 0 2 4 6 6 -4 2 0 2 4 6 trap populations under realistic, non-stationary opegagnvironments.

log10(frequency in Hertz) log10(frequency in Hertz)

Fig. 3. Spectral density plots for 25 randomly sampled d=vim two CMOS D. Non-stationarity of RTN in SRAMSs: A closer look
technologies. ' '

We have already mentioned that non-stationary analysi;igbkess
pessimistic, often enables more design choices. We nowtridite the

shows that RTN obeys /I characteristics [4], [5]. However, with P=>>"0 X .
critical importance of non-stationary RTN, in the contektSlRAMSs.

increasingly small device sizes, this assumption is no donglid [6]—
[8]. Indeed, detailed models for trap profiling (corrobexdhby measured In an SRAM cell, RTN can produce two adverse effects [14]):[1F) it
data) suggest that in deeply scaled CMOS technologies, aliiyt 5-10 canslow downwrite operations, and (2) it can causeite errors?.
traps are active at any given bias point [6], [7]. As a reghk, analytical _

1/f fit is often a poor model for highly scaled devices.

Fig. 3 illustrates this point using spectral density plots 25 device BL
instances (randomly sampled using the trap profiling mod¢6j and BL
held at constant bias) from two CMOS technologies. Whileahalytical
solution is clearly a good fit for the older technology (left}completely
fails to capture the trap profiles of devices in the newernetdygy (right). WL

Although Fig. 3 shows that analytical approaches are nodoapgplicable,

the encouraging observation is that this represents a dase for Torn
computational approaches based on stochastic simulagiprof] trap
activities. These approaches (such as the one proposedsirpdber) Tary

are ideally suited to handle the small trap populations days highly
scaled devices. Indeed, computational approaches actaké advantage

of the small trap populations to achieve greater efficiency. Fig. 4. RTN in pass transistor M1 modelled as a glitghy while a 1 is being

written to the SRAM cell.

C. What does accurate RTN characterisation entail? Consider the pass transistor M1, whose RTN can be modellactasent

sourcelgTn that opposes the nominal transistor current, as illustrate
The design of RTN-tolerant future generation SRAMs depeniially  Fig. 4 (right). The top three waveforms in Fig. 4 (left) are thignals
on our ability to leverage the above three observationstiiierwe need: applied to write a 1 to the SRAM cell, while the bottom two winrens

An accurate model for RTNIt is known that both RTN and NBTI (numbered 1 and 2) represent two possilden “glitches”.
originate due to traps in the MOS oxide layer. The correfatietween
RTN and NBTI is most likely due to thicommon root causgl]. 09k = mymm = X i
Therefore, an RTN model based on first principles.,(the capture and 0ty

_emission of electrops by traps in the o_xide layer) is_likatyscheed — WL ¢

in accurately capturing the NBTI correlation. Whereas itiedeequations Q settles by the time WL is reset
describing RTN generation from first principles at the devievel are
already available [5], [6], this paper, to the best of ourwlsalge, is the 0.9F =~ spm = ===l 1
first attempt at incorporating such sophisticated modeis @ tool for 0— X e e e e e i

\ g

RTN characterisation at the circuit level. RTN glitch@®

A computational method for predicting the circuit-levelpiact of non- Q settles only long after WL is reset
stationary RTN: Today, the most advanced computational approach for
RTN is that of Ye et. al. [10], which works by generating RTikel

waveforms starting from ideal white-noise sources. Thennaaivantage 0 p—t— t-- 1
of this method is that it integrates RTN simulation with SBHgvel ‘ ‘ RTN glitch@
circuit simulation. However, a key drawback of this methedthat it 0 0.2 0.4 0.6 0.8 1

is incapable of taking into account the bias-dependent-stationary Q settles to a wrong value

