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ABSTRACT

We abstract the I/O functionality of continuous-time dynamical systems (e.g.,
SPICE netlists with combinational and sequential logic) as Finite State Ma-
chines (FSMs). This enables efficient simulation of large designs imple-
mented with less-than-perfect devices and components, and also opens the
door to formal verification of transistor-level designs against higher-level spec-
ifications. In particular, our automatically generated FSMs faithfully cap-
ture the behaviour of latches, flip-flops, and circuits constructed from them.
Among other technical advances, we generalize an existing (binary-only)
FSM-learning approach to arbitrary I/O alphabets, which empowers it to learn
high-fidelity abstractions of multi-level-discretized, multi-input/multi-output
systems. Our approach, when applied to correctly functioning latches and
flip-flops, is able to learn compact, multi-input FSM abstractions whose pre-
dictions closely match SPICE simulations. In addition, we have also ap-
plied our technique to produce multi-level-discretized FSM representations
of digital systems that nevertheless exhibit “analogish” traits, such as an over-
clocked, error-prone D-flip-flop. For such circuits, the automatically learned
FSM abstraction includes additional states that characterise “failure modes”
of the circuit for specific input sequences (these failure modes are also con-
firmed by SPICE simulations). Finally, we demonstrate that our technique is
also applicable to larger and more complex multi-input, multi-output systems;
for example, we are able to automatically derive an accurate FSM abstraction
of a 280-transistor (BSIM4), 0-to-5 increment/decrement counter.
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D.2.2 [Design Tools and Techniques] State Diagrams
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1. INTRODUCTION

With technology scaling to 22nm and below, individual devices are increas-
ingly becoming non-ideal, thus compromising the clean Boolean abstractions
that underpin the effectiveness and power of the digital design paradigm. In-
deed, many components in cutting-edge digital systems today behave more
like analog/RF circuits than like digital ones. The design, validation and de-
bugging of digital systems with such components can be challenging because
“analog issues” stemming from nonlinear analog dynamics, analog wave-
shapes, noise/interference, etc., compounded by increased variability, cannot
be directly captured within the Boolean modelling and simple delay frame-
works that are natural for digital systems.

Purely SPICE-level simulation-based approaches for validation and debug-
ging are impractical, on account of the large sizes of typical digital systems.
In existing design methodologies, components in cell libraries are simulated
extensively at the SPICE-level, over a range of PVT corners, to verify func-
tionality and to characterize delays. This process does not, however, provide
executable abstractions (such as finite state machines) that can reproduce de-
tails of analog wave-shapes; nor is it suited for components whose function-
ality is affected significantly by complex analog effects.
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Figure 1: DAE2FSM: Transistor level non-
idealities are captured in FSM representations.

In this work, we develop and
demonstrate techniques (collec-

tively dubbed DAE2FSM1) to ab-
stract executable Boolean descrip-
tions of transistor-level circuits.
The central notion of DAE2FSM
is to approximate transistor-level
circuits accurately as finite state
machines (FSMs) by adapting and
applying computational machine
learning techniques. The resulting
FSMs can not only capture the in-
tended logical functionality of the circuit being abstracted, but also take into
account analog effects and non-idealities, producing “non-ideal FSMs” that
accurately reflect actual (rather than intended) operation (see Fig. 1).

We develop and apply an Angluin-based [1] computational learning tech-
nique that uses finite alphabets of N ≥ 2 symbols, thus moving beyond the
binary symbols used in prior work [2, 3]. This enables us to learn FSMs for
transistor-level circuits with multiple inputs, by encoding input value or tran-
sition combinations using multiple symbols. Multi-symbol learning also en-
ables us to obtain increased fidelity by using multi-level discretizations to ap-
proximate analog signals better. We also show how non-deterministic FSMs
can be used to capture situations with unpredictable inputs. We demonstrate
the application of these advances on transistor-level latch and flip-flop cir-
cuits, as well as on a counter circuit composed of several sequential and com-
binational components.

DAE2FSM features several points of novelty and promise. FSMs generated
by DAE2FSMcan be simulated (in discrete time in the logical domain) much
faster than the underlying SPICE-level representations they are derived from,
while at the same time capturing the impact of analog/manufacturing imper-
fections. Indeed, the results of logical FSM simulation can be translated back
to analog values that, in many cases, reproduce SPICE-simulated waveforms
well. Compromised functionality and failure modes are also captured by the
FSMs, which opens possibilities for system-level/post-silicon workarounds.

