
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013 73

Accurate Prediction of Random Telegraph Noise
Effects in SRAMs and DRAMs

Karthik V. Aadithya, Alper Demir, Fellow, IEEE, Sriramkumar Venugopalan, and
Jaijeet Roychowdhury, Fellow, IEEE

Abstract—With aggressive technology scaling and heightened
variability, circuits such as SRAMs and DRAMs have become
vulnerable to random telegraph noise (RTN). The bias depen-
dence (i.e., non-stationarity), bi-directional coupling, and high
inter-device variability of RTN present significant challenges to
understanding its circuit-level effects. In this paper, we present
two computer-aided design (CAD) tools, SAMURAI and MUS-
TARD, for accurately estimating the impact of non-stationary
RTN on SRAMs and DRAMs. While traditional (stationary)
analysis is often overly pessimistic (e.g., it overestimates RTN-
induced SRAM failure rates), the predictions made by SAMURAI
and MUSTARD are more reliable by virtue of non-stationary
analysis.

Index Terms—1/f noise, circuit noise, circuit simulation, com-
putational modeling, computer-aided analysis, DRAM chips,
error probability, failure analysis, SRAM chips.

I. Introduction

RANDOM TELEGRAPH noise (RTN) has become an
important challenge associated with designing circuits in

deep submicron technologies. Indeed, with aggressive CMOS
scaling and increased parameter variability, RTN has emerged
as a critical limiting factor producing transient failures in
SRAMs, DRAMs, oscillators, PLLs, and many radio frequency
(RF) circuits [1]–[5].

In SRAMs, RTN has been shaving away design margins
for a while. This is seen from Fig. 1 [1], which quanti-
fies, in supply voltage terms, the adverse effects of various
non-idealities on SRAM design margins, as technology has
progressed from 90 to 22 nm. In the figure, each CMOS
technology is represented by a stacked bar, onto which the
design margin impacts of different non-idealities (including
static noise, local and global parameter variation, NBTI, and
RTN) are successively added.1 The downward sloping dashed
line depicts supply voltage scaling.

Manuscript received March 9, 2011; revised January 10, 2012 and April 3,
2012; accepted May 25, 2012. Date of current version December 19, 2012.
This paper was recommended by Associate Editor A. Elfadel.

K. V. Aadithya, S. Venugopalan, and J. Roychowdhury are with the Univer-
sity of California, Berkeley, CA 94770 USA (e-mail: aadithya@berkeley.edu;
sriram@eecs.berkeley.edu; jr@eecs.berkeley.edu).

A. Demir is with the Department of Electrical and Electronics Engineering,
Koç University, Istanbul 34450, Turkey (e-mail: aldemir@ku.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2212897
1We note that the noise effects of Fig. 1 do not add up linearly toward

design margin degradation. However, Fig. 1 is useful as a rule of thumb for
variability or noise-aware SRAM design.

Fig. 1. Impact of RTN on SRAM design margins (data courtesy Yasumasa
Tsukamoto, Renesas Electronics Corporation, Japan).

Fig. 2. (a) Writing the bit 1 to a 1T DRAM cell. The dashed arrow indicates
the direction of drain current, while the solid arrow indicates the direction of
the noise current due to RTN. (b) Effect of RTN on the stored DRAM value
for two different threshold voltages.

From the figure, it is seen that the impact of RTN has been
steadily increasing under continued CMOS scaling. Indeed,
of all the variability or noise sources depicted in Fig. 1,
RTN is the fastest growing contributor to design margin
degradation. At the 22-nm node, RTN (coming on top of
parameter variability) is large enough to push the stacked bar
above the minimum supply voltage, thereby driving design
margins negative. In fact, RTN-induced SRAM failures,
leading to transient read or write bit errors, have already been
experimentally reported [1], [4].

In addition to the unfavorable impact on SRAMs, RTN
is also considered responsible for variable retention times in
DRAMs [6]. Fig. 2(a) shows a standard DRAM cell to which
the bit “1” is written. Fig. 2(b) depicts the stored value Q of the
DRAM cell over time, both in the absence and in the presence
of RTN, for two different threshold voltages. To compensate
for RTN, it is necessary to refresh the cell more often, which
in turn increases power consumption and reduces speed of
operation. The bar chart in Fig. 2 shows the increase in refresh

0278-0070/$31.00 c© 2012 IEEE

74 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 3. Spectral density plots for 25 randomly sampled devices in two
CMOS technologies.

frequency necessitated by RTN, both in the presence and in
the absence of the threshold voltage shift.

The magnitude of RTN grows as 1/WL, a rate much faster
than many other sources of variability2 (e.g., random dopant
fluctuation grows only as 1/

√
WL) [7]. In the future, therefore,

it is expected that RTN will affect more circuits adversely,
and will affect them more adversely. Thus, for continued
CMOS scaling, it is necessary to develop new CAD techniques
that enable RTN-aware circuit design, while simultaneously
accounting for other sources of variability.

However, the very nature of RTN, from how it originates at
the device level to how it impacts performance at the circuit
level, poses several challenges for CAD tools.

Non-stationarity: At the device level, RTN is produced by
random processes, involving the capture and release of charge
carriers by dangling bonds known as “traps” [2], [3], [8]. The
statistics of these processes are strongly dependent on time-
varying bias conditions (e.g., gate voltages). Therefore, there
is an inherent non-stationarity associated with RTN, i.e., the
statistics of RTN change with time rapidly and continuously.
As a result, most existing noise analysis approaches (which
are valid only in the stationary domain) do not apply to RTN;
it is necessary to develop more powerful techniques.

High inter-device variability: Analytical approaches to RTN
typically assume a large number of traps, leading to the classic
1/f stationary characteristic for RTN [8], [9], with minimal
inter-device variation. For today’s small devices, however, this
assumption is invalid [2], [10], [11]. Detailed trap profile
models (corroborated by measured data) suggest that, in deeply
scaled technologies, only about one to two traps are active
at any given bias [2], [10], [12], [13], causing significant
inter-device variation. For example, Fig. 3 shows the spectral
density plots for 25 devices (randomly generated using the trap
profiling model of [2], and held at a constant bias) from two
CMOS technologies. While inter-device variation is negligible
in the older technology (left), it is significant in the newer tech-
nology (right), creating additional challenges for CAD tools.

Bi-directional coupling: As noted above, the statistics of
RTN exhibit a complicated bias dependence. This leads to a
bi-directionally coupled interaction between RTN and the rest
of the circuit, i.e., the time-varying biases in the circuit affect
the statistical parameters of RTN, while RTN simultaneously
produces changes in these very biases (illustrated in Fig. 6).

2W and L denote the width and length, respectively, of minimum-sized
devices in the latest generation CMOS technology.

Thus, RTN cannot be considered in isolation from the rest of
the circuit; instead, the circuit and its RTN evolve together as
a coupled system—a feature that makes RTN characterization
especially difficult.

The challenges imposed by the above three innate charac-
teristics of RTN, namely, non-stationarity, high inter-device
variability, and bi-directional coupling, have hampered the
development of CAD tools for RTN characterization. Indeed,
even though detailed, trap-level equations for RTN generation
have been available for decades [2], [8], there is still no
CAD tool that incorporates these models to achieve circuit-
level characterization of non-stationary RTN. Instead, existing
CAD techniques are limited in scope. For example, Tian and
El Gamal [3] have derived analytical RTN expressions for
constant and switched gate bias, and Roy and Enz [14] have
extended these to periodic gate bias. However, such results
do not apply to circuits such as SRAMs and DRAMs, which
are subject to large, rapid, and non-periodic bias swings. For
such applications, Ye et al. [15] recently proposed a 2-stage
comparator topology, driven by white noise, for generating
RTN. However, this applies only to stationary RTN at constant
bias; it cannot perform non-stationary analysis. Moreover, this
method is time-consuming (Section VII) because it requires
time-domain white noise simulation.

Against this background, in this paper, we perform the
following.

1) We present SAMURAI,3 a computational technique
for trap-level, non-stationary analysis of RTN in
SRAMs/DRAMs under time-varying biases and inter-
device variability. SAMURAI has been implemented as
a stand-alone module interoperable with any existing
circuit simulator (without modifying the simulator). The
only aspect that SAMURAI does not address is bi-
directional coupling; for this, we have developed MUS-
TARD.

2) We present MUSTARD,4 a second technique to predict
the impact of RTN on SRAMs and DRAMs. In addition
to all of SAMURAI’s features, MUSTARD offers the
added capability of bi-directionally coupled RTN analy-
sis. Thus, MUSTARD enables accurate, non-stationary,
bi-directionally coupled, discrete stochastic RTN trace
generation seamlessly integrated with deterministic, con-
tinuous circuit simulation. Unlike SAMURAI, however,
MUSTARD requires modifying the underlying circuit
simulator, the payoff being improved accuracy over
SAMURAI. Thus, MUSTARD and SAMURAI each
have their own strengths, and together they overcome the
challenges associated with circuit-level RTN analysis.

