A Fully Automated Technique for Constructing FSM Abstrans
of Non-ldeal Latches in Communication Systems

Karthik .V. Aadithya* Yingyan Lin' Chenjie Gu

Aolin Xu Jaijeet Roychowdhuty Naresh Shanbhdg

*Department of Electrical Engineering and Computer Scign€ae University of California at Berkeley, CA, USA
TDepartment of Electrical and Computer Engineering, Thevehsity of lllinois at Urbana-Champaign, lllinois, USA
*Contact author. Email: aadithya@berkeley.edu

Abstract—The design of a communications system is typically most efttive
only when each of its components can be accurately represextt by a discrete,
symbolic behavioural abstraction. Such abstractions, in ddition to providing
valuable design intuition, also enable highly efficient andscalable system-level
simulation. However, given a SPICE-level description for asubsystem such as
a latch, it is a challenge to come up with a discrete, symboklel abstraction
that accurately captures its continuous-time dynamics. ldeed, the manual
construction of such an abstraction requires deep knowledgand understanding
of the operation of the module in question; moreover, it is vey time-consuming,
tedious, error-prone and not easily scalable to larger degns.

In recent work [1], we adapted methods from computational larning theory

to develop an automated technique, DAE2FSM, that producesibary finite

state machine (FSM) abstractions of non-linear analog/mied-signal (AMS)
circuits. In the present paper, we demonstrate the applicaon of the DAE2FSM
technique to automatically derive FSM abstractions for a mked-signal com-
munications circuit component, namely a current mode latch(CML) designed
in IBM’s 90nm LP process technology. We show that the FSMs leaed by
DAE2FSM not only capture the essence of the latch’s behaviowuring normal

conditions, but also faithfully mimic its behaviour under adverse operating
conditions (e.g., under lowered supply voltages). Moreovein addition to a

stand-alone CML, we also generate FSMs for cascades of two dnthree
latches (such topologies are used in the design of power-eféint, bit-error

optimised analog-to-digital converters). In spite of the mherent non-linearity of
such systems, and in spite of the pronounced “analog-ness’f the waveforms
in question, our FSM abstractions are able to produce discre-time symbol
sequences that closely match the data points obtained by safing from

continuous-time SPICE simulations.

I. INTRODUCTION

Analog/Mixed-Signal (AMS) modules play a crucial role irday’s high-

speed (i.e., several Gb/s), low power, bit-error optimidegital communi-
cation systems. In particular, for delivering high perfarme at low power,
one needs to impose stringent design constraints on AMS leeduich

as the analog-to-digital converters (ADCs) and digitakitalog converters
(DACs) that make up the front and back ends of high-speed aoriwation

links. Most other modules in a digital communications systean be

analysed/simulated very efficiently; either they are camdus-time linear
systems (e.g., anti-aliasing filters), or they can be atelyralescribed by
convenient discrete-time abstractions (e.g., FIR/IIRefdf FFT modules).
By contrast, the AMS blocks in the design pose a significamtlehge

both for analysis and for system-level simulation: thesbsgstems are
highly non-linear, and it is also not straight-forward toride discrete-
time abstractions that accurately capture the rich set ofimoous-time

dynamics exhibited by these subsystems. Accordingly, ghfger presents
a fully automated technique, DAE2FSM, that is able to geediscrete,
symbol-level abstractions (in the form of finite state maelsi or FSMs)
for AMS blocks used in high-speed communication systems.

(a)

Anti-Aliasing
Filter

Low noise
amplifier

»(ADC

—»x[n]

Fig. 1. Role of an AMS block (i.e., an ADC) in an RF receiver.

To set the context of this paper in more concrete terms, F{@) Shows a
block diagram of the front end of an RF receiver. As the figimens, the
ADC represents the first major module through which any wecksignal
has to pass, well before any digital processing can evembégius, the

ADC's performance has a strong bearing on the performantkeoéntire
communication link. Fig. 1 (b) shows an abstract model fav tize ADC is
supposed to function: the incoming signé) is first sampled at a suitable
frequency ¥T (which is at the Nyquist rate or higher), and the sampled
analog sequence is then quantized to discrete levels, whilits in the
output sequencg(n.