An important feature of DAE2FSM is that it is suitable for application to
practical industrial circuits. Detailed, non-linear SPICE-level circuits can be
utilized unchanged, within simulation environments of the user’s choice, en-
suring that no analog subtlety that SPICE can predict is ignored. At the same
time, the I/O-based FSM learning approach behind DAE2FSM ensures that
only those details of transistor-level blocks that are “observable from the out-
side” (i.e., relevant from a system perspective) are captured; in other words,
only what is needed is represented in the learned FSM. Indeed, the auto-
mated, push-button nature of FSM generation frees the user from understand-
ing in detail how a given transistor-level block functions; all that is needed is
a SPICE-level netlist that simulates. From the standpoint of fitting into estab-
lished design flows, the fact that simulation, validation and debugging can all
be performed purely in the logical domain, is very attractive.

Moreover, by representing transistor-level circuits as FSMs, DAE2FSM opens
the door to the application of Boolean formal verification and model checking
techniques (e.g., [4,5]) for determining whether a given transistor-level com-
ponent with strong analog characteristics satisfies a given property. Unlike al-
ternative formal approaches based on hybrid systems (e.g., [6–9]), DAE2FSM
neither suffers from scalability limitations, nor requires a priori modelling
simplifications of the SPICE-level transistor blocks involved.

The rest of the paper is organized as follows. In §2, we outline the multi-
symbol learning technique underlying DAE2FSM. In §3, we present detailed
results applying DAE2FSM to latch and flip-flop circuits, generating FSMs
for single and multiple inputs, binary and multi-level discretizations, and
properly functioning as well as failing circuits. We also demonstrate how
DAE2FSM captures the intended functionality of a 280-transistor, 0-to-5 in-
crement/decrement counter from a SPICE-level description.

1Differential-Algebraic Equation to Finite State Machine.



Figure 2: Flowchart and an example that describe our technique for fully automated multi-symbol Mealy machine learning.

2. CORETECHNIQUE:MULTI-SYMBOLANGLUIN-STYLE

MEALY MACHINE LEARNING

We now describe our core technique for abstracting a given SPICE netlist

as a finite state, multi-symbol Mealy machine2. Our approach derives from
the well-known Angluin’s algorithm [1] for Deterministic Finite Automata

(DFAs)3, which we have modified to learn multi-symbol Mealy machine ab-
stractions of continuous dynamical systems such as circuits.

Our FSM abstraction algorithm for circuits has two key entities: a teacher,
and a learner. Before the learning begins, both entities decide on an input
alphabet Σ, and an output alphabet Γ (these can be any finite sets of symbols).

The teacher has access to the SPICE-level circuit netlist and a SPICE simula-
tor. The learner, on the other hand, operates purely in the discrete domain: it
has no knowledge of the circuit, and the only way it learns about the circuit
is by asking specific questions of the teacher. These questions can take two
forms: (a) I/O queries, and (b) FSM checks.

An I/O query involves the learner presenting the teacher with an input se-
quence (any word from the input alphabet), to which the teacher responds
with an output sequence (a word from the output alphabet of length equal to
the input sequence). Given the input sequence, the teacher constructs an input
waveform from it (as shown in Fig. 2 (right)), and then SPICE-simulates the
circuit on this input waveform. The teacher then discretizes the SPICE output
into symbols from the output alphabet, and returns the discretized sequence
as the “answer” to the learner’s query. Thus, with each I/O query, the learner
increases its knowledge about the circuit; eventually, it learns enough about
the circuit to propose an FSM abstraction (in the form of a multi-symbol
Mealy machine) to the teacher. This is the second type of query (an FSM
check). Given an FSM proposed by the learner, the teacher runs a number
of simulations comparing the outputs produced by the FSM with discretized
versions of outputs produced by SPICE-simulating the circuit. If the teacher
finds a discrepancy between the FSM and SPICE, it alerts the learner to the

2Recall that Mealy machines are FSMs that take in an input sequence, and
produce an output symbol at each state transition, thereby returning an output
sequence of length equal to the input sequence.
3Recall that DFAs are FSMs that take in an input string, and either output a
“1” (indicating that the string has been accepted) or output a “0” (indicating
that the string has been rejected).

counter-example, and the learner uses this information to refine its FSM. If the
teacher is unable to find a counter-example, it accepts the FSM as a faithful
discrete-domain representation of the continuous-domain circuit behaviour.