statistics of RTN, which play a crucial role during SRAM ogiion (see Fig: 5. RTN in the pass transistor can either (i) slow downhite operation,
ne.xt'subsectior.l). Moreover, the White nqise sources qmtytireduce the Ici)rr1e(lIr)eL?Zggnltr;gawvgirlléetﬁér(c)jgttﬁiaﬁﬁé Iérgfeégﬁ%g Y-axis: Nage (V). The solid
efficiency of this method from a simulation perspective.ded, to date,

the only reported SRAM application of this method has beeanalyse Fig. 5 shows BSIM-4 SPICE simulations for the differégtn scenarios.
the simplest case di single trapin an entire SRAM cell, and that too The top portion shows that in the absencelgfn glitches, the signals
operating under constant bias assumptions.

A e L L LY 4

—h

0.9F ===p== === s ]

. . . 2RTN-induced SRAM read failures have also been reported. [EBMURAI
By contrast, we develop a techniqugll) for generating genuinely non- s capable of predicting these too; however, due to spacstraimis, we do not
stationary RTN. This technique, based on uniformisatiatHflL3] of a discuss read failures in this paper.



Q (the solid line) andQ (the dotted line) settle to their correct values

by the time WL is de-asserted. The middle portion shows thatglitch
startsafter WL is asserted, but endsforeWL is de-asserted, it caslow

downthe write operationj.e., Q does not assume its correct value until

long after WL is reset (hence a read operation initiated énitierim can
upset the stored value). The bottom portion shows that ifitahgktarts

just beforeWL is de-asserted, and continues until WL is de-asserted,

can result in awrite error.

From the above discussion, it is clear that timing of RTN glitches
plays a crucial role in deciding whether an SRAM cell is coamised

or not. In other words, there are certairitical moments(e.g, during

switching) when an SRAM cell is extremely sensitive to RThkep [15].

At other times, even a reasonably large RTN spike would notlyce

any observable effect. Thus, the key to successful SRAMgdeges in

understanding the RTN patterns during swcitical moments

Moreover, during sucleritical momentsin an SRAM cell's duty cycle,
all 6 transistors experience large and rapid bias swingsletsuch fast
bias variations, the traditional stationarity assumitmat simplify RTN
analysis are no longer valid. Therefore, especially in tRAR context, a
non-stationary RTN analysis technique (such as SAMURALh& need
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Fig. 6. Left: Traps in a MOS transistor's oxide layer. Righk time-
inhomogeneous two-state Markov chain model for a single. tra
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B. Traps as time-inhomogeneous two-state Markov chains

Given that a trap is empty (filled) at timte the probability that it will
become filled (empty) by time+dt (i.e., it will capture (emit) an electron
in the small time intervablt) is given by Ac(t)dt (Ae(t)dt), whereA(t)
(Ae(t)) is a time-varying function called theapture (emission) propensity
of the trap.

The above stochastic model governing the activity of a sitigip can be
described by a two-state time-inhomogeneous Markov ctenshown
in Fig. 6 (right). The two states in this Markov chain are desied 0
(empty) and 1 (filled), while transitions between states lakelled by

of the hour. In§lV, we show that SAMURAI can indeed predict nonthe corresponding propensity functions.

stationary effects such as SRAM write errors.

E. SAMURAI: Structure, capabilities and summary of results

In previous subsections, we highlighted the need for anrateutrap-
level, non-stationary, computational RTN characterisatechnique, with
application to SRAM design. Against this background, instlpiaper,
we develop SAMURAI, a computational tool for accurate mbdgl
and simulation of non-stationary RTN. Starting from firsinpiples (the
capture/release of electrons by MOS oxide traps), SAMURé1iggates
accurate RTN traces for entire circuits (such as SRAMs) uadaitrary
trap populations and arbitrarily time-varying bias coruis.