3) We validate SAMURAI against analytical expressions
known for stationary RTN (Section V), by showing that
the statistical properties of SAMURAI-generated RTN

3SAMURAI stands for SRAM analysis via Markov uniformization with
RTN awareness incorporated, and was presented [16] at DATE 2011. This
paper elaborates on [16], providing additional results and comparisons against
a previously published method [15].

4MUSTARD stands for Markov uniformization based simulation of trap
activity for RTN aware design, and was presented [17] at DAC 2011. This
paper provides greater detail, validation, comparisons against SAMURAI, and
algorithmic extensions.

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 75

traces closely match analytical expressions. In effect,
this also validates MUSTARD because, for the stationary
case, MUSTARD reduces to SAMURAI.

4) We highlight the differences between stationary RTN
analysis and SAMURAI, using a 22-nm 6T SRAM
cell (Section VI). The results indicate that stationary
analysis, being overly pessimistic, can predict RTN-
induced SRAM failures even when there are none. By
contrast, SAMURAI and MUSTARD do not make such
overly pessimistic predictions.

5) We compare SAMURAI with the 2-stage method re-
cently proposed by Ye et al. [15], from both an accuracy
and an efficiency perspective (Section VII). We demon-
strate that SAMURAI is not only more accurate, but also
significantly more efficient than 2-stage RTN generation.

6) We examine the key differences between SAMURAI
and MUSTARD, using as example a 22-nm 6T SRAM
cell (Section IX). Our results indicate that, until the
first RTN-induced failure, both SAMURAI and MUS-
TARD make similar predictions. However, after that,
SAMURAI’s predictions tend to be less reliable than
MUSTARD’s.

7) We apply MUSTARD to duplicate experimentally ob-
served RTN-induced SRAM failures. We also generate
statistical characterizations of SRAM bit errors due to
RTN, in the presence of parameter variation.

8) We present MUSTARD-generated results showing the
effect of RTN on DRAM retention times.

II. Existing Methods for RTN Characterization

Three approaches to RTN characterization can be distin-
guished from the literature: 1) analytical expressions at the
device level; 2) measurement-based characterizations at the
circuit level; and 3) simulations at both levels.

Analytical expressions: Much work has been done on the
stochastic modeling of trap activity, the principal mechanism
for RTN generation. Physics-based equations [2], [8] have
been developed to describe the bias-dependent statistics of trap
activity. Detailed device models [14], [18] are also available
for translating trap activity to RTN noise currents. Several
models [2] have also been proposed for obtaining realistic trap
profiles for today’s deep submicron technologies. Therefore,
at the device level, it is possible to construct realistic, non-
stationary models for RTN from first principles.

However, at the circuit level, analytical expressions are
available only for the constant-bias (stationary) case [2], [8]
and the periodic-bias (cyclo-stationary) case [3], [14], neither
of which applies to circuits such as SRAMs/DRAMs.

Measurement-based characterizations: These involve sub-
jecting post-fabrication SRAM/DRAM arrays to a large num-
ber of measurement tests, in the hope of detecting vulnerabil-
ities to RTN [1]. This is the primary mode of RTN analysis
available today for SRAMs and DRAMs. In this context,
accelerated testing techniques have also been developed [4].

However, it is costly to correct errors discovered during
post-Silicon measurement. In addition, measurements usually
do not provide insight into why circuit failures occur. For
instance, whereas a measurement can indicate that an SRAM

Fig. 4. (a) Dangling bonds at the Si/SiO2 interface. (b) Trap activity under
sinusoidal gate bias, and its modulation by large signal drain current.

cell is vulnerable to RTN, it cannot pinpoint which trap-level
events can trigger a failure. Moreover, unlike other sources
of variability, RTN is a temporal effect that cannot be com-
pletely characterized by measurement data alone. For example,
identical tests carried out on the same SRAM/DRAM chip at
different times can yield completely different success or failure
outcomes [1]. Thus, even if a large number of measurements
indicate that a chip is robust to RTN, it may in fact not be so.

Simulation-based characterizations: These are recent devel-
opments in RTN analysis. The main idea is that, because the
number of active traps in today’s devices is small (averaging
about 1 to 2 [10], [12], [13]), each trap can be stochastically
simulated (for example, alongside a SPICE run). Whenever
such a simulation predicts an RTN-induced failure, it is
possible to examine the simulation trace to investigate the
RTN events that triggered the failure. Moreover, a simulation-
driven methodology accounts for RTN in the design phase
itself, which greatly reduces the risk of unpleasant findings
during the (much later) measurement or testing phase.

The state-of-the-art simulation-driven strategy (excluding
SAMURAI and MUSTARD) is the one proposed by Ye et
al. [15], which uses a 2-stage comparator circuit to generate
stationary RTN under constant bias, starting from an indepen-
dent white noise source for each trap. However, this method
cannot truly reproduce non-stationary RTN in circuits such
as SRAMs and DRAMs. So, we believe that the predictive
utility of this method in the context of non-stationary RTN in
SRAMs/DRAMs is not clear. Moreover, as Section VII shows,
this method can be very time-consuming.

III. Unidirectionally and Bi-Directionally

Coupled Models for RTN

As mentioned in Section I, RTN is produced by the random
capture and release of electrons by dangling bonds in the
device oxide layer [8]. As Fig. 4(a) depicts, the oxide layer and
the oxide-semiconductor interface contain silicon (Si) atoms
with unsatisfied valences, called dangling bonds or “traps.”
When the device is on, each trap can randomly 1) capture an
electron from the inversion layer, and 2) release the captured
electron back into the inversion layer [8].

Thus, at any given time, each trap has two possible states:
filled (with an electron) and empty. An empty trap can become

76 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

filled by capturing an electron, whereas a filled trap can
become empty by releasing its captured electron.

Also, whenever a trap becomes filled, its captured electron
modifies 1) the electric field and electron mobility in the
inversion layer, and 2) the number density of charge carriers
contributing to the transistor current [19]. Therefore, every
capture or release event by a trap brings about a change in
the device current, which is observed as a random waveform
IRTN (t) opposing the nominal drain current Id(t).

Furthermore, the propensity of a trap to capture or release
an electron is not constant, but depends on the instantaneous
gate bias Vgs(t) [2], [3], [14]. Mathematically, given that a trap
tr is empty (filled) at time t, the probability that it changes
state to become filled (empty), within a short time interval
dt, is given by λc,tr(t)dt (λe,tr(t)dt), where λc,tr(t) (λe,tr(t)) is
called the capture (emission) propensity of the trap tr at time
t.5 Physics-based models are available for the bias-dependent
capture and emission propensities [2], [8], [20].

For simplicity, we first develop our RTN analysis tech-
niques (Algorithms 1 and 2) assuming that, for each trap,
the sum λc + λe is constant (independent of bias) with time,
while the ratio λe/λc can vary with time, depending on the
instantaneous gate bias Vgs|t . It is this bias dependence that
causes the electron capture or release process to be non-
stationary. In Algorithm 3, we relax this assumption and allow
both the sum λc + λe and the ratio λe/λc to be arbitrary
functions of (time-varying) bias conditions.

Finally, we need a formula that relates individual trap states
(i.e., filled or empty) to the collective noise current IRTN (t).
One model for this is the following equation [18]:

IRTN(t) =
Nfilled(t) q

WL Cox(Vgs(t) − Vth)
Id(t) (1)

where Nfilled denotes the number of filled device traps, q is
the electronic charge (∼ 1.6 × 10−19 Coulomb), W and L are
the device dimensions, Cox is the oxide capacitance per unit
area, and Vth is the threshold voltage. More elaborate models
have also been suggested [20].

Thus, the net effect IRTN (t) is that of a non-stationary elec-
tron capture or release process, whose resulting trap occupancy
function Nfilled(t) is modulated by a bias-dependent large signal
waveform. Fig. 4(b) illustrates this for a trap in an NMOS
device whose gate is driven by a sinusoidal voltage source.
The figure depicts the nominal biases Vgs(t) and Id(t), in
addition to the trap occupancy function and the noise current
IRTN (t). Note that, because the gate bias is time-varying, the
density of capture or release events is non-uniform, i.e., some
time intervals have a low event density, while others have a
high density, which provides a visual cue that the underlying
capture/release process is non-stationary.