We note that the teacher has enormous freedom in the way it converts an in-
put sequence into an input waveform: for example, the teacher can interpret
input symbols as quantized voltage levels (e.g., symbol “a” means 0V, sym-
bol “b” means 0.1V, etc.), leading to a multi-level-discretized learned FSM.
Alternatively, the teacher can interpret input symbols as bit vectors specify-
ing boolean values for multiple circuit inputs (e.g., symbol “a” means 000,
symbol “b” means 001,etc.); this interpretation results in a multi-input Mealy
machine abstraction for the circuit. Another possibility is that the teacher can
interpret the input symbols as switching events (e.g., symbol “a” means the
clock switches, symbol “b” means the data switches, etc.), which results in
a different kind of multi-input FSM that sometimes offers greater intuition
into circuit dynamics (e.g., see our FSMs for latches and flip-flops in §3.2
and §3.3). This freedom to interpret the input alphabet in multiple ways is
an important aspect of DAE2FSM: it allows us to use the same fundamen-
tal framework (automated multi-symbol Mealy machine learning) to gener-
ate multi-level, or multi-input, or multi-output, or any combination of these,
FSM abstractions, depending on the circuit-driven application at hand. For
example, if the application is to characterise a failing flip-flop (§3.4), a multi-
level FSM would be the best option. On the other hand, if the application is a
combinational/sequential circuit such as a counter, a multi-input, multi-output
FSM would be best-suited (see §3.5).

Having presented the teacher’s side, we now discuss the learner’s algorithm
(shown, along with an example, in Fig. 2 (left)). At any point, the learner
maintains two sets of words over the input alphabet, S and E. In addition, it
maintains an observation table T that contains all the information acquired
about the circuit thus far. Initially, S= E = Σ∪ε , where ε is the empty string.
At any time, for every ordered pair (s,e) ∈ (S∪ S.Σ)×E (where . denotes

concatenation), the observation table T contains an entry4 T (s,e), which is
equal to the last |e| output symbols returned by the teacher for the input se-
quence s.e (Fig. 2 illustrates how T evolves as the algorithm progresses). For
each s ∈ S∪S.Σ, let row(s) denote the row corresponding to s in T .

4In Angluin’s original algorithm for DFAs, T only contained 0/1 entries.
However, to extend the algorithm to multi-symbol Mealy machine learning,
we store output strings in T instead of binary values.



Using the information in T , the learner tries to match an FSM state to each
word in S; for each s ∈ S, the learner associates with s the final state reached
by the FSM on input s. For this, T must satisfy two conditions:

Closedness: For each s1 ∈ S.Σ, there must exist s2 ∈ S such that row(s1) =
row(s2). The intuition is that: the set of FSM states associated with S is in-
complete if there is no destination state for an input in S.Σ. If T is not closed,
then the strings violating closedness must be added to S, and T recompleted.

Consistency: For every s1,s2 ∈ S such that row(s1) = row(s2), it should also
be true that row(s1.σ) = row(s2.σ) for every σ ∈ Σ. The intuition is that:
one cannot associate identical FSM states with two different strings (s1 and
s2) in S, unless one can also associate identical states with s1.σ and s2.σ , for
every σ ∈ Σ. If T is not consistent, then the string σ .e for which T (s1.σ .e) 6=
T (s2.σ .e) must be added to E, and T recompleted.

Thus, the learner issues I/O queries to the teacher until T is both closed and
consistent. At that point, the learner proposes an FSM (whose states are as-
sociated with strings in S). This is repeated until the teacher is unable to
find a counter-example to the learner’s FSM. In Fig. 2 (left), we present the
complete learner’s algorithm as a flowchart, and also illustrate it with an ex-
ample. The example shows how the learner, starting from scratch, learns a
multi-output FSM for a failing D-flip-flop (for more details, see §3.4).

3. RESULTS

As mentioned earlier, we have applied the techniques of §2 to generate multi-
symbol Mealy machine abstractions of latches, flip-flops, and circuits con-
structed from them. Here, we discuss these results in detail.

