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ABSTRACT

We present auto_diff, a package that performs automatic differentiation of numerical Python code.
auto_diff overrides Python’s NumPy package’s functions, augmenting them with seamless automatic
differentiation capabilities. Notably, auto_diff is non-intrusive, i.e., the code to be differentiated does
not require auto_di f f-specific alterations. We illustrate auto_diff on electronic devices, a circuit
simulation, and a mechanical system simulation. In our evaluations so far, we found that running simulations
with auto_diff takes less than 4 times as long as simulations with hand-written differentiation code.
We believe that auto_diff, which was written after attempts to use existing automatic differentiation
packages on our applications ran into difficulties, caters to an important need within the numerical Python
community. We have attempted to write this paper in a tutorial style to make it accessible to those without
prior background in automatic differentiation techniques and packages. We have released auto_diff as
open source on GitHub.

Keywords: automatic differentiation, numerical methods, python, library, implementation.

1 INTRODUCTION

Computing derivatives is critical in simulation. Many systems requiring simulation — circuits, chemical re-
actions, Newtonian mechanical systems, etc. — are naturally modeled as systems of Differential Algebraic
Equations (DAESs). First-order derivatives are essential for any numerical algorithm that involves solving lin-
ear or nonlinear equations, such as DC, transient, Harmonic Balance, Shooting, etc. (Roychowdhury 2009)
(2nd-order derivatives — Hessians — are also needed for optimization algorithms). For linear equations
A% —b =0, the matrix A is the derivative. Nonlinear equations are typically solved iteratively, for example
using the Newton-Raphson method, by solving a sequence of different linear equations. Moreover, typical
applications involve large vector systems, i.e., simulating them requires derivatives of vector functions of
vector arguments, called Jacobian matrices.

There are many options to obtain derivatives of computer code. The age-old practice, especially before the
development of modern object-oriented computer languages, was for the author of a model to manually
derive and then write out code for the derivatives of the model. However, this process can be tedious and
prone to errors. For example, the BSIM3 MOS transistor model had an undetected derivative bug in its pro-
duction code that took a decade to discover (Wang et al. 2015). Another choice is symbolic differentiation
(Guenter 2007), where derivative equations/code are generated automatically by a graph-based analysis of
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the function code supplied. Symbolic generation of derivative code avoids the mistakes, and (with careful
automated code optimization built in) can generate very efficient code. However, it is not best suited for code
development in an interpretive environment like Python, where small snippets of code are typically written
and debugged interactively before progressing on the next small block of code. Moreover, available imple-
mentations in Python, such as SymPy, a Computer Algebra System, cannot differentiate functions which
contain control flow (such as if/elif/else), which are widespread in applications. It should be noted that
hand-generated and symbolic derivatives are both “exact” (barring numerical errors due to finite precision
arithmetic).

Another very natural approach is finite differences, i.e., approximating the first-principles definition of a
derivative: the input of a function f(x) is perturbed by a small amount Ax, the original value (without per-
turbation) is subtracted, and the difference divided by the magnitude of perturbation. While this is very
easy to implement, it can suffer from significant accuracy problems, and is also typically more expensive to
compute than alternatives. Using too large a Ax moves away from the definition of a derivative (in which
Ax — 0). However, using values that are too small leads to large errors; since two almost-equal numbers are
subtracted to find a much smaller number, errors in the low-order bits (due to cancellation in finite precision
arithmetic) can become very significant. Moreover, choosing a good AX becomes much more complicated
when X and f()_c’) are size-n vectors, as is typical in applications. Compounding the accuracy issue, the func-
tion needs to be evaluated n+1 times to find the derivative, which is usually significantly more expensive
than other approaches. Because of such issues, finite differences are typically strongly deprecated in appli-
cation domains (but are invaluable for checking the correctness of other approaches). An elegant variant of
finite differences for real-valued functions with real inputs is the Complex-Step Derivative Approximation
(CSD) (Martins, Sturdza, and Alonso 2003) In CSD, Ax is purely imaginary and the derivative is approxi-
mated by Im{ f (x+ Ax) /Ax}. Note that there is no subtraction involved, completely avoiding finite precision
cancellation errors. Correctness is easily shown using Taylor expansions on f(-). However, the result com-
puted is corrupted by errors proportional to the third, fifth and higher odd-degree derivatives of the function,
and there can be practical issues propagating complex numbers through code written for real numbers.