Cascade of

CMOS latches
» Pre Current cMos cMos
- M M
q, |Amelifer ot P Gaten | ©©® —P Gaten P
—P
x(t) l
° ° ° ° x[n]
L] Bina
. . . ry IS
® [] [] [] Encoder
Cascade of
CMOS latches
> Pre- Current cmos cmos
q, |Amelifier PP Tode B farch | ©©® — P arch [P
N
[| |
Fig. 2. Schematic of a bit-error optimised flash ADC.

Fig. 2 shows a schematic design of a low power flash ADC sutabl
for use in high-speed communication links [2]. As is typidala flash
ADC, the input signak(t) is compared against quantization thresholds
{01,%,...,0qn}- This is accomplished witN pre-amplifiers, each of whose
outputs is then passed through a cascade of latches. Thiafitstin each

of these cascades is a current mode latch (please see FigfoB éecircuit
diagram), and all subsequent latches are CMOS latches.

The basic structural and functional unit in the above ADCotogy is
a cascade of latches. To design the ADC, therefore, it isssace to
develop an in-depth understanding of how a latch cascadé&swdoth
under ideal and non-ideal operating conditions. Howevare are several
difficulties in analysing and simulating the behaviour otlswa cascade.
Firstly, each latch exhibits non-ideal behaviour chandstel by minimum
setup times and hold times. Secondly, each latch is subjentitimum
and maximum “clock-to-Q” delays that may affect subsequatthes in
the cascade. Thirdly, each latch exhibits a region of maléitly that has
to be carefully designed around. Fourthly, the impact afahconditions,
parameter variability and supply voltage variability catversely affect
the performance of both individual latches and the cascada whole.
Therefore, for purposes of system-level analysis and siaebel simula-
tion, one needs to develop a discrete-time model that amtyreaptures
this entire spectrum of complex, continuous-time dynareidsibited by a
cascade of latches.

Of course, anideal latch can be described by a simgenctional ab-

straction it thresholds its input into a binary output when the cloek i
high, and retains its previous value when the clock is lowweleer, such

an abstraction is too simplistic for today’s nanoscalehest it does not

capture the effects of setup time, hold time, latch delaystastability,

sensitivity to parameter/supply voltage variability, .eto actual design,
these are the key considerations that can make or break an ADC

On the other hand, one could use full-blown SPICE-level &itan with
sophisticated transistor-level models (e.g., BSIM3, B&)b capture the
complete range of possible latch behaviours, includingabeve effects.
However, for designs of moderate to large size, this can beimse-
consuming and inefficient that it becomes completely imjizat Also,
SPICE-level simulations cannot directly be used for higlegel analysis
(e.g., they do not provide intuition about system behaviiuthe level of
discrete communication symbols), and therefore cannattiegiiated easily

into a symbol-level simulation framework.
In this paper, we apply a recent technique, DAE2FSM [1], todpce

an intermediate level of abstractiofor latches that, (a) captures a riche

set of dynamics than ideal latch models, and (b) simultasigodelivers

better intuitive understanding and greater simulatiortiefficy compared to
overly complex SPICE-level models. We use finite state nmesh{FSMs)

for such an intermediate level of abstraction. §lih, we provide a brief

description of DAE2FSM. Irglll and §IV, we describe applications of
DAE2FSM to latches and latch cascades within a communitaditidx.

Il. THE CORE TECHNIQUE: DAE2FSM

Fig. 3 below illustrates the high-level architecture behDAE2FSM [1],
our automated technique to generate symbol-level FSM adigins for
AMS circuits (such as latches and cascades of latches).eAfigilre shows,
DAE2FSM takes as input (a) an analog circuit (such as a cumade
latch) described as a SPICE netlist, and (b) a SPICE simutatoh as
SPECTRE that has access to process parameters of the.circuit

Process
parameters
SPICE simulator

(e.g., Spectre)
Input AV
waveforms) —
Input
generator

Analog ckt.
(e.g., CML latch)
R

Learned FSM!