We begin by generating binary FSM abstractions of correctly functioning
latches and flip-flops (§3.1), for different timing relationships between the
clock (CLK) and data (D) signals. We then use multi-symbol FSM learning
to construct multi-input FSMs for latches and flip-flops (§3.2, §3.3); this en-
codes all relevant switching patterns of CLK and D using a multi-symbol al-
phabet (i.e., the algorithm automatically generates a single FSM capturing the
circuit’s behaviour across all relevant timing scenarios). After this, in §3.4,
we apply multi-level discretization to realize FSM abstractions of error-prone
flip-flops, which fail on certain inputs because of analog effects. Finally,
in §3.5, we present a multi-input, multi-output, combinational/sequential ap-
plication: that of automatically learning a state machine abstraction for a 0-
to-5 increment/decrement counter implemented with 280 transistors.

3.1 Binary FSMs for correctly functioning latches and flip-flops

We start with the simplest case: generating binary FSMs for latches and flip-
flops. We consider six different timing scenarios for the clock and data sig-
nals, and we demonstrate that DAE2FSM is able to produce Mealy machines
whose predictions match well with SPICE-level simulations.

At this stage, the target FSMs are limited to a single input (i.e., the data input
D). The other input (the clock CLK) is fixed, and assumed to be a periodic
pulse, whose one period is shown in Fig. 3 (right). It is assumed that D transi-
tions exactly once per clock cycle. Also, the input/output sequences required
for DAE2FSM are sampled exactly once per clock cycle (either before, or
after D transitions).

Figure 3: Binary FSMs learned for latches and flip-flops in various operating modes.

This gives rise to six possible timing scenarios, tabulated in Fig. 3. For each
scenario, we used DAE2FSM to learn FSMs for both a D-latch and a D-
flip-flop5. Fig. 3 shows that, depending on the scenario and the circuit, the
learned FSM can be either a buffer or a delay. These FSMs are shown in
Figs. 4 (a) and 4 (b) respectively; it is seen that the buffer FSM simply relays

5We note that a D-latch FSM has also been learned by the authors of [2].
However, that work considers only one of the scenarios outlined in Fig. 3,
whereas we have meticulously analysed all possible scenarios. Also, the
authors of [2] consider only latches, whereas we have developed FSMs for
latches, flip-flops and beyond.

its input directly to the output (i.e., its input and output sequences are always
identical), whereas the delay FSM shifts the input to the right by one element.
Together, the two FSMs capture the behaviour of ideal latches and ideal flip-
flops in their various operating modes (Fig. 3).

For example, we know that an ideal D-latch can operate in two modes: it is
transparent when CLK is high, but retains its output (even if the input changes)
when CLK is low. Thus, if the input transitions (once a clock cycle) when CLK
is low, and input/output sequences are sampled just before CLK turns high
(scenario 2 in the above table), the output would reflect the previous input
(applied 1 clock cycle earlier), which corresponds exactly to a delay FSM (as
indeed, the table above shows).

Figure 4: The buffer and delay FSMs returned by DAE2FSM accurately reflect the behaviour of an
ideal D-flip-flop.

Similarly, we know that an ideal D-flip-flop captures the value of D precisely
at the negative edge of each clock cycle (i.e., during the interval when CLK
transitions from high to low), and remains opaque to changes in D at all other

times. Fig. 4 (c) shows a SPICE simulation6 of such a flip-flop’s output (the
blue waveform) where the input D (the green waveform) transitions, once per
clock cycle, when CLK (the black waveform) is low.

From Fig. 3, we see that a buffer FSM predicts the flip-flop’s output at uni-
formly spaced time points just after the negative edge of the clock (i.e., sce-
nario 1). For example, given the input sequence of Fig. 4 (c), the buffer FSM
predicts the output sequence 0100110101 at these time points. This digital
output sequence can now be mapped back to an analog output sequence, by
tagging each output symbol with a specific analog voltage (determined at the
time of sampling I/O sequences for the FSM learning algorithm). For in-
stance, in this example, we tag the output symbol “0” with the analog voltage
0V, and the output symbol “1” with the voltage VDD (which, in this case, is
0.8V). Hence we obtain a sequence of analog voltages (in this case, [0V, 0.8V,
0V, 0V, 0.8V, 0.8V, 0V, 0.8V, 0V, 0.8V]) associated with uniformly spaced
time points. We now overlay this analog time series on top of the SPICE
waveform (see the magenta markers on top of the blue SPICE waveform in
Fig. 4 (c)), to judge how well the discrete-domain FSM is able to predict the
circuit’s continuous-domain behaviour. In this case, just from a visual ex-
amination, it is clear that the FSM’s predictions do in fact, tally closely with
the SPICE-simulated waveform. Similarly, we have also plotted (with green
markers in Fig. 4) the analog time series version of the delay FSM’s predic-
tions (which we know, from Fig. 3, to be valid just before the negative edge
of the clock). From the figure, we see that this set of predictions also closely
match the SPICE waveform at these time points (the grey vertical lines).