To incorporate all the above aspects of RTN without loss of
generality, SAMURAI and MUSTARD use the mathematical
abstraction of a time-inhomogeneous Markov chain with a
hypercube state transition graph (described below).

5Thus, given the present state of each trap, its future statistics are completely
independent of the past. This is a fundamental characteristic of RTN, known
as the Markovian property. It is supported by decades of measured data [2],
[3], [5], [8], [9], [18].

Fig. 5. Hypercube Markov state transition graphs for one, two, and three
trap systems.

Fig. 6. Bi-directionally coupled model for RTN. A non-stationary Markov
chain that drives, and is, in turn, driven by a DAE system.

Consider a circuit with M traps, where each trap contributes
to the IRTN of a specific device (multiple traps can belong to
the same device). Each trap has two possible states; so the
M-trap system has 2M possible states, which can be encoded
using M bits [with one bit per trap, where 0 (1) denotes
empty (filled)]. Mathematically, this corresponds to a state
transition graph that is an M-dimensional hypercube (Fig. 5
shows this for M = 1, 2, and 3). Each dimension represents a
unique trap, i.e., all hypercube edges along a given dimension
denote capture or release events involving a unique trap. So,
for every trap tr, all edges along the tr-dimension are annotated
with the propensities λc,tr(t) and λe,tr(t) (Fig. 5), resulting in
a time-inhomogeneous Markov chain.

In a circuit, however, the M-trap system is not isolated;
rather, its (discrete) state evolves simultaneously with the un-
derlying circuit, which has its own (continuous) state vector �x
of voltages and currents, represented by a differential algebraic
equation (DAE) system D [21], given by

D :
d

dt
�q(�x) + �f (�x) + �b(t) = �0.

Thus, RTN is produced by an M-dimensional hypercube
Markov chain, whose time-varying propensities are determined
by a state vector �x, which itself evolves according to a DAE
system D, whose �q and �f functions are, in turn, determined by
the Markov chain’s state. This bi-directionally coupled RTN
model is summarized by Fig. 6.

We note that commercial SPICE simulators typically sim-
ulate only deterministic DAEs (circuit equations), not the
Markov/DAE systems above. To circumvent this, one can
implement a non-stationary Markov process within a device
model such as BSIM. However, this may involve significantly
modifying the simulation engine, the device model, and the
interaction between the two. Instead, we have implemented
MUSTARD as an independent module (separate from the
device model), so that the modifications are largely confined
to the simulation engine. To use MUSTARD, one can either
modify one’s existing circuit simulator to interface with the
MUSTARD module, or switch to the circuit simulator that

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 77

Algorithm 1: Non-stationary RTN generation in SAMURAI
Input: Trap profile, Bias {Vgs(t), Id (t) . . .}, t0, tf
Output: Realistic IRTN (t) trace in time interval [t0, tf]
foreach trap tr in the device do1

compute λc(t), λe(t), t ∈ [t0, tf], for tr (e.g., use the model in [2]);2
λ∗ = λc(t0) + λe(t0);3
curr time = t0; curr state = tr.init state;4
times = [curr time]; states = [curr state];5
while curr time < tf do6

next cand time = curr time + exprand(1/λ∗);7
curr time = next cand time;8
if curr time > tf then break;9
if curr state == 1 then10

λnext = λe(curr time)11
else12

λnext = λc(curr time)13
end14
bool change the state = rand() < λnext/λ

∗;15
if change the state then16

times.append(curr time);17
states.append(curr state);18
curr state = (curr state == 1) ? 0 : 1;19
times.append(curr time);20
states.append(curr state);21

end22
end23
trap occupancy[tr] = [times, states];24

end25
compute IRTN (t) from trap occupancy[tr] (use, e.g., Eq. (1))26

is built into MUSTARD. Sometimes, however, neither choice
may be acceptable, and one may require the RTN analysis
module to work with existing simulators as they are. For this,
we have developed SAMURAI.

SAMURAI approximates the above bi-directionally cou-
pled Markov or DAE system with a unidirectionally coupled
Markov or DAE system. In SAMURAI, the time-varying
effect of the DAE state on the Markov propensities (i.e., non-
stationarity) is fully taken into account. However, the DAE
itself is not changed as and when individual RTN events occur.
Instead, the effects of RTN are incorporated in a new DAE
constructed at the end of the simulation (after an entire train
of RTN events). Thus, during a SAMURAI run, the influence
of individual RTN events, through the DAE, on the statistics
of future RTN events, is not taken into account. We call this
approximation the unidirectionally coupled RTN model.

IV. SAMURAI: A CAD Tool for Unidirectionally

Coupled RTN Simulation by Markov

Uniformization

We now discuss how to simulate the non-stationary, unidi-
rectionally coupled RTN model using Markov uniformization,
the core technique behind SAMURAI. Given a circuit netlist
(e.g., an SRAM/DRAM), and a time interval [t0, tf] during
which the circuit’s voltages and currents evolve continuously,
the goal is to construct a realistic, non-stationary RTN trace
for each device in the circuit, over [t0, tf]. For a single device,
assuming that λc + λe is constant for each trap [2], this is
achieved by Algorithm 1.

Algorithm 1 takes as input: 1) the trap profile of the
device (i.e., the position ytr and energy Etr of each trap), and
2) the time-varying bias conditions (e.g., Vgs(t)). The former
is obtained either from measured data or from technology-
specific trap profile models (e.g., [2]). The latter is obtained by
SPICE simulating the circuit over [t0, tf]. Algorithm 1 outputs
an IRTN (t) trace for the device, whose (time-varying) statistics
are guaranteed to be identical to those of the unidirectionally
coupled, non-stationary model of Section III.

Algorithm 1 works by generating more trap activity than
necessary, and then discarding some of this activity to preserve
the time-varying RTN statistics exactly. Line 3 computes λ∗,
an upper bound on the sum of the outward propensities from
every hypercube state. In each iteration of the while loop
(line 6), a candidate capture or release event is generated
(line 7) corresponding to a stationary two-state Markov chain
with both propensities set to λ∗. Thus, the original non-
stationary Markov chain is first uniformized into an easy-to-
simulate, stationary (but high-rate) Markov chain. However,
not all events in the high-rate chain correspond to the original
Markov chain: some high-rate events are spurious, and need to
be discarded. Algorithm 1 does this probabilistically (line 15),
by making a randomized decision to either keep or discard
each high-rate event. This exactly restores the non-stationarity
of the original Markov chain (as proved in [22]–[24]).

For circuits with multiple transistors (e.g., SRAMs), we
apply Algorithm 1 individually to each transistor, to obtain
one noise current source IRTN (t) per transistor. We now con-
struct a new circuit by including these noise sources between
the source and drain of the corresponding devices. Thus,
SAMURAI’s non-stationary analysis involves two SPICE sim-
ulations: 1) a simulation of the original circuit to obtain
the time-varying propensities, and 2) a simulation of a new
circuit derived by augmenting the original circuit with RTN
sources. These simulations can be performed by any SPICE
simulator, without modifying the simulator. Our paper [16]
illustrates these steps in detail, using a 90 nm SRAM cell and
SpiceOPUS [25] as the simulator.

V. SAMURAI: Validation Against Analytical

Expressions

As mentioned before, SAMURAI can generate non-
stationary RTN traces under arbitrarily time-varying bias con-
ditions. Although analytical expressions are not available for
such a general case, they are known for the restricted case
of constant gate bias [3], [8]. We now validate SAMURAI
against these expressions, as follows.

1) We run three validation experiments, using typical values
for the parameters Vgs, Etr, and ytr. In each experiment,
we fix two of these, and sweep the third. We simulate
these trap configurations under constant gate bias us-
ing Algorithm 1.

2) Algorithm 1 returns a trace IRTN (t), from which we es-
timate the autocorrelation [26] R(τ) = E[IRTN (t)IRTN (t +
τ)].

3) We translate the above results into the frequency domain,
by computing the power spectral density (PSD) [26]
S(f) numerically from R(τ).

4) We plot R(τ) and S(f) alongside analytical expressions
obtained from [3] and [8]. To understand the relative
importance of RTN, we also plot the PSD of thermal
noise in the device.

The results in Fig. 7(a)–(f) show that the RTN traces
predicted by SAMURAI closely match analytical expressions
in both the time domain [autocorrelation plots (a)–(c)] and the
frequency domain [spectral density plots (d)–(f)].

78 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 7. Plots showing that the RTN traces generated by SAMURAI closely match analytical predictions in both the [autocorrelation plots (a)–(c)] time
domain and the [spectral density plots (d)–(f)] frequency domain. For (a) and (d), ytr is swept uniformly in [0.2Tox, 0.8Tox], where Tox is the device oxide
thickness. For (b) and (e), Etr is swept uniformly in [Emin, Emax], where Emin and Emax have been defined in the trap profiling model of [2]. For (c) and (f),
Vgs has been swept uniformly in [0.2 V, 0.8 V]. Here, τ is measured in seconds, R(τ) in A2, all frequencies are in Hz, and all spectral densities are in A2/Hz.