SAMURAI is a computational approach based on Markov Unifisation
[11]-[13], which is an extension of Gillespie’s stochassitulation
algorithm [9] to handle non-stationarity. Such computagioapproaches
are well-known in the biological community, where they ared for
accurate simulation of biochemical reactions involving mal num-
ber of molecules [9], [17], [18]. Analogously, we use SAMURfor
accurate simulation of RTN in SRAMs involving a small numhmr
traps. Specifically, we have developed a simulation-driweathodology
(illustrated in Fig. 8 (left)) that integrates SAMURAI an®ECE to enable
accurate RTN analysis of SRAMs. We have implemented eaptoétiis
methodology and obtained results showing that SAMURAI doeged
accurately predict non-stationary RTN effects in SRAMs. Newe also
validated SAMURAI against analytical results known fortitaary RTN.

Il. THE RTN GENERATION MECHANISM: FROM TRAPS TO
MARKOV CHAINS

A. Origins of RTN: Traps in the dielectric

As mentioned before, RTN is caused by the random capture eladse
of electrons by traps located in the MOS oxide layer (as shiovwig. 6).

The functionsic(t) andAe(t) depend on the instantaneous biggt), and
also on the trap characteristigs andE;,. Detailed equations describing
these dependencies can be found in [6], from which we obtain:

Ac(t) +Ae(t) = ol
B(t) = Ae(t)/Ac(t) =g e 7=

[where (Er — Er )|t = function(Egr, Vtr, Vgslt, device parmy

1)
)

From the above equations, it is seen thatshmA¢ + Ae is constant with
time, depending only oy, the time constanty for traps at the silicon
interface and the tunnelling coefficiept However, theratio 8 = Ae/Ac

at timet is a complex function (whose exact form is given in [6]) of
the instantaneous bidgslt. Because theatio 3 is time-varying, the trap
statistics are non-stationary. (Hegeis the trap degeneracy factdd,is
the Boltzmann constant and is the temperature.)

C. From trap occupancies to RTN currents

The evolution of the state df single trapis governed by the stochastic
model above. In a MOS transistor, there may eristltiple such traps
Given atrap occupancy functiorfor the device,i.e., a description of
how the state of each trap evolves over time, detailed mosbdts for
predicting the noise currefgTn(t) in the device. For example, one model
(currently used by SAMURAI) is the following equation [19]:

la(®) Nrilled (t)

LN(t) ®)

IrTN() =
where Iy is the nominal drain current (without RTNYY and L are
the device dimensions\ is the number density of charge carriers and
Nsilleq (t) is the number of device traps filled at time(which can be
calculated from the trap occupancy function). More compimdels have

At any given moment, an oxide trap can be in one of two possibigso been suggested.¢, [20]) which, if needed, can be incorporated into
states (a)filled (i.e., the trap has captured an electron from the inversicBAMURAI just as easily.
layer), or (b)empty(i.e., the trap has released any previously captured

electron back into the inversion layer). For a given trag évolution
of its state over time (betweeifiled and empty is inherently random,
i.e, it is a stochastic process. The parameters of this stacharstcess
depend on three factors: (a) the vertical distapgeof the trap from the
oxide-semiconductor interface, (b) the trap energy I&gl and (c) the

I1l. THE SAMURAI CORE: RTN TRACE GENERATION BY
MARKOV UNIFORMISATION

The previous section described how to compute the RTN cugiean the
trap occupancy functianThis section describes a techniquedomputing
the trap occupancy function

instantaneous gate bisfgs(t) of the device [6]. It is this dependence on
Vgs(t) that makes the trap statistics, and hence the induced RTMN, nBor a device with multiple traps, each trap can be thoughtaf separate
stationary. two-state time-inhomogeneous Markov chain. In order toegate real-



istic RTN traces under time-varying bias conditions, SAMAIRarries

out non-stationary stochastic simulation (Algorithm 1)eafch of these
Markov chains. The trap occupancy function thus computedsed to

generate a realistic RTN tradgrn(t).