Fig. 3. The architecture behind DAE2FSM. Software mod@@&) techniques

are shown in rectangular boxes, and data interchanges detmedules are shown
in circular boxes. The components making up the core DAE2fEBline (i.e., the

output analyzer, the equivalence checker, and the inputrgtar) are indicated in
blue font, while external dependencies (e.g., SPECTRE) are showlack font.

DAE2FSM works by issuing multiple calls to the SPICE simataeach
time requesting the circuit’s output waveform for a spedifjut waveform.
These input waveforms are produced by a carefully craftpdt generatoy
one of whose goals is to minimise the total number of SPICE required.
Every output waveform returned by the simulator is procg$geanoutput
analyzer which tries to learn the circuit's behaviour from the injouttput
traces collected thus far. The output analyzer can alse isgecific queries
to the input generator, which are taken into account whileegating the
next input waveform for the simulator. Eventually, the autmnalyzer
learns enough about the circuit to proposeamdidate FSMabstraction,

which is passed to aaquivalence checkeffhe equivalence checker then

attempts to generate, either deterministically or prdislzially, a counter

exampleto show that the candidate FSM does not accurately reflect the

given circuit's behaviour. If such a counter example is fhuthe output
analyzer uses it to refine its guess about the FSM. If no sucimtep
example is found, the candidate FSM is taken to be a realstitraction
for the given circuit, and the algorithm terminates.

The core technique behind DAE2FSM is a well-known algoritfrom
the field of computational learning theory, namely Anglaialgorithm [3].
In previous work [1], we have shown how Angluin’s algorithrancbe
modified to produce binary FSM abstractions for AMS circuithere the
input and output alphabets are restricted to two level $sgir this work,
we have re-architected the internal structure of DAE2FSh, @ompletely
re-written the code from scratch. This resulted in severgirovements
over the original version: (a) much faster runtirhe®) an improved output
analyzer, and (c) applicability to real-world designs,liliing a current
mode latch (CML) and a cascade of latches designed for IBMIs™®LP
process technology [2].

1All the FSMs in this paper have been generated by DAE2FSMimvhminutes
of execution time on a 2.4GHz laptop computer with 2GB of msmo

Due to space constraints, we do not describe these teclimigedvements
in detail here, but move on to present the results obtainedubping

PAEZFSM on the latches mentioned above.

I1l. DAE2FSM APPLIED TO A CML

Fig. 6 (a) shows the circuit diagram of a CML. As mentioned fe t
introduction, the CML constitutes the first stage in a cascafllatches
that forms the basic structural and functional unit of a lnswer ADC in

a high-speed communication link.

The CML used in this paper has been designed in IBM’'s 90nm loegss
technology, fabricated and tested in the context of a 1.88h/6 commu-
nication link that employs a flash ADC [2]. We now present thsults
obtained by applying DAE2FSM to automatically generate F&bdtrac-
tions of this CML for a range of supply voltag¥sp = {0.8V,1.0V,1.2V}.

(Although the CML has been designed only for a 1.2V supplyagd, we
deliberately lowered the supply voltage to generate FSisdhpture the
latch’s behaviour under non-ideal operating conditions.)

Before applying DAE2FSM, we first need to map the FSM'’s synab@il

inputs and outputs to actual voltage levels exhibited by dineuit. For

the FSM inputs, this choice is straightforward: the 0 and duts to the
FSM correspond to circuit inputs ofVpp and +Vpp Vvolts respectively.
The choice of output levels is a little more complicated: thand 1 FSM
output levels have to correspond to the minimum and maximifiierential

outputs produced by the circuit, sampled at some choseaninsf the
clock cycle (in general, these are different fronvpp and +Vpp volts).