Fig. 8. SAMURAI versus stationary analysis, for a 22-nm 6T SRAM cell.
Stationary analysis, being overly pessimistic, predicts an RTN-induced SRAM
write failure even when there is none. SAMURAI, under the same conditions,
does not predict any such failure. (a) SRAM cell inputs. (b) SRAM cell
outputs: no RTN. (c) SRAM cell outputs: stationary RTN. (d) SRAM cell
outputs: SAMURAI.

VI. SAMURAI Versus Stationary RTN Analysis

It is well known [3], [5], [14] that stationary analysis
often overestimates the impact of RTN, especially if circuit
operation involves rapidly switching devices [3]. In particular,
for SRAMs, we expect stationary methods to result in overly
pessimistic predictions compared to a non-stationary technique
such as SAMURAI. This is illustrated as follows.

Fig. 8 compares SAMURAI against stationary analysis, for
a 22-nm (BSIM3) 6T SRAM bit-cell. Consider writing the bit
“1” to this cell (which initially stores a “0”). Fig. 8(a) shows
the input waveforms BL, BL, and WL applied to write the “1.”
In the absence of RTN, the SPICE simulation of Fig. 8(b)

Fig. 9. Schematic proposed by Ye et al. [15] for producing traces that
approximate stationary (constant bias) RTN.

shows that the bit is properly written (i.e., Q and Q settle to
their desired values at the end of the write).

We now inject stationary RTN into the simulation, using
traps in devices M4 and M5 [see Fig. 13(a)]. To model
stationary traps, we set the capture and emission propensities
to constant values (independent of gate bias). This leads to
a uniform density of RTN events in each device, as seen
from Fig. 8(c), which depicts each RTN event by a vertical
bar. When this train of RTN events is included in the SPICE
simulation, it results in a bit error [the waveforms of Fig. 8(c)].
This is largely because, under the stationary assumption, near
t = 60 ns when the write operation begins, the traps in devices
M4 and M5 have a reasonably good chance of being filled. The
RTN produced by such filled traps slows down the devices,
causing a write failure.

Fig. 8(d) applies SAMURAI to the same SRAM cell for the
same inputs. In this case, the capture and emission propensities
do depend on gate bias (the positions, energy levels and other
parameters are the same as the previous stationary simulation).
This produces a train of non-stationary RTN events (i.e., with
a non-uniform event density) in each device, as seen from
the vertical bars of Fig. 8(d). In particular, the time point
near t = 60 ns, when the write operation begins, falls in a
low density region. At this instant, the traps in M4 and M5
have a much greater chance of being empty than filled, which

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 79

Fig. 10. Comparing SAMURAI against 2-stage RTN generation. The top three plots demonstrate that, even for stationary RTN, the 2-stage method, unlike
SAMURAI, does not closely match analytical expressions. The middle three plots show that the 2-stage method can mispredict RTN by several dB, whereas
SAMURAI is always within 1 dB of the true spectral density. The bottom three plots show that SAMURAI is much faster than 2-stage RTN generation (note
that runtimes are plotted on a logarithmic scale).

makes an RTN-induced write failure very unlikely. This point
is completely ignored by stationary analysis, but is captured by
SAMURAI (for example, the waveforms of Fig. 8(d), which
includes non-stationary RTN, do not show a bit error).

We note that the trap time constants used to generate Fig. 8
are in the nanosecond range, which is physically unrealistic
(typical time constants tend to be much longer). We have
used such small time constants mainly for convenient visual
depiction, and to illustrate that SAMURAI makes more re-
alistic predictions than stationary analysis under similar time
constants [5]. Please see Section XII for a longer discussion.

VII. SAMURAI: Comparison Against 2-Stage

RTN Generation

We now compare SAMURAI against a recently proposed
approach [15] for RTN generation. This approach is based on
the observation that white noise, on being RC-filtered, exhibits

a spectrum similar to stationary RTN. From this, Ye et al.
proposed a schematic (Fig. 9) to generate approximate RTN
traces for a single trap under constant gate bias.

As Fig. 9 shows, each trap is simulated by a 2-stage “RC
filter followed by comparator” structure driven by white noise
(with the noise sources of different traps being independent
of one another). The above circuit outputs a two-level signal,
which is taken to be the trap occupancy function. The filter
parameters, and the threshold Vc of the second comparator,
are chosen depending on the stationary trap parameters τc and
τe (reciprocals of λc and λe, respectively).

To compare SAMURAI against the above method, we
perform the following steps.

1) We generate several trap configurations by varying Vgs,
Etr, and ytr (as before, we fix two parameters at a time,
and sweep the third). We compute τc and τe for each
trap [2].

80 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

2) We start the timer. For each trap, we compute the
parameters R, C, and Vc using [15], and SPICE-
simulate the corresponding 2-stage circuit over time
interval [0, 1000(τc +τe)], with time step 0.1(τc +τe). We
stop the timer and denote the elapsed time by t2-stage.

3) We simulate each trap under constant bias, for the
same time interval [0, 1000(τc + τe)], using SAMURAI.
We also time SAMURAI, letting tSAMURAI denote the
elapsed time.

4) From the RTN traces returned by both methods, we
numerically estimate the autocorrelations R(τ) and the
PSDs S(f) (similar to Section V).

5) We plot the above PSDs alongside analytical expressions
(the top three plots of Fig. 10). We also plot the average
dB error in the PSD, |Spredicted − Sanalytical| (the middle
three plots of Fig. 10). Finally, we plot the runtimes
t2−stage and tSAMURAI (the bottom three plots of Fig. 10).

While carrying out the above, we observed that for all
trap configurations, SAMURAI closely matched the analytical
expression, whereas the 2-stage method did not. Therefore, in
each of the top three plots of Fig. 10, we have presented one
scenario where the 2-stage method matched the analytical PSD
well, and one where it does not match so well.

The middle three plots of Fig. 10 show that SAMURAI
surpasses the 2-stage method in accuracy; whereas the 2-
stage method can significantly mis-predict even stationary
RTN (at times, by as much as 7 dB), the error in SAMURAI
is always within about 1 dB (the theory of uniformiza-
tion guarantees that SAMURAI is stochastically exact; how-
ever, a small error is expected because of numerical trunca-
tions, both in the simulation and in the autocorrelation/PSD
estimation).

The bottom three plots of Fig. 10 highlight the speedups
that SAMURAI offers over the 2-stage method. For every trap
configuration that we tested, SAMURAI was many times faster
than the 2-stage method; indeed, a logarithmic scale is needed
for convenient visual depiction. In Fig. 10, the speed-ups are
indicated alongside the log(runtime) bars for each trap. As
the figure shows, SAMURAI can be four orders of magnitude
faster than 2-stage RTN generation.

We note that the 2-stage method [15] spends the bulk of its
time simulating white noise sources (one for each trap) in the
time domain. This requires SPICE to take very small time-
steps, even if the underlying circuit can tolerate much larger
steps (as is indeed the case for the above experiments, since the
gate voltages are constant). By contrast, SAMURAI does not
require time-consuming time-domain white noise simulation,
which makes it much faster than the 2-stage method.

VIII. MUSTARD: A CAD Tool for Bi-Directionally

Coupled RTN Simulation

Having presented and validated an algorithm for unidirec-
tional RTN, we now extend it to the bi-directionally coupled
case, which forms the core of MUSTARD.

A. Stochastic Simulation of Bi-Directionally Coupled Markov/
DAE Systems by Uniformization

Algorithm 2 describes MUSTARD’s strategy for generating
non-stationary RTN at the circuit level (assuming [2] that the

Fig. 11. (a) Flowchart describes Algorithm 2, while the (b) dependence
graph illustrates its implementation in MUSTARD. An arrow from u to v

indicates that the module u depends on the module v.

sum λc+λe is constant for each device trap). Similar to SAMU-
RAI, the algorithm first uniformizes the time-inhomogeneous
RTN Markov chain into a stationary high-rate chain, which
is then simulated using Gillespie’s algorithm [27]. Again like
SAMURAI, later in the simulation, a probabilistic decision
discards some of the generated RTN events, which restores
the non-stationarity of the original RTN hypercube.