Algorithm 1: Non-stationary RTN generation in SAMURAI
Input: Trap profile, Bias{Vgs(t), l4(t) ...}, to, t
Output: RealisticlgTn(t) trace in time intervalto,ts]

1 foreach trap tr in the devicedo

2 computeA¢(t), Ae(t), t € [to,tf], for tr (use Eq. (1), (2));
3 A" = Ac(to) +Ae(to);

4 curr_time =tp; curr_state = tr.init state;

5 times = [currtime]; states = [currstate];

6 while curr_time< ts do

7 next cand time = curr_time + exprand(1A*);
8 curr_time = next cand time;

9 if curr_time > t; then break

10 if curr_state == 1then

11 | Anext=Ae(curr_time)

12 else

13 | Anext=Ac(curr_time)

14 end

15 bool changethe state =rand() < Anext/A™;
16 if changethe statethen

17 times.append(curtime);

18 states.append(curstate);

19 curr_state = (currstate == 1) ? 0 : 1;

20 times.append(curtime);

21 states.append(curstate);

22 end

23 end

24 trap_occupancy|tr] = [times, states];

25 end

26 computelrTn(t) from trap occupancyltr] (use Eqg. (3))

Algorithm 1 takes as input, (a) theeap profile of the device i(e., the

A. Validation results

SAMURAI is primarily intended for non-stationary RTN analy under
arbitrarily time-varying bias conditions. Although antdyl expressions
are not available for such a general case, they are knowhéaresstricted
constant bias case [3], [5]. Here we validate SAMURAI agaihgse
expressions for a wide range of trap configurations.

o We run three validation experiments, using typical values the 3
parameters that affect the trap capture/release statistamely,Vys,
Eir, andyyr. In each experiment, we fix two of these parameters and
sweep the third over an appropriate range. Hence we gerexateety
of trap configurations, which are then simulated under @orisgate
bias using Algorithm 1.

o Algorithm 1 returns a tracérTn(t). From this trace, we numerically
estimate the autocorrelation functi®{t) = E[lrTn(t)IrRTN(t + T)]-

o We also translate the above time-domain results into freggudomain
by computing the stationary power spectral den§ity) numerically
from R(T).

o We plot the above waveformR(t) and S(f) alongside analytical
expressions obtained from [3], [5]. To get an idea of the treda
importance of RTN, we also plot the stationary power spedeasity
of thermal noise in the device using the mo&lermal(f) = 8KT gm
(wherek is the Boltzmann constant, is the temperature arg, is the
device transconductance at the applied bias).

The results are presented in Fig. 7 (a to f). In all these ptots measured

in secondsR(T) in AZ_ all frequencies are ihlz and all spectral densities
are inA2/Hz. From Fig. 7, it is seen that the RTN traces predicted by
SAMURAI closely match analytical expressions in both theeidomain
(autocorrelation plots (a)-(c)) and the frequency domape¢tral density

plots (d)-(f)).

B. SRAM simulation results

Fig. 8 (left) shows a flowchart illustrating our methodoldgy analysing
non-stationary RTN in SRAMs. This methodology combines SARAI
with SPICE, resulting in an accurate, trap-level, simolatilriven strategy

position y;r and energyE;, of each trap), and (b) the time-varyingfor SRAM design in the presence of RTN.

bias conditions. It produces as output kg n(t) trace whose statistics

are exactly identicalto the time-varying RTN statistics under the non-

stationary model of the previous section.
Briefly, the algorithm works by generatingiore trap activity than

necessary, and thediscarding some of the generated activity so that

the time-varying trap statistics are exactly preservedelB computes
A*, which is an upper bound on the functiodg(t) and Ae(t). In

each iteration of the while loop (line 6), @ndidate evenis generated
(line 7) corresponding to atationarytwo-state Markov chain with both

propensities set td *. Thus, the original non-stationary Markov chain is
first uniformisedinto a stationary (but high rate) Markov chain. In line 15,

a probabilistic decision is made to eithieeepor discard the generated
event, which exactly restores the non-stationarity of thigimal Markov

chain. That this algorithm exactly preserves the originarkév chain’s
non-stationarity is proved in [11]-[13].