3.2 Multi-input FSMs for correctly functioning latches

The FSMs of the previous subsection handle only one circuit input (i.e., D);
the other input (CLK) is taken to be a fixed waveform that is known a priori.
This necessitates many separate learnings, one for every possible switching
pattern of D relative to CLK (as tabulated in Fig. 3). Moreover, if the input
can transition twice or more per clock cycle, none of the FSMs learned above
would be valid, and a fresh set of FSMs would need to be learned. The learned
FSMs must then be “pieced together” to understand the functionality of the
given circuit. This process can be tedious and inconvenient.

Instead, DAE2FSM offers the capability of learning multi-input FSMs (as
outlined in §2), thereby dispensing with the need to generate/piece together
many one-input FSMs. By considering D and CLK as two separate circuit
inputs, the algorithm automatically learns a multi-input FSM that fully takes

6All SPICE simulations in this paper have been carried out with 22nm
devices, using BSIM4 device models. We obtained device parameters
from [10], and the SPICE engine from [11].



into account all relevant switching combinations of both inputs. We now
demonstrate the multi-input capability of DAE2FSM on a D-latch.

To produce the multi-input latch FSMs (explained in §2 and in §1), we first
encode all relevant switching patterns of both inputs, using a 4-symbol in-
put alphabet Σ = {w,x,y,z} for the multi-symbol Angluin procedure outlined
in §2. Input symbol w indicates that both CLK and D are held constant (until
the next sampling instant). Similarly, input symbol x (y) indicates that only
CLK (D) switches (becomes high if it was low earlier, and vice-vera), while D
(CLK) is held constant. Finally, symbol z indicates that both CLK and D switch
their values: z therefore has two different meanings, depending on whether
CLK switches first or D switches first. The two meanings lead to two different

multi-input FSMs, as we show below.7 Clearly, this 4-symbol input alphabet
can represent all possible sequences of (legal) switching events in both in-
puts. For example, if one wants to determine the latch output following three
switches of D before a single switch of CLK, and then a clock switch, and then
two more switches of D, one simply passes the input sequence [y,y,y,x,y,y]
to the Mealy machine learned by DAE2FSM.

Fig. 5 (b) shows the multi-symbol Mealy machine automatically learned by
DAE2FSM for the D-latch, for the case that CLK switches ahead of D on
input symbol z. This FSM has two transparent states (TR1 and TR2), and
four opaque states (OP1 to OP4). These states offer intuition into how the
latch functions: every switch in CLK (i.e., input symbol x or z) causes the
FSM state to toggle between transparent and opaque. By contrast, a switch
in D does not affect the transparency or opacity of the current FSM state.
Closer examination reveals that when CLK goes low (i.e., the latch transitions
from transparent to opaque), the FSM always reaches the opaque state with
the correct polarity (i.e., OP1 if D is low at the instant the clock switches,
OP4 otherwise). Transitions from opaque to transparent states also reflect
precisely how one would expect an ideal latch to behave. Indeed, as Fig. 5 (a)
shows, the latch output (Q) predictions made by this FSM closely tally with
SPICE simulations, even for a complicated sequence of input switches that
cannot be handled by any binary-only FSM derived earlier.

Fig. 5 (d) depicts the FSM derived when D switches ahead of CLK at input
symbol z (with the meaning of the other input symbols unchanged). As ex-
pected, the FSMs in Figs. 5 (b) and 5 (d) are identical except for transitions
on input z: their states are in one to one correspondence for all z-less input se-
quences. This FSM’s predictions are also in excellent agreement with SPICE
simulations (as seen from Fig. 5 (d)).