The crucial difference between MUSTARD (Algorithm 2)
and SAMURAI (Algorithm 1) is that: MUSTARD ensures
that the effects of individual RTN events on the circuit’s DAE
are incorporated in a bi-directionally coupled manner, i.e., the
DAE is updated as soon as the RTN events occur (lines 19 and
20). This enables MUSTARD to overcome the main limitation
of SAMURAI. Moreover, MUSTARD and SAMURAI both
have the same runtime, so MUSTARD’s improved accuracy is
achieved at no extra computational cost.

B. MUSTARD’s Software Architecture

We intend to release MUSTARD as an open-source tool for
RTN analysis. To encourage early adoption, we have imple-
mented a modular, easily extensible, easily maintainable archi-
tecture for MUSTARD (Fig. 11). To integrate RTN simulation
more efficiently with circuit simulation, we have implemented
much of the circuit simulation functionality from scratch. Also,
the RTN-related modules (indicated using double-bordered
boxes) are maintained separately from the rest of the simulator,
making it easy to experiment with different trap configurations,
statistical parameters, IRTN equations, etc.

IX. MUSTARD Versus SAMURAI

We now illustrate the differences between SAMURAI
and MUSTARD, in terms of bit-error predictions using a
22-nm (BSIM3) 6T SRAM cell. Because SAMURAI does
not consider “second-order effects” (i.e., how each RTN event
affects the statistics of subsequent events), its predictions
are valid only as long as the circuit’s voltages and currents,
in the presence of RTN, are approximately equal to the
nominal voltages and currents. For SRAMs, this holds
only until the first read or write failure. After that, the
voltages in the presence of RTN differ greatly from the
nominal voltages, which may render SAMURAI’s predictions
invalid. MUSTARD, however, continually updates the circuit

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 81

Algorithm 2: Circuit simulation with non-stationary RTN in MUSTARD

Input: Circuit DAE D, initial circuit and trap states at time t0, final time tf
Output: Circuit simulation trace with realistic, non-stationary RTN in time

[t0, tf]

// uniformise the RTN Markov chain to a high-rate λ∗
λ∗ = 0;1
foreach trap tr in the circuit do λ∗+ = λc,tr(t0) + λe,tr(t0);2

t curr = t0; x curr = x0; tr curr = tr0;3

while t curr < tf do4

// generate a candidate time for the next RTN event
t next RTN = t curr + exprand(1/λ∗);5

// simulate the circuit’s DAE D until t next RTN
while t curr < min(tf , t next RTN) do6

record(t curr, x curr, tr curr);7
t next = min(t curr + t step, t next RTN, tf);8
x next = LMSSolve(D, t curr, x curr, t next);9
// LMSSolve can be any standard DAE solution

method
// e.g., Forward Euler, Backward Euler,

Trapezoidal
t curr = t next; x curr = x next;10

end11

// time to make a probabilistic decision
// to either keep or discard the candidate RTN event
if t curr < tf then12

u = rand(); // u is uniformly distributed in [0, 1]13
sum = 0;14
foreach trap tr in the circuit do15

// compute propensity of trap tr to change
state

// detailed stochastic models available for
this

// by default, MUSTARD uses [2]
λ[tr] = tr curr[tr] ? λe,tr(x curr) : λc,tr(x curr);16
if u ≥ sum/λ∗ AND u < (sum + λ[tr])/λ∗ then17

// Keep the RTN event: trap tr changes
state!

tr curr[tr] = !(tr curr[tr]);18

// update circuit’s DAE to reflect RTN
event

// many literature models available for
this

// by default, MUSTARD uses [19]
x curr = new ckt state after RTN event at tr;19
D = new ckt DAE after RTN event at tr;20
break;21

end22
sum += λ[tr];23

end24
end25

end26

equations to reflect the higher-order effects of bi-directionally
coupled RTN, so its predictions are always valid.

Fig. 12 illustrates the above, for a 22-nm 6T SRAM cell.
Fig. 12(a) depicts the inputs to the bit-cell (to write the bit
sequence “011”). In the absence of RTN, the SPICE simulation
of Fig. 12(b) shows that this sequence is written properly.

We now use SAMURAI to generate (non-stationary)
RTN, using nominal voltages/currents from the simulation
of Fig. 12(b). This produces a train of RTN events, with a
non-uniform event density, in each device [the vertical bars
of Fig. 12(c)]. However, when these events are included in the
simulation, a bit error results at t ≈ 96 ns [Fig. 12(c)]. After
this, the nominal Q is close to VDD, but the Q in the presence
of RTN is close to 0 V. Therefore, SAMURAI’s predictions
are not valid after t = 96 ns. MUSTARD, however, fully takes
the first bit error into account for generating subsequent RTN
events. So MUSTARD’s predictions eventually differ mate-
rially from those of SAMURAI. For example, in Fig. 12(c),

Fig. 12. MUSTARD versus SAMURAI. Until the first bit error, SAMURAI
and MUSTARD make similar predictions. But after that, SAMURAI makes
less reliable predictions than MUSTARD. (a) SRAM cell inputs. (b) SRAM
cell outputs: no RTN. (c) SRAM cell outputs: SAMURAI. (d) SRAM cell
outputs: MUSTARD.

Fig. 13. (a) Writing a “1” to the 6T SRAM cell. Dashed (solid) arrows
indicate the direction of Id (IRTN) in each transistor. (b)–(d) RTN, coming
on the top of a 100 mV Vth shift due to parameter variations, can produce an
SRAM write error.

SAMURAI wrongly predicts that the second attempt at writing
a “1” would also fail, whereas MUSTARD correctly predicts
a successful second write attempt [Fig. 12(d)].

We note that the trap time constants used to generate Fig. 12
are in the nanosecond range, which is physically unrealistic
because typical time-constants tend to be much longer. We
have used such small time-constants mainly for convenient
visual depiction, and to illustrate that MUSTARD makes
more reliable predictions than SAMURAI under similar
assumptions about time constants. Please see Section XII for
a longer discussion.

X. Applications to SRAM Design

We now apply Algorithm 2 to conduct bi-directionally
coupled, non-stationary analysis of RTN in 22-nm SRAMs.

A. Prediction of RTN-Induced SRAM Write Failures

RTN-induced write failures have been experimentally ob-
served in deep submicron SRAMs [4]. To reproduce these, we

82 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 14. Examining MUSTARD’s simulation trace (including trap occupancies and RTN currents) during the clock cycles prior to the write failure of Fig.
13. Parts (a) and (b) show that, in the absence of RTN, the bit-cell is robust to write failure (even with significant Vth variability). Part (c) shows that RTN
events are harmless in the absence of a Vth shift, while part (d) pinpoints the specific RTN events that were responsible for the write failure depicted in Fig.
13. In all plots, the x-axis denotes time (in ns). For the Q/Q plots, the y-axis denotes voltage (in volts). For trap occupancy plots, the y-axis is discrete, with
E meaning empty and F meaning filled. In the IRTN plots, the y-axis denotes current in μA.

designed a 22-nm 6T SRAM cell (using the BSIM3 model,
with parameters obtained from [28]) and studied its non-
stationary RTN using Algorithm 2.

Fig. 13 illustrates an RTN-induced failure predicted by
MUSTARD for the above bit-cell. Part (a) shows the biases
under which this failure occurs. The expected directions of Id

(dashed arrows) and IRTN (solid arrows) are also indicated next
to each transistor. If there is no RTN and no Vth shift, we see
from Fig. 13(b) that Q properly settles to logical 1 (or Vdd).

We now introduce a 100 mV shift (to model parameter
variability) to the Vth of pass transistors M1 and M2. Even
so, the SRAM cell, in the absence of RTN, latches on to the
correct value of Q by the end of the clock cycle [Fig. 13(c)].

Now we bring in RTN, by injecting one trap each into
devices M1, M2, M4 and M5. As a result, the SRAM cell is
no longer able to respond by the end of the clock cycle [Fig.
13(d)]. This is because RTN currents in M1 and M4 (M2
and M5) oppose the nominal currents driving Q (Q) to
1 (0), sufficient to cause a bit error. Thus, we have used
MUSTARD to reproduce results previously obtainable only
by measurement.

In addition, MUSTARD offers significant “debuggability”
advantages over pure measurement. For example, now that
a bit error has been discovered, the entire simulation trace
of RTN events leading up to the bit error can be examined

(Fig. 14). From this, it is possible to precisely pinpoint which
RTN events triggered the failure [Fig. 14(d)].

Fig. 14(a) and (b) shows simulations, without RTN, of the
SRAM cell with and without Vth shifts. Fig. 14(c) shows that
RTN current spikes that occur in the absence of Vth shifts
are unable to cause bit errors. However, in the presence of
Vth shifts, similar spikes do produce bit errors [Fig. 14(d)].
Indeed, it is clear that the RTN events of M1 and M2 (pointed
out in the figure), which produce RTN spikes (also pointed
out in the figure) just as the SRAM cell is switching from 0
to 1, must have been responsible for this particular bit error.