Although Algorithm 1 generatelkTn(t) traces only for asingle device
it can be straightforwardly extended to investigate theafbf RTN on
entire SRAM cellgas we do in the next section).

IV. RESULTS

In this section we present two kinds of results, (@lidation results
that demonstrate excellent agreement between SAMURAG&Esliptions
and analytical expressions known for stationary RTN, andsifimulation
resultsshowing that SAMURAI can accurately predict the effects ofin
stationary RTN in SRAM cells.

First we simulate the SRAM cell (on a test pattern of readsvariis)
without RTN in SPICE. This enables the generation of timesvay
biasses (to be used as input to SAMURAI).

Next, we use SAMURAI to generate RTN traces for each tramsist
the SRAM cell, under the biasses obtained from SPICE. Intiadio
the biasses, this step requires a trap profile for each dewikieh is
either obtained from measurement data [7] or generated s$atistical
trap profiling models proposed in the literature [6].

We model the RTN traces generated above as current sourvesene
the drain and source of each device (similar to Fig. 4 (rightye
again carry out SPICE simulation of the SRAM cell (on the sdest
pattern), this time including thirTn of each transistor.

o If the second SPICE simulation predicts write errors or geptable
slowdown in SRAM operation, it is immediately clear that tBRAM
cell is compromised due to RTN (eith€jq must be increased or the
SRAM cell must be re-designed). Otherwise, the analysiepeated
with a new test pattern (or a conclusion is reached that theNBell
is indeed robust to RTN).

[}

o

In Fig. 8 (right), we have implemented each step of the abosthadol-
ogy (in 90nm technology using BSIM-4 device models and SpRES
[21] for circuit simulation) and presented the results inlétp (labelled
(a)-(e)) alongside the flowchart, with arrows pointing frane flowchart
stages to the relevant plots. We have illustrated the emgthodology
using the bit pattern [1,1,0,1,0,1,0,0,1] written to theABRcell. As seen
from plot (a), this bit pattern is successfully written t@tSRAM cell if
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Fig. 7.
the frequency domain (spectral density plots (d)-(f)).

there is no RTN.

Plots (b) and (c) show the trap occupancy functions retutne8AMU-
RAI for transistors M5 and M6 respectively (here we have utes
statistical trap profiling model proposed in [6]). As is to brpected
[3], the transistor M5 (whose gate voltage@¥ exhibits a high degree o
trap activity when Q is high, but very little trap activity wh Q is low.
The opposite is true for transistor M6, whose gate voltag®.iShus,
SAMURAI is able to accurately predict the time-varying (rstationary)
statistics of trap activity under rapidly switching biasnddions. (For
illustrative purposes, an exploded view of the trap agtiditring a small
time interval from each of these plots is also shown.)

Plot (d) shows the RTN trace generated by SAMURAI for the sistior
M2. Plot (e) shows a SPICE simulation of the SRAM cell (on thme bit

2 3 a
log10 (Frequency in Hertz)

5 6

e
°

2 3 4
log10 (Frequency in Hertz)

Plots showing that the RTN traces generated by SAMU&d&sely match analytical predictions in both the time dam@utocorrelation plots (a)-(c)) and