Thus, our multi-input DAE2FSM technique has automatically producedMealy
machines that accurately mimic the latch’s behaviour under all relevant switch-
ing conditions. The only caveat is that the algorithm does not (yet) automati-

cally handle illegal race conditions in the input8; for example, if CLK switches
to low, and D switches at exactly the same time (a well-known “illegal” sit-
uation that can produce unpredictability, and even metastability), the output
of a D-latch can become unpredictable, which the learned FSM, being a de-
terministic automaton, fails to capture. This unpredictability is illustrated in
Fig. 5 (e): when both CLK and D switch simultaneously, the latch sometimes
behaves as though CLK switched first, and sometimes as though D switched
first. To account for such conditions, we combine the FSMs in Figs. 5 (b)
and 5 (d) to arrive at a non-deterministic FSM. The rationale is that CLK in
Fig. 5 (b) switches ahead of D at input symbol z, while Fig. 5 (d) applies
when D switches ahead of CLK at input symbol z. Therefore, if CLK and D
switch at the same time, the latch could (in theory) choose to behave accord-
ing to either of these FSMs; in practice, the latch’s “choice” of FSM would
depend on many factors, including the exact shapes of the switching input
waveforms, clock jitter, voltages at internal nodes, device parameters, noise
processes (e.g., thermal noise, shot noise), etc. Since most of these factors
are inherently unpredictable, it is convenient to abstract them by introducing
non-deterministic transitions in the learned FSM. This results in the Mealy
machine of Fig. 5 (f), whose non-z transitions are identical to the original
FSMs, but whose z-transitions include non-determinism.

3.3 Multi-input FSMs for correctly functioning flip-flops

We now repeat the analysis of the previous subsection, but for a D-flip-flop9

instead of a D-latch. The results (Fig. 6) roughly mirror those of the previous
subsection (Fig. 5); however, there are interesting differences, as noted below.

7Alternatively, one could also learn a 5-symbol FSM, where the two mean-
ings of z are encoded by two different input symbols z1 and z2; however, the
4-symbol approach has the added advantage that the resultant FSMs can be
combined via non-deterministic transitions to model race conditions in the
input (Fig. 5 (f)).
8We are currently working on improvements to DAE2FSM that can handle
race conditions, metastability, etc.
9The flip-flop we have used is a master-slave, negative-edge triggered D-flip-
flop built from two D-latches.

As with the D-latch, we have generated FSM abstractions of the D-flip-flop
using the multi-symbol input alphabet {w,x,y,z} (where the symbols have the
same meaning as before). The auto-generated FSMs are shown in Figs. 6 (b)
and 6 (d).

Unlike the D-latch, however, there is no concept of a “transparent” or “opaque”
state in the D-flip-flop’s FSMs. Rather, the intuition is that each state can be
viewed as an ordered 3-tuple, whose dimensions are the stored flip-flop value
Q, the clock CLK, and the input D. For example, state S101 indicates that:
(a) the flip-flop currently stores a value Q = 1 (captured at the most recent
negative clock edge), (b) the clock is low, and (c) D is high. With this intu-
ition, it is readily seen that the FSMs in Figs. 6 (b) and 6 (d) capture the pre-
cise functionality expected of a D-flip-flop: the input is captured and relayed
to the output exactly once per “cycle” of the clock, and this happens only
when CLK transitions from high to low. Moreover, as shown in Figs. 6 (a)
and 6 (c), the predictions made by these FSMs match very well with values
sampled from SPICE simulations.

Finally, Fig. 6 (e) shows that the flip-flop’s output can be unpredictable when
CLK switches from high to low, and D also switches at exactly the same time.
In such a situation, the flip-flop behaves at times as if CLK switched first,
and at other times as if D switched first. Moreover, as before, we observe
that the two FSMs learned for the different meanings of z, in this case also,
behave identically for all z-less sequences, with their states being in one-to-
one correspondence. Therefore, as before, it is possible to combine these
FSMs by introducing non-deterministic transitions. The resulting combined
FSM is shown in Fig. 6 (f).

3.4 Multi-level FSMs for failing flip-flops

Having shown howDAE2FSM produces correct abstractions of properly func-
tioning latches and flip-flops, we now demonstrate another crucial feature
of DAE2FSM: that it can abstract useful FSMs even for circuits that suffer
from such significant analog imperfections that digital functionality is com-
promised. The motivation is that it is often important to characterise the be-
haviour of latches and flip-flops functioning under non-ideal operating con-
ditions (e.g., under lowered supply voltages, extreme overclocking, a particu-
larly unfavourable process variability corner, etc.). Such characterisation, for
example, plays a central role in the design of error-resilient communication
systems. We note that the generation of (binary) FSMs for non-ideal latches
has already been demonstrated in [2]. In this work, we focus on multi-level
discretizations applied to flip-flops and demonstrate how DAE2FSM captures
novel failure modes.