This leads to another choice; we need to determine a set afyespaced
points at which to sample the input and output sequencesagbecthe
FSM corresponds to a discrete time representation). Inpdgier, we have
selected two natural candidates for such sampling inssanw@mely the
positive and negative edges of each clock cycle.

Having fixed the input/output levels and the sampling instarthe objec-
tive now is to generate an FSM that satisfies what we célineamental
test for any given input sequence (comprising a string of Os agy 1
the output sequence predicted by the FSM should tally glosdth the
(sampled) output sequence obtained by SPICE simulatiohefcircuit
on a similar input sequence. For example, suppose we havegatives
edge sampled FSM whose output levels 0 and 1 correspond doitcir
(differential) outputs of -0.3V and +0.6V respectively. d\suppose this
FSM predicts that the input sequen€e 1, 1, 0] will result in the output
sequence[l, O, 1, 1]. Then, a SPICE simulation of the circuit on a
corresponding input (i.e., an input that ¥pp volts for the first clock
cycle, Vpp volts for the second and third clock cycles, ardpp volts
again for the fourth clock cycle) should result in an outputpse samples
(taken at the negative edge of 4 consecutive clock cycles)ldibe closely
approximated by 8V, —0.3V, 0.6V, and Q6V. If this fundamental test
holds for every input sequence, then the generated FSM isidened a
sufficiently faithful abstraction of the original circuit.

Fig. 4. FSM abstractions automatically generated by DAB2F& the CML, and
for cascades of two and three latches, operating udger= 0.8V, 1.0V, and 1.2V.
For more details, please see Fig. 5.

Circuit Vpp (volts) Sampling instant Learned FSM FSM input levels FSNbpau levels

12 -ve clock edge M1 [0,1] =[-1.2V,+1.2V] [0,1] = [-0.28V,+0.28V]
' +ve clock edge M2 [0,1] =[-1.2V,+1.2V] [0,1] = [-0.67V,+0.67V]
Single CML 10 -ve clock edge M1 [0,1] = [-1.0V,+1.0V] [0,1] = [-0.24V,+0.24V]
’ +ve clock edge M2 [0,1] =[-1.0V,+1.0V] [0,1] = [-0.56V,+0.56V]
08 -ve clock edge M1 [0,1] =[-0.8V,+0.8V] [0,1] =[-0.18V,+0.18V]
’ +ve clock edge M2 [0,1] = [-0.8V,+0.8V] [0,1] = [-0.40V, +0.40V]

12 -ve clock edge M2 [0,1] =[-1.2V,+1.2V] [0,1] = [-1.2V,+1.2V]
’ +ve clock edge M2 [0,1] =[-1.2V,+1.2V] [0,1] = [-0.18V,+0.18V]
Cascade of 2 latches 10 -ve clock edge M2 [0,1] = [-1.0V,+1.0V] [0,1] = [-0.99V,+0.99V]
’ +ve clock edge M3 [0,1] =[-1.0V,+1.0V] [0,1] = [-0.09V,+0.09V]
08 -ve clock edge M4 [0,1] =[-0.8V,+0.8V] [0,1] =[-0.15V,+0.15V]
’ +ve clock edge M3 [0,1] =[-0.8V,+0.8V] [0,1] = [-0.05V, +0.05V]
12 -ve clock edge M2 [0,1] =[-1.2V,+1.2V] [0,1] = [-0.24V,+0.24V]
’ +ve clock edge M5 [0,1] =[-1.2V,+1.2V] [0,1] = [-0.81V,+0.81V]
Cascade of 3 latches 10 -ve clock edge M2 [0,1] =[-1.0V,+1.0V] [0,1] =[-0.16V,+0.16V]
’ +ve clock edge M5 [0,1] = [-1.0V,+1.0V] [0,1] =[-0.75V,+0.74V]
08 -ve clock edge M3 [0,1] =[-0.8V,+0.8V] [0,1] =[-0.12V,—0.09V]
' +ve clock edge M3 [0,1] = [-0.8V,+0.8V] [0,1] =[-0.55V,—0.35V]