As before, we note that the trap time-constants used to
generate Fig. 13 are physically unrealistic, and that we have
used them mainly for convenient visual depiction, and to
illustrate the kinds of predictions that our tools are capable
of making. For more realistic results, it is necessary to use
technology-specific trap time-constants, which are likely to
be much larger, and as a result, require longer transient
simulations. Please see Section XII for a longer discussion.

B. Statistical Inferences About RTN-Induced SRAM Failures

SRAM arrays typically contain thousands of cells, spanning
a wide range of Vth values and trap populations. To ascertain
the impact of RTN on such circuits, we performed a large
number of MUSTARD simulations.

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 83

Fig. 15. MUSTARD simulations of RTN in 22-nm SRAM cells. For each
(Vth, Vdd, N) triple, a few hundred random N-traps-per-transistor configura-
tions are sampled and MUSTARD-simulated over a random bit pattern. The
circles indicate a bit error even without RTN. The dark squares indicate a
bit error with RTN, which would not have occurred if RTN had been absent.
The light squares indicate robust bit cells (no bit errors even with RTN).
(a) N = 2. (b) N = 4. (c) N = 6. (d) N = 8.

Fig. 16. Bit error probabilities as a function of Vdd . For each Vdd , several
SRAM cells, with randomly distributed trap configurations and Vth values, are
sampled and MUSTARD-simulated. Vth is sampled from a normal distribution,
while trap configurations are sampled using the model proposed in [2].

Fig. 15 shows plots generated by sweeping the pass tran-
sistors’ Vth and the supply voltage Vdd , for various RTN
strengths (i.e., two, four, six, and eight traps per device).
As the figure shows, the (Vth, Vdd) space is roughly banded
into three regions: 1) a region with circles, containing bit
errors even without RTN; 2) a dark-squared region containing
bit errors with RTN, which would have been absent without
RTN; and 3) a light-squared region containing no bit errors
even with RTN. The dark-squared region, therefore, isolates
the contribution of RTN toward reducing the SRAM design
margin. As expected, this region becomes bigger as the number
of traps increases. On average, the effect of RTN seems
equivalent to a Vth shift of about 0.02V to 0.06V, which tallies
with measured data [4].6

Fig. 16 quantifies the bit-error impact of RTN on SRAM
arrays. Using a normal distribution for Vth and the trap
profiling model of [2], we have computed the probability of
write failure as Vdd is increased from 0.7 V to 1.0 V. As

6Please note that N in Fig. 15 is the total number of device traps, not the
number of active traps. For example, even though eight traps may exist per
device (for N = 8), only one to two traps may be active at each bias point,
consistent with measured data. As the simulation progresses, SAMURAI and
MUSTARD both automatically keep track of which traps are active at each
bias.

expected, the failure probability decreases with increasing Vdd ,
whether or not RTN is present. However, in the presence of
RTN, the bit error probability diminishes with Vdd at a reduced
rate, leading to a higher failure probability at every Vdd .

We note that, even though the number of active device
traps may average only 1 to 2 [10], [12], [13], the actual
number is often a Poisson random variable [2], [12], which
occasionally assumes a value much greater than average. For
example, consider the Intel Core i7 processors that have 8 MB
of shared L3 (SRAM) cache memory. Of the 8 million bit-
cells in this SRAM, at least a few hundred cells are likely
to have much higher trap counts than average.7 Such “high-
trap-count” bit-cells are particularly vulnerable to RTN, and
can break the error correcting code of the SRAM. Thus, it
is necessary to simulate a large number of such vulnerable
bit-cells (analogous to importance sampling), to determine
the process/trap corners at which RTN-induced failures can
occur (we have done this, using MUSTARD, in Fig. 15).
Although such process/trap corners seem unlikely, they must
be accurately accounted for, because they can degrade the
5σ to 6σ yield that SRAMs typically need. For example, the
failure rates in Fig. 16 correspond to yields much lower than
5σ, indicating that significant re-design is required.

XI. Applications to DRAM Design

We now apply MUSTARD to study the impact of RTN on
DRAM refresh time. Fig. 17(a) shows how the stored value
Q of a 22-nm DRAM cell evolves with time as the bit “1” is
written to it.8 The figure shows that, whether or not a Vth shift
is present, RTN always has some impact on the stored analog
value Q of a DRAM cell. For the same simulation, Fig. 17(b)
shows the number of filled traps as a function of time, while
Fig. 17(c) shows the RTN currents IRTN (t) [whose directions
are along the solid arrow below device M1 of Fig. 17(a)]. In
all four cases, it is seen that IRTN (t) starts at 0, attains a peak
value and tapers off towards the end of the write. This can
be explained as follows. In the beginning, the transistor is off,
so there is no RTN and the traps are likely to be empty [3]
(because their emission propensities are much higher than their
capture propensities). As the gate voltage is increased, the
traps start demonstrating activity (because their capture and
emission propensities are now comparable), which leads to
increased RTN current. As Q rises further, the propensities are
still comparable, but the nominal current Id becomes smaller
and smaller. Therefore, even though trap activity continues
[as seen from Fig. 17(b)], the waveform modulating the trap
activity becomes small, thereby causing RTN to taper off.

Again, we note that the trap time-constants used to gener-
ate Fig. 17 are physically unrealistic, and that we have used
them mainly for convenient visual depiction, and to illustrate
the kinds of predictions that our tools are capable of making. In
particular, while the explanations above help to understand the

7For instance, assuming a Poisson mean of 1, about 1 in 16 000 bit cells is
expected to have at least one device with ≥ 8 active traps.

8Please note that, while writing a “1” to a DRAM cell, WL has to be held
at VDD + Vth for Q to approach VDD; otherwise, if both WL and BL are held
at VDD, then Q will only reach VDD − Vth, before the device gets switched
off.

84 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

Fig. 17. RTN analysis of DRAMs using MUSTARD. (a)–(c) Plots showing that MUSTARD is able to simulate non-stationary, coupled RTN within a DRAM
cell [circuit shown in (a)]. (d)–(f) Plots of statistical results obtained by MUSTARD-simulating hundreds of DRAM cells, with different threshold voltages
and trap configurations.

predictions made by MUSTARD under the small time-constant
assumption, it is necessary to use (much longer) technology-
specific time-constants for a more realistic RTN analysis.

Fig. 17(d)–(f) shows the impact of RTN on DRAM refresh
time, an important figure-of-merit that characterizes how long
a DRAM cell can retain a stored value (before leakage currents
eventually corrupt it). Fig. 17(d) shows that a DRAM cell with
higher Vth needs to be refreshed more often. For two DRAM
cells with the same Vth, the one with higher trap count needs
to be refreshed more often (because, on average, the increased
RTN would weaken its stored value to a greater extent).
Fig. 17(e) shows that the refresh frequency can be reduced as
Vdd increases. However, more traps necessitate more frequent
refreshes. Fig. 17(f) plots the probability of a DRAM bit-
error against refresh frequency; this plot was generated by
MUSTARD-simulating hundreds of DRAM cells.

XII. Discussion

Here, we discuss two important issues: 1) the unusually fast
traps used in this paper, and 2) using SAMURAI/MUSTARD
when the sum λc + λe is bias dependent.

The unusually fast traps: We note that most RTN simu-
lations in this paper use traps with time constants smaller
than experimentally reported data. This enabled us to gener-
ate SRAM/DRAM failures within relatively short simulation
runs that could be visually depicted in this paper. Also, the
shortened time constants illustrate SAMURAI/MUSTARD’s
ability to perform accelerated RTN testing, a much needed
feature [1], [4]. The motivation is that, if traps transition

only once every millisecond or so, it would take prohibitively
long measurements or simulations to produce statistical failure
estimates for circuits clocked in the nanosecond range, like
SRAMs. We overcome this difficulty by speeding up the
traps, to make their time constants comparable to the circuit’s
operating frequency. This ensures that all trap states can be
covered during shorter simulation runs, from which circuit
failure probabilities can be quickly estimated.9

An adaptive λ∗ extension for SAMURAI/MUSTARD: Algo-
rithms 1 and 2 both require a λ∗ that is an upper bound on
the Markov propensities (Section III) for all time. While the
tightness of the upper bound does not affect the correctness
of either SAMURAI or MUSTARD, the simulation becomes
more efficient as the bound’s tightness improves (since fewer
events will be discarded). For the RTN model of [2] (which
assumes a constant λc + λe), it is straightforward to compute
λ∗ at time 0, and prove its validity for all time (Algorithms 1
and 2). However, such a “pre-computable upper bound” is not
necessary for SAMURAI/MUSTARD to work. For example,
an anonymous reviewer brought [29] to our attention, which
reports trap behaviors that do not obey the assumptions of [2].
For such traps, it may be difficult to compute a valid λ∗ at time
0. So, we have developed an extension of MUSTARD (Al-
gorithm 3) that learns λ∗ adaptively. The extended algorithm
eliminates the need to select λ∗ at the beginning; instead, λ∗

is changed “on the fly” during the course of the simulation.