Uniformisation, which extends stochastic simulation El€faom the
biological community to the RTN characterisation problamSRAMs.
Starting from a two-state time-inhomogeneous Markov chmagdel for
each device trap, we have demonstrated that SAMURAI is dapatb

f generating non-stationary RTN traces for entire circuitdar (a) arbitrary

trap populations, and (b) arbitrarily time-varying biasndiions. To
the best of our knowledge, SAMURAI is the first computationabl
that incorporates sophisticated, trap-level, stochaRfit\ models into
a methodology for circuit level RTN characterisation. Wheanalytical
expressions are available, SAMURAI closely matches thegdigtions.
And where analytical expressions are not available, SAMURAI
enables accurate RTN characterisation by generatingstieadRTN traces.
We have also evolved a methodology that integrates SAMURAd a
SPICE to conduct RTN analysis of SRAMs. Our implementatidn o

pattern) after including théstn current sources for each transistor. Hergyig methodology demonstrates that SAMURAI can indeed ipretn-

we wanted to demonstrate that SAMURAI is indeed capable edipting
non-stationary effects such as write errors in SRAM cellswklver, such

failures are extremely rare events. Therefore, for ilatsie purposes,

stationary effects such as RTN-induced SRAM write errors.
Against the above accomplishments, we now identify foueations for

we have scaled thégrn trace of each transistor by a factor of 30uture research:

which immediately produced a write error (as seen from pé&).(In
more deeply scaled CMOS technologiesg( 22nm), such artificial
RTN scaling would not be necessary. Moreover, if other sesirof
variability (e.g, local/global parameter variations, NBEtc) are taken
into account, the incremental effect of RTN would be suffiti® produce
a hit error (without artificial scaling). Also, instead ofading IrTn, We
note that a similar effect can be achieved by adopting acteld RTN
testing techniques for SRAMs (such as the one outlined i) [IFhat
is, SAMURAI should be run on the SPICE response predictedter

SRAM cell under the biasses suggested by acceleratedgésthniques.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented SAMURAI, a computationah-te

nigue that enables accurate, trap-level, non-stationagjysis of RTN

1. Bi-directionally coupled RTN simulatiomhroughout this paper, we
have assumed that the biasses for RTN trace generation carebe
computed by a SPICE simulation. However, in reality, RTNnzzrbe
isolated from the rest of the circuite., both RTN and the circuit states
evolve together, with RTN modulating the circuit voltagesfents
and the circuit simultaneously modulating the stochastiec@sses
governing RTN generation, thereby forming a bi-directibneoupled
system. For the future, our aim is to accurately simulatd shigher
order” effects associated with RTN.

2. Accounting for other sources of variabilityn this paper, we have
discussed the stand-alone impact of RTN on SRAMSs. In redRTyN
occurs on top of other non-idealities such as static no@mliglobal
parameter variations, NBTétc. In future, we would like to properly
account for all these variabilities within our simulaticwot.

3. Statistical analysis of RTN for entire SRAM arrays.this paper, we

in SRAMs. The core of SAMURAI is a procedure called Markov
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U i | SAMURAI correctly predicts that the traps in M5(M6) would exhibit a lot of
R Compute the noise | A / activity when Q is high(low) and much less activity when Q is low(high).
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\
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\ 15 RTN current in Such RTN spikes can be
\\ M2 as a function . dangerous when the (d)
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No Is there a bit error or \\ 5
Feable . l 1
in SRAM operation? \ I b
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Fig. 8. Left: Flowchart illustrating our methodology for mstationary RTN analysis of SRAMs. Right: Plots showing moplementation of this methodology. All
plots have the same X-axis (time in ns). On the Y-axis, plais)(show voltages (in V), plots (b,c) show the number ofdiliaps and plot (d) shows current irA.

have considered the effect of RTN on a single SRAM cell. Wavvie 17
this as the first step towards predicting the bit-error im@ddRTN on
entire SRAM arrays, which are made up of thousands of SRANS cel
that are subject to local and global parameter variations.

4. Applications beyond SRAMRTN has been shown to adversely affect?
many circuits other than SRAMs. For instance, RTN is thoughbe 1y
responsible for Variable Retention Time (VRT) in DRAMs [2223].
RTN is also known to impact ring oscillators [3]. We also @mijre
that RTN causes cycle slipping in Phase Locked Loops (PLIs).
future, we would like to extend SAMURAI to conduct RTN anagys @4
for all these different circuits. [15]
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