Fig. 5. Details about the FSM abstractions generated by B2 for a single CML, and cascades of two and three latchesratipg under 3 different supply voltages:
1.2V, 1.0V and 0.8V. This table refers to FSMs M1 to M5 showrFig. 4. The FSMs have been automatically generated for tffereint sampling instances (at the +ve
and -ve clock edges). The last two columns of this table pa mapping between the 0/1 FSM I/O symbols and actual estagthe circuit.

Fig. 4 and Fig. 5 provide details about the FSM abstractiansraatically
generated by DAE2FSM for the output differentiéll; — Vgy) of the
CML, for three different supply voltages (0.8V, 1.0V and\)2This CML
is positive-edge triggered, i.e., it has been designed napkathe input
when the clock is high, and amplify its previous value whea tlock is
low. Therefore, ideally, the output sequence sampled atégeative edge of
the clock should be the same as the input sequence (cordiagdo FSM
M1), whereas the output sequence sampled at the positiveadbe clock
should be the input sequence delayed by one clock cycleegmonding
to FSM M2). Indeed, from Fig. 5, we find that this is exactly ttase for

all values of\pp that we tested. However, it is observed from Fig. 5 that

asVpp is lowered, the voltage difference between the FSM outpuglse
0 and 1 keeps shrinking, making the latch’s state more diftouresolve
at lower supply voltages.

Clock, inputs applied to a single CML

[—CLK—V.in1=—Vin2] 11 11 1.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

in

]
1

'

V_DD ' 1 :
‘: \’

0 o o

1 1

1 1

1 1 1 1 1
T T U 1 T U 1
1 1 1 1 1
1 1 1 1 1

1 1] 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 025 05 075 1 125 15 175 2

Time in ns

Fig. 7. Clock (black) and inputb{ue
2-latch cascade and a 3-latch cascade for generating thetasaveforms of Fig. 6.

The vertical, dasheded (brown) lines represent the negative (positive) clock edg

(where the FSM input/output sequences are sampled).

Finally, we would like to show that the learned FSMs are indadaithful

abstraction of the original circuit. For this, we demontgrihat the learned
FSMs all pass theundamental testdescribed above) for two example inpu

sequences, namel@, 1, 1, 1, 0, 1, 0, 0] and[1, 0, 0, 1, 1, 0, 1, 0].2

2We have verified that the FSMs pass the fundamental test foomy these

5]

Fig. 7 shows the (analog) clock and input waveforms thatespond to
these particular input sequences. The responses prodydeeé bircuit for
these input sequences are shown in the first column of Fige§ filots (b)
to (d)). These plots include the response obtained by SPilG&Eation (the
blue and
simulation (the black waveforms witmagentamarkers). From the plots,
it is clear that: regardless of supply voltage, the outpguesace samples
always lie close to the predictions made by the FSM simulatibhis
testifies to the accuracy of the FSM abstraction.

IV. DAE2FSM APPLIED TO CASCADES OF LATCHES

We now apply DAE2FSM to cascades of two and three latches. akus
we treated the single latch case, we used DAE2FSM to gen€&idké
abstractions for two (and three) latch cascades operatidgrua range of
supply voltages. The FSMs so generated are presented id Bigd Fig. 5
respectively.

Let us first consider the two latch cascade (please refergo@-(e) for a

circuit schematic). Avpp = 1.2V, we find from Fig. 5 that the two-latch
cascade behaves as an ideal delay unit (corresponding to M3Nbr

both negative and positive edge sampling). Howevelmsgets lowered,
the system’s behaviour becomes non-idealMges = 1.0V and below, the
positive edge sampled FSM (M3) becomes severely limitetarits output
swing, to the point that the only symbol it can output is O,areless of
input. Even the negative edge sampled FSM (M4) becomes deal-at

Vpp = 0.8V: this FSM indicates that, for the latch cascade to produde
at the output, at least two consecutive 1s are needed atphg iwhereas

) waveforms applied to a CML, a tg produce a 0, it is enough if the input has a single 0. In otiends, the

transmission of a 1 from the cascade’s input to its outputheen slowed
down significantly.