9Of course, both SAMURAI and MUSTARD can handle arbitrary time con-
stants, and can run without acceleration if desired. The resulting simulations,
however, would require more time.

AADITHYA et al.: ACCURATE PREDICTION OF RANDOM TELEGRAPH NOISE EFFECTS IN SRAMS AND DRAMS 85

Algorithm 3: Extending MUSTARD’s core technique to
adaptively learn the upper bound λ∗

Input: Circuit DAE D, initial circuit and trap states at time t0 , final time tf

Output: Circuit simulation trace with realistic, non-stationary RTN in time [t0, tf]

t curr = t0; x curr = x0; tr curr = tr0;1

while t curr < tf do2

// guess a value for λ∗

λ∗
guess = guess lambda star(set of all traps tr in the circuit, x curr, tr curr);3

// take snapshot of current state

// to revert back in case λ∗
guess

is found to be invalid

t prev = t curr; x prev = x curr;4

// generate a candidate time for the next RTN event

t next RTN = t curr + exprand(1/λ∗
guess);5

// simulate the circuit’s DAE D until t next RTN

while t curr < min(tf , t next RTN) do6

record(t curr, x curr, tr curr);7
t next = min(t curr + t step, t next RTN, tf);8
x next = LMSSolve(D, t curr, x curr, t next);9
// LMSSolve can be any standard DAE solution method

// e.g., Forward Euler, Backward Euler, Trapezoidal

t curr = t next; x curr = x next;10

// check if λ∗
guess

is valid

λ∗
check = 0;11

foreach trap tr in the circuit do λ∗
check+ = (tr curr[tr] ? λe,tr (x curr) : λc,tr (x curr));12

if λ∗
check > λ∗

guess then13
// λ∗

guess
is too small, increase it

λ∗
guess *= 1 + η(x curr, tr curr);14
// start again from t prev with new candidate RTN event

clear records(t prev);15
t curr = t prev; x curr = x prev;16
t next RTN = t curr + exprand(1/λ∗

guess);17
end18

end19

// time to make a probabilistic decision

// to either keep or discard the candidate RTN event

if t curr < tf then20
u = rand(); // u is uniformly distributed in [0, 1]21
sum = 0;22
foreach trap tr in the circuit do23

// compute propensity of trap tr to change state

λ[tr] = tr curr[tr] ? λe,tr (x curr) : λc,tr (x curr);24
if u ≥ sum/λ∗

guess AND u < (sum + λ[tr])/λ∗
guess then25

// Keep the RTN event: trap tr changes state!

tr curr[tr] = !(tr curr[tr]);26

// update circuit’s DAE to reflect RTN event

x curr = new ckt state after RTN event at tr;27
D = new ckt DAE after RTN event at tr;28
break;29

end30
sum += λ[tr];31

end32
end33

end34

Algorithm 3 works by guessing an upper bound λ∗
guess,

which needs to be valid only until the next candidate RTN
event. As the simulation progresses, the algorithm keeps
track of the time-varying propensities, and at each time-step,
checks whether the guessed λ∗ is valid. If, at any time, the
guess becomes invalid, the algorithm reverts back to the time
of the previous event, and restarts the simulation from there
with an improved guess. We note that an initial guess that is
too high would considerably impair the algorithm’s efficiency.
To avoid this, it is important to have the guess−lambda−star()
routine make an aggressive (low) guess. Another solution
would be to continuously monitor the fraction of discarded
RTN events, and reduce λ∗

guess if necessary.

XIII. Conclusions and Future Work

In this paper, we presented two techniques, SAMURAI
and MUSTARD, for circuit-level non-stationary RTN analysis.
While SAMURAI is interoperable with existing SPICE simu-

lators, MUSTARD sacrifices interoperability for the ability to
analyze bi-directionally coupled RTN. Both tools are highly
generic; they work with 1) any circuit design (e.g., 6T/9T
SRAMs, 1T/3T DRAMs), 2) any device model (e.g., BSIM,
PSP), and 3) any RTN model (e.g., number/mobility fluctua-
tion, with any number of traps per device, any number of them
being active). We used MUSTARD to duplicate experimentally
observed RTN-induced SRAM failures, and variable DRAM
retention times. We were also able to generate statistical
characterizations of RTN-induced SRAM/DRAM failures, in
the presence of variability.

References

[1] Y. Tsukamoto, S. O. Toh, C. Shin, A. Mairena, T. J. K. Liu, and
B. Nikolic, “Analysis of the relationship between random telegraph
signal and negative bias temperature instability,” in Proc. IEEE Intl.
Reliability Phys. Symp., May 2010, pp. 1117–1121.

[2] M. V. Dunga, “Nanoscale CMOS modeling,” Ph.D. dissertation,
Dept. Electr. Eng. Comput. Sci., Univ. California, Berkeley, 2008
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-20.html

[3] H. Tian and A. El Gamal, “Analysis of 1/f noise in switched MOS-
FET circuits,” IEEE Trans. Circuits Systems II Analog Digital Signal
Process., vol. 48, no. 2, pp. 151–157, Feb. 2001.

[4] S. O. Toh, Y. Tsukamoto, Z. Guo, L. Jones, T. J. K. Liu, and B. Nikolic,
“Impact of random telegraph signals on Vmin in 45 nm SRAM,” in Proc.
IEEE IEDM, Dec. 2009, pp. 767–770.

[5] J. S. Kolhatkar, “Steady-state and cyclo-stationary RTS noise in MOS-
FETS,” Ph.D. dissertation, Dept. Electr. Eng., Math. Comput. Sci., Univ.
Twente, Twente, The Netherlands, 2005.

[6] T. Umeda, K. Okonogi, K. Ohyu, S. Tsukada, K. Hamada, S. Fujieda,
and Y. Mochizuki, “Single silicon vacancy-oxygen complex defect and
variable retention time phenomenon in DRAMs,” Appl. Phys. Lett., vol.
88, no. 25, p. 253504, 2006.

[7] N. Tega, H. Miki, Z. Ren, C. P. D’Emic, Y. Zhu, D. J. Frank, J. Cai,
M. A. Guillorn, D. G. Park, W. Haensch, and K. Torii, “Reduction of
random telegraph noise in high-K metal-gate-stacks for 22 nm generation
FETs,” in Proc. IEEE IEDM, Dec. 2009, pp. 771–774.

[8] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A
new perspective on individual defects, interface states and low-frequency
1/f noise,” Advances Phys., vol. 38, no. 4, pp. 367–468, 1989.

[9] A. van der Ziel, Noise in Solid State Devices and Circuits. New York:
Wiley Interscience, 1976.

[10] S. Lee, H. J. Cho, Y. Son, D. S. Lee, and H. Shin, “Characterization of
oxide traps leading to RTN in high-K and metal gate MOSFETS,” in
Proc. IEEE IEDM, Dec. 2009, pp. 763–766.

[11] G. I. Wirth, J. Koh, R. da Silva, R. Thewes, and R. Brederlow, “Modeling
of statistical low frequency noise of deep submicron MOSFETS,” IEEE
Trans. Electron Devices, vol. 52, no. 7, pp. 1576–1588, Jul. 2005.

[12] T. Nagumo, K. Takeuchi, S. Yokogawa, K. Imai, and Y. Hayashi, “New
analysis methods for comprehensive understanding of random telegraph
noise,” in Proc. IEEE IEDM, Dec. 2009, pp. 759–762.

[13] N. Tega, H. Miki, F. Pagette, D. J. Frank, A. Ray, M. J. Rooks,
W. Haensch, and K. Torii, “Increasing threshold voltage variation due
to random telegraph noise in FETs as gate lengths scale to 20 nm,” in
Proc. Symp. VLSI Technol., 2009, pp. 50–51.

[14] A. S. Roy and C. C. Enz, “Analytical modeling of large-signal cyclo-
stationary low-frequency noise with arbitrary periodic input,” IEEE
Trans. Electron Devices, vol. 54, no. 9, pp. 2537–2545, Sep. 2007.

[15] Y. Ye, C. C. Wang, and Y. Cao, “Simulation of random telegraph
noise with 2-stage equivalent circuit,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, Nov. 2010, pp. 709–713.