Fig. 7 shows two possible failure modes (discovered by DAE2FSM) that a
D-flip flop can exhibit: both result from overclocking the flip-flop (i.e., as
the clock frequency increases, the flip-flop has less time to capture the input
value at the negative clock edge, eventually being unable to do so for some
input sequences). One failure mode (Fig. 7 (a)) can be adequately captured
by a binary FSM, whereas the other (Fig. 7 (c)) needs a multi-level output
alphabet (supported only by the multi-symbol approach).

In the first mode of failure10 (Fig. 7 (a)), a single “1” applied at the input
of the flip-flop fails to register at the output; the flip-flop’s response is too
slow to capture the fleeting bit. However, if the applied “1” remains in place
for two or more consecutive clock cycles, the flip-flop is able to register it,
because its internal (analog) state has already been nudged in the right di-
rection by the first “1”. This is illustrated by the SPICE plots in Fig. 7 (a).
As shown in Fig. 7 (b), DAE2FSM is able to capture this failure mode. The
FSM in Fig. 7 (b) starts at the “zero” state marked Sε . In this state, if the
FSM encounters a “1”, it moves to an intermediate state S1, where it waits
for the next input. If the next input is “0”, the FSM goes back to its initial
state without registering the previously applied “1” (reflecting the failing flip-
flop’s behaviour). If the next input is also “1”, the FSM enters the “one” state
(and stays there for as long as the input remains “1”) because it has witnessed
at least two consecutive “1s” at the input. Thus, the binary FSM of Fig. 7 (b)
is adequate to capture this failure mode.

The second failure mode, illustrated in Fig. 7 (c), occurs when the flip-flop is
clocked at 9.26 GHz. The output of the flip-flop clearly shows 4 distinct lev-
els: at 0,VDD, and two intermediate levels indicated by the horizontal, dashed
red lines (marked L1 and L2). These intermediate levels appear in the output
only when specific sequences are detected at the input. For example, level L1
appears when the input sequence contains a “1” that is preceded by neither a
“1” nor the sequence “10”. On the other hand, level L2 is reached whenever
the input sequence “101” is applied at the input. This can be explained by rec-
ognizing that the failing flip-flop has a memory longer than one clock cycle:
each time a “1” is applied, the failing flip-flop remembers it for the next two

10This failure is observed at a clock frequency of 10.42 GHz, a reasonable
frequency at which to expect the flip-flop to fail by its own, i.e., without the
added effect of combinational delays from external sources.



Figure 5: Multi-input DAE2FSM applied to construct multi-input FSM abstractions of a D-Latch.

Figure 6: Multi-symbol DAE2FSM applied to construct unified FSM abstractions of a D-flip-flop.

Figure 7: Failure modes observed for flip-flops, and FSMs learned for failing flip-flops.



Inputs Current state Next state

X R Action Q1 Q2 Q3 D1 D2 D3

0/1 1 R Don’t care 0 0 0

1 0 +

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 0 0 0

0 0 −

0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 0

(a)

(b)

(c)

Figure 9: (Left) Table showing the state transitions of a 0-to-5 increment/decrement counter with reset (please see Fig. 8 for a circuit schematic). The counter takes the increment (decrement) action +
(−) when X = 1 (X = 0), unless the reset bit R is set, in which case the counter is reset to 0. (Right) Multi-symbol Mealy machine automatically learned by DAE2FSM for the counter. (Middle) SPICE
simulation showing a complete increment cycle and a complete decrement cycle of the counter. The top row of yellow boxes indicate the next “action” that will be taken by the counter, while the bottom
row indicates the current count.