Similar to the single CML case, the second column in Fig. & (plots (f)
to (h)) shows the results obtained by running both SPICE a8t F
simulations of the two latch cascade on the inputs of Fig. §.bafore,

Wwe see that the generated FSMs, across supply voltagesasdl the

fundamental tesfior these particular input sequences (additionally, weshav
verified this foreveryinput sequence of length 8 and below).

particular input sequences, but fevery possible input sequence of length 8 and/e now turn to the results obtained for a three latch casoatesg circuit

below.

schematic is shown in Fig. 6 (j)). Fig. 5 shows that evevmgy = 1.2V,

waveforms), as well as the response predicted by the FSM

Bottomline: The analog circuit output sequences (sampled at the positive and negative edges

R R mﬁzg’f;ih of each clock cycle) always lie close to the values predicted by the FSM abstractions! This holds

true for a single latch, and for cascades of 2 and 3 latches, across a range of supply voltages.

Cascade of 2 latches Cascade of 3 latches
Voo Voo Voo Voo (j Voo
f (e) | f | 0 I
+ +
Viro— D Qi— Viro— D, Q| D, Qf—
Current CMOS Current CMOS CMOS
mode latch latch mode latch latch latch
Vino— 5 A Vi 5 a5, G-
CLK | | CLK: | | |
Outputs of a single CML at VDD =12V Outputs of a cascade of 2 latches at VDD =1.2V Outputs of a cascade of 3 latches at VDD =12V
[—— V_out_1 (SPICE) == V_out_2 (SPICE) =B -FSM] | [—— V_out_1 (SPICE) ==V_out_2 (SPICE) =B -FSM| , [——V_out_1 (SPICE) == V_out_2 (SPICE) =B -FSM] |
T B B R B R [~ T e B S B T B R S e S T O S e S B E T R S gy T
I R T B T B v (b I T R R T T T vy [T T R R S B S SR SR SR (9 P
068 1 1 o 120 o0 o ' 120 v o o '
° oo oo ° | s ° T " A 1
% 1 1) : : : % 1 1 h h
S _0.68 = =
= c -12 = -1.2
0.68 12 ; ; ; 12
1 1 1) M)
1 1 1 ' 1 i i 1
-0.68 Y ' -12 ' ' ' A N L LT T
1 L a1 1 1 L 1 P S S S S S S S S S S S S
0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2
Time in ns Time in ns Time in ns
Outputs of a single CML at VDD =10V Outputs of a cascade of 2 latches at VDD =10V Outputs of a cascade of 3 latches at VDD =1.0V
[—— V_out_1 (SPICE) =V _out_2 (SPICE) =H =FSM| , [—— V_out_1 (SPICE) ==—V_out_2 (SPICE) =H =FSM| , [—— V_out_1 (SPICE) =—V_out_2 (SPICE) =B =FSM] |
T B B R B R P T T B T T B R B P R T O S e e S B B T R B e T
P T B R B T T voaale) o ' IR TR () T T B B B TR R) P
056 1+ 1 o 1 T ' ' Vo ' 1 v 0 o '
1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1 1 1 1 1 1 1 1
o N g : : HE RGNS IR
e -0.56) W, = - ' ' Vo o
> ' > = T P B R S S
0.56| 1 4 i 1 1 T Vo \ Vo
1 1 1 1 1 1 h 1 1 h h 1
1 1 1 1 1 o oo 1
-0.56) =% ' -1 ' ; ' ' AN N L T T
1 L 1 1 1 1 1 P S S S S S S S S S S S S
0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2
Time in ns Time in ns Time in ns
Outputs of a single CML at VDD =0.8V Outputs of a cascade of 2 latches at VDD =0.8V Outputs of a cascade of 3 latches at VDD =0.8V
[=—V_out_1 (SPICE V_out_2 (SPICE) =H =FSM| , [——V_out_1 (SPICE) ==V _out_2 (SPICE) =B "FSM| , [——V_out_1 (SPICE) =—V_out_2 (SPICE) =B =FSM] |
i [Y B R S T O T B B R R iy S T O S e S E T R S e S
' ' ' (d), Vo P T T S T T T ST (1) PR T T T R S T T B S SR SRR (1) T
039 ' ' ' 035 ' Vo ' !
1 1 1 ' \ \ | \
= | | | & %
% o4 %0 _0.33 of
= 1 = =
& S &
= > >
04 : 0.31
1 i i 1
-0.39 ! -0.33 ! ! !
1 1 I T T R T R e 1 1
1 1 P T T S S S S L 1 1
0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2 0 025 05 075 1 125 15 175 2
Time in ns Time in ns Time in ns