[16] K. V. Aadithya, A. Demir, S. Venugopalan, and J. Roychowdhury,
“SAMURAI: An accurate method for modelling and simulating non-
stationary random telegraph noise in SRAMs,” in Proc. Design Autom.
Test Conf. Eur., Mar. 2011, pp. 1113–1118.

[17] K. V. Aadithya, A. Demir, S. Venugopalan, and J. Roychowdhury,
“MUSTARD: A coupled, stochastic/deterministic, discrete/continuous
technique for predicting the impact of random telegraph noise on
SRAMs and DRAMs,” in Proc. Design Autom. Conf., Jun. 2011, pp.
292–297.

86 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 1, JANUARY 2013

[18] A. van der Ziel, “Unified presentation of 1/f noise in electron devices:
Fundamental 1/f noise sources,” Proc. IEEE, vol. 76, no. 3, pp. 233–258,
Mar. 1988.

[19] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph
noise of deep-submicrometer MOSFETs,” IEEE Electron Device Lett.,
vol. 11, no. 2, pp. 90–92, Feb. 1990.

[20] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A physics-based
MOSFET noise model for circuit simulators,” IEEE Trans. Electron
Devices, vol. 37, no. 5, pp. 1323–1333, May 1990.

[21] J. Roychowdhury, “Numerical simulation and modeling of electronic
and biochemical systems,” Found. Trends Electron. Design Autom., vol.
3, nos. 2–3, pp. 97–303, 2009.

[22] P. Heidelberger and D. M. Nicol, “Conservative parallel simulation
of continuous time Markov chains using uniformization,” IEEE Trans.
Parallel Distributed Syst., vol. 4, no. 8, pp. 906–921, Aug. 1993.

[23] A. P. A. van Moorsel and K. Wolter, “Numerical solution of nonhomo-
geneous Markov processes through uniformization,” in Proc. 12th Eur.
Multiconference Simulation, 1998, pp. 710–717.

[24] J. G. Shanthikumar, “Uniformization and hybrid simulation/analytic
models of renewal processes,” Oper. Res., vol. 34, no. 4, pp. 573–580,
1986.

[25] [Online]. Available: http://www.spiceopus.si/.
[26] A. Papoulis, S. U. Pillai, and S. Unnikrishna, Probability, Random

Variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
[27] D. T. Gillespie, “A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions,” J. Comput.
Phys., vol. 22, no. 4, pp. 403–434, 1976.

[28] [Online]. Available: http://ptm.asu.edu/modelcard/HP/22nm−HP.pm
[29] H. Miki, M. Yamaoka, N. Tega, Z. Ren, M. Kobayashi, C. P. D’Emic,

Y. Zhu, D. J. Frank, M. A. Guillorn, D. Park, W. Haensch, and K. Torii,
“Understanding short-term BTI behavior through comprehensive ob-
servation of gate-voltage dependence of RTN in highly scaled high-
K/metal-gate pFETs,” in Proc. Symp. VLSI Technol., 2011, pp. 148–149.

Karthik V. Aadithya received the Bachelors degree
in electrical engineering from the Indian Institute of
Technology Madras, Chennai, India, in 2009.

He is currently a Graduate Student with the Donald
O. Pederson Center for Electronic Systems Design,
University of California, Berkeley. He works with
Prof. Roychowdhury on developing computer-aided
design tools to analyze the circuit-level impact of
device-level variability or noise. His current research
interests include modeling, analysis, and simulation
of analog effects in current and future generation

analog, digital, and mixed-signal circuits.

Alper Demir (F’12) received the B.S. degree
in electrical engineering from Bilkent University,
Ankara, Turkey, in 1991, and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ences from the University of California, Berkeley, in
1994 and 1997, respectively.

He was with Motorola, Austin, TX, in 1995, with
Cadence Design Systems, San Jose, CA, in 1996,
with Bell Laboratories Research, Murray Hill, NJ,
from 1997 to 2000, with CeLight, Iselin, NJ (a
start-up company in optical communications), from

2000 to 2002, with the Research Laboratory for Electronics, Massachusetts
Institute of Technology, Cambridge, in 2002 and August 2005, and with
the University of California, Berkeley, from September 2009 to September
2010, as a Visiting Professor. He was with the Department of Electrical and
Electronics Engineering, Koç University, Istanbul, Turkey, as an Assistant
Professor from February 2002 to December 2007, and has been an Associate
Professor since January 2008. His work at Bell Laboratories and CeLight
is the subject of six patents. He has co-authored two books in the areas of
nonlinear-noise analysis and analog-design methodologies, and has published
about 50 articles in journals and conferences. His current research interests

include computational prototyping of electronic and optoelectronic systems,
numerical modeling and analysis, stochastic dynamical systems, and noise in
nonlinear electronic, optical, communication and biological systems.

Dr. Demir is an Associate Editor of the IEEE Transactions on

Computer-Aided Design of Circuits and Systems. He was the recipient
of several Best Paper Awards, including the 2002 Best of International Con-
ference on Computer-Aided Design (ICCAD) Award: 20 Years of Excellence
in CAD, the 2003 IEEE/ACM William J. McCalla ICCAD Best Paper Award,
and the 2004 IEEE Circuits and Systems Society Guillemin-Cauer Best
Paper Award. In 1991, he was the recipient of the Regents Fellowship and
the Eugene-Mona Fay Gee Scholarship from the University of California,
Berkeley, and was selected to be an Honorary Fellow of the Scientific and
Technological Research Council of Turkey (TUBITAK). In 2003, he was
selected by the Turkish Academy of Sciences to receive the Distinguished
Young Scientist Award, in 2005, he won a TUBITAK Career Award, and in
2007, he received the TUBITAK Young Scientist Award. In 2009, he was
awarded the 2219 Research Fellowship by TUBITAK for his sabbatical year
at Berkeley.

Sriramkumar Venugopalan received the B.Tech.
degree in electrical engineering (EE) from the Indian
Institute of Technology Kanpur, Kanpur, India, in
2008, and the M.Sc. degree in EE from the Uni-
versity of California, Berkeley (UC Berkeley), in
2009. He is currently pursuing the Ph.D. degree with
the BSIM Group, UC Berkeley, working under the
guidance of Prof. Hu who is a TSMC Distinguished
Professor with the Graduate School.

He was a Research Intern with IMEC, Leuven,
Belgium, in 2007, Texas Instruments, Inc., Dallas, in

2011, and GlobalFoundries, Inc., Milpitas, CA, in 2012. He has been involved
in the research and development of turnkey SPICE compact models for
FinFETs, trigate, gate-all-around transistors (BSIM-CMG), UTB-SOI, UTBB-
SOI, and independent multigate transistors (BSIM-IMG), and BSIM6 (a radio
frequency design relevant update to BSIM4). His current research interests
include semiconductor device physics and technology-design interaction.

Mr. Venugopalan was a recipient of a number of awards, including the
TSMC Outstanding Student Research Award in 2011, the Frank and Lucas
Margaret Fellowship, UC Berkeley, from 2008 to 2009, and the Caltech
Summer Undergraduate Research Fellowship in 2006.

Jaijeet Roychowdhury (F’09) received the Bache-
lors degree in electrical engineering from the Indian
Institute of Technology Kanpur, Kanpur, India, in
1987, and the Ph.D. degree in electrical engineering
and computer science (EECS) from the University
of California, Berkeley (UC Berkeley), in 1993.

He is currently a Professor of EECS with UC
Berkeley. From 1993 to 1995, he was with the
Computer-Aided Design (CAD) Laboratory, AT&T
Bell Laboratories, Allentown, PA. From 1995 to
2000, he was with the Communication Sciences

Research Division, Bell Laboratories, Murray Hill, NJ. From 2000 to 2001,
he was with CeLight, Inc. (an optical networking startup), Silver Spring,
MD. From 2001 to 2008, he was with the Department of Electrical and
Computer Engineering and the Digital Technology Center, University of
Minnesota, Minneapolis. He was cited for extraordinary achievement by Bell
Laboratories in 1996. Over the years, he has authored or co-authored seven
best or distinguished papers at ASP-DAC, DAC, and ICCAD. His current
research interests include the analysis, simulation, and design of electronic,
biological, and mixed-domain systems.

Dr. Roychowdhury was an IEEE Circuits and Systems Society Distinguished
Lecturer from 2003 to 2005 and served as the Program Chair of IEEE’s
CANDE and BMAS Workshops in 2005. He has served on the Technical
Program Committees of ICCAD, DAC, DATE, ASP-DAC, and other EDA
conferences, on the Executive Committee of ICCAD, and on the Nomina-
tions and Appointments Committee of CEDA. He has been an Officer of
CANDE.