Figure 8: Schematic of a 0-to-5 increment/decrement counter with reset (please see Fig. 9 (a) for
the corresponding state transition table).

clock cycles, which has an effect on its output during that time-span. How-
ever, because the output is now a 4-level signal, it cannot be reproduced by
a binary FSM. In this case, therefore, one needs an FSM with an output al-
phabet of at least 4 symbols, one for each output level (the input alphabet can
still be binary). Applying multi-level DAE2FSM to this circuit results in the
multi-symbol Mealy machine of Fig. 7 (d). The example of Fig. 2 shows in
detail how DAE2FSM was able to learn this Mealy machine from scratch. It
can be verified that this FSM produces output “c” (corresponding to level L2)
on input sequence “101”, and output “b” (level L1) on a “1” that is preceded
by neither a “1” nor the sequence “10”. The output is “a” (the symbol for
0) for a “0” at the input, and “d” (the symbol for VDD) only if the input has
two or more consecutive “1s”. Thus, multi-level DAE2FSM can be applied
to find state machines that model failing flip-flops.

3.5 A combinational/sequential, multi-input/multi-output case

Having demonstrated FSM abstraction of basic units such as latches and flip-
flops, we now apply DAE2FSM to a much larger design: a 280-transistor,
multi-input, multi-output circuit that includes both combinational and sequen-
tial logic elements. Although the circuit is considerably more complex than
the examples above, the learned FSM reproduces its behaviours perfectly.

The circuit is a 0-to-5 increment/decrement counter with reset (schematic
shown in Fig. 8), which takes two (digital) inputs (not counting CLK) X and
R, and returns three (digital) outputs Q1, Q2 and Q3. The output bits Q1 to Q3
encode a whole number (the count) in the range 0-to-5 (0 and 5 included),
with Q1 (Q3) being the most (least) significant bit. At the negative edge of
each clock cycle, the count is either incremented (where 5 “increments” to 0),
decremented (where 0 “decrements” to 5) or reset to 0, depending on the
inputs supplied. The “reset to 0” action (denoted R) is taken whenever the
reset input (also R) is set; otherwise, the count is incremented (denoted +)
if X = 1, and decremented (denoted −) if X = 0. Fig. 9 (a) shows the state
transition table associated with the counter, while Fig. 9 (b) shows SPICE
simulations of a complete increment cycle and a complete decrement cycle
of the counter (with a reset in between). These simulations confirm that the
counter functions exactly as intended.

We applied DAE2FSM to learn aMealy machine representation of this counter
automatically. Each of the two inputs and three outputs was discretized using

two levels; they were then encoded using 4 and 6 symbols11, respectively, for
multi-symbol Angluin-based learning (see §2).

Fig. 9 (c) depicts the Mealy machine learned by DAE2FSM; it consists of
six states S0 to S5 (arranged in a circle in the figure), corresponding to
the count values 0-to-5. Increment actions, taken when (X ,R) = (1,0), re-
sult in clockwise traversal of the circle, while decrement actions, taken when
(X ,R) = (0,0), result in anti-clockwise traversal. At each state, the reset ac-
tion (at R = 1) results in a state transition back to S0. This state machine
captures the intended logical functionality of the counter exactly. Also, the
output sequence predicted by the learned Mealy FSM, when translated to ana-
log values (as described earlier), matches SPICE-level simulations well (see
the magenta markers in Fig. 9 (b)).

4. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated DAE2FSM, a technique for automati-
cally learning multi-symbol discrete-domain FSM abstractions of continuous-
domain dynamical systems such as circuits. We have extended Angluin’s
algorithm to multi-symbol Mealy machine learning, which enables the gener-
ation of different classes of FSMs (including multi-level, multi-input, multi-
output, and any combination of these) supporting different circuit-level appli-
cations. We have applied our technique to automatically produce multi-input
FSMs for properly functioning latches and flip-flops, by encoding all relevant
input switching patterns with a single 4-symbol input alphabet. The auto-
generated FSMs are able to produce output sequences that match well with
SPICE simulations. We have also used the multi-symbol framework to learn
multi-level FSM abstractions of error-prone flip-flops, where DAE2FSM was
able to identify two failure modes in overclocked D-flip-flops. We have also
generated a multi-input, multi-output Mealy machine abstraction of a 0-to-5
increment/decrement counter, which illustrates the applicability of our tech-
nique to a larger and more complex system than an individual latch/flip-flop.

In future, we would like to extend our framework to automatically learn non-
deterministic FSMs that characterise circuit behaviour for inputs that create
race conditions. Closely related to this, we would also like to auto-generate
FSMs that capture the effects of metastability on latches and flip-flops.
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