Fig. 6. Plots obtained by simulating a CML (first column), aadcades of 2 and 3 latches (second and third columns rieefgcton two input sequencefd(1110100
and[1001 1010, for Vpp values 0.8V, 1.0V and 1.2V. Each plot shows the different@tage at the circuit’s output (for both these input seqesh obtained from
SPICE simulations (the solidlue and curves) as well as the output sequences predicted by FSMations (the dashed black curves withagentamarkers). The
vertical red and brown dashed lines show two different sets of FSM sampling ingsnce., the negative and positive edges of each clock cgsigectively. It is seen
that, for every simulation, in spite of the pronounced “agahess” of the SPICE waveforms, the analog output sanghesayslie close to the values predicted by the
FSM abstraction at the sampling instances.

the positive edge sampled FSM (M5) is non-ideal; it represendelay is able to produce FSMs that offer (a) considerable inmitidbout the
unit with a very slow response, i.e., to guarantee a 0 (1) etaltput, behaviour/dynamics of the latch/cascade in question, hwttler ideal
the input must contain at least two consecutive 0s (1s). herotvords, and non-ideal operating conditions, and (b) dramatic img@meents over
both 0 and 1 propagate through the cascade very slowly. AMghggets SPICE in the context of simulation efficiency (while a SPIGEBation

further reduced to 0.8V, the reduction in output swing is santhtic that could take days, a comparable FSM simulation would take reecends).
the cascade becomes capable of producing only one outputody®), Therefore, we believe that our technique holds significantmise in the
regardless of the input (corresponding to FSM M3). context of system-level analysis and symbol-level siniotadf high-speed

As before, we can verify from the third column of Fig. 6 (i.plots (k) Ccommunication systems.
to (m)) that the generated FSMs all passfilmedamental tesfor the inputs
in Fig. 7. Additionally, we have verified this faeveryinput sequence of

length 8 and below. [1] C. Gu and J. Roychowdhury. FSM model abstraction for @gahixed-signal
circuits by learning from 1/O trajectories. IASP-DAC '11: Proceedings of the

16" Asia and South Pacific Design Automation Conferemzges 7-12, 2011.

REFERENCES

V. SUMMARY AND CONCLUSIONS [2] Y. Lin, A. Xu, N. Shanbhag, and A. Singer. Energy efficidnigh-speed links
using BER-optimal ADCs. IEEDAPS '11: Proceedings of the IEEE Electrical
To summarise, we have demonstrated DAE2FSM, a fully autentech- Design of Advanced Packaging and Systems Symposium (tarapp@ll.

D. Angluin. Learning regular sets from queries and ceurgxamplesinforma-

nigue to generate symbol-level FSM abstractions for l&¢hed cascades fion and Computation75:87-106. November 1987.

of latches) used in high-speed communication systems. €ehntque