Finally, a category of techniques called “automatic differentiation”, which leverages operator overloading
in modern object-oriented languages, combines the advantages of being “exact”, being easy to use, and
approaching the efficiency of hand- or symbolically-generated code. x is replaced by an object that con-
tains not only a (real or complex) value, but also a vector of derivatives (with respect to any number of
designated independent variables). Every mathematical operation involved in computing f(x) (such as
+,—, X, +,sin(x),e", efc.) is overloaded to return a similar object containing the operation’s value as well as
the vector of derivatives of that value. The derivatives are computed by applying the chain rule of differen-
tiation numerically. For languages in which variables and objects are not explicitly typed (like Python and
MATLAB), automatic differentiation provides “non-intrusive” usability — i.e., code implementing func-
tions needs no changes to support finding derivatives. This is of great value in applications, particularly
during interactive code development using interpretive languages. In Sec. 2 below, we provide concrete
examples illustrating how automatic differentiation works.

There are many libraries available that implement automatic differentiation, but there are currently none
in Python that are non-intrusive, i.e., that “just work™ without the need to alter derivative-unaware code.
In Python, Google’s JAX provides Autograd, an automatic differentiation package (Bradbury et al. 2018).
Other Python offerings include the ad package and CasADi; the latter of which which makes no effort to
implement the NumPy API, requiring models be designed to work in its framework (Lee 2013, Anders-
son, Gillis, Horn, Rawlings, and Diehl 2019). For C++, Sandia National Laboratory developed Sacado, an
automatic differentiation library, which due to C++’s statically-typed nature requires some code changes
for derivative computation (Phipps and Gay 2006). Other C++ offerings include ADOL-C and gdouble,
the latter of which uses templating to greatly reduce its intrusiveness (Griewank, Juedes, and Utke 1996,
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Melville, Moinian, Feldmann, and Watson 1993, Feldmann, Melville, and Moinian 1992). MATLAB has a
number of offerings available: MAPP, MAD, and the valder package all provide non-intrusive implementa-
tions of automatic differentiation (Wang et al. 2015, Forth 2006, Neidinger 2010).

In this work, we present aut o_di f f, a new automatic differentiation package in Python. Unlike Autograd,
auto_diff attempts to perfectly recreate NumPy’s API. Autograd does not support array mutation; this
limitation causes many valid NumPy programs to not work with Autograd. A simple example which works
with auto_diff is presented in Sec. 3.4, along with a discussion of Autograd’s other limitations. The ad
package does not support allocating NumPy arrays in code that is unaware it is being differentiated. This
limitation of ad causes it to fail on the same example function presented in Sec. 3.4. As CasADi does not
attempt to implement the NumPy API, it cannot be used with existing code.

auto_diff uses forward automatic differentiation, rather than reverse automatic differentiation, to com-
pute derivatives — the distinction is discussed in Sec. 3.4. One of the effects of this choice is that it becomes
easy to compute derivatives of vector functions with multiple outputs seamlessly; this application require-
ment was our primary motivation for developing auto_diff. A key feature is that our package augments
the widely-used NumPy package in Python in such a way that all relevant NumPy functions are overloaded.
This makes auto_diff almost completely non-intrusive; indeed, NumPy users and code writers need
not even be aware that their code will compute derivatives if real/complex arguments are replaced with our
VecValDer automatic differentiation object. The package has been tested successfully on simulation code
for electronics devices, for circuits and for simple mechanical systems. Initial benchmarking indicates that
running a simulation with auto_diff instead of hand-written code takes at most 4 times as long—this
degree of slowdown is typical for automatic differentiation packages. The code implementing the package
is simple to understand and modify for neophytes, which we hope will help with open-source development.

The remainder of the paper is organized as follows. In Sec. 2, we explain how automatic differentiation
works. In Sec. 3, we summarize key implementation details, particularly those relating to seamless aug-
mentation of NumPy, touch on the differences between forward and reverse mode approaches, and discuss
some shortcomings of Autograd that motivated this work. Finally, in Sec. 4, we validate auto_diff on
electronic device, circuit and mechanical system examples and provide initial estimates of performance.

2 HOW AUTOMATIC DIFFERENTIATION WORKS

The chain rule from elementary calculus provides the core result of forward differentiation. Consider a
function which can be computed in two steps, i.e., by computing y = g(x) and then z = f(y). We can find

df dy dy _ dg

% by applying the chain rule to obtain % = G e & and since ;= = ‘x, we can directly compute the

derivative.

The trick to automatic differentiation is replacing x, which originally is just a floating point variable, with a
new object that tracks both the value of x and its derivative 1. Similarly, y and z are replaced with objects
that tracks their values and their derivatives. This relies on operator overloading, which allows custom
versions of exponentiation, addition, multiplication, efc., to be defined for custom datatypes (Corliss and
Griewank 1993). Derivative calculations using the chain rule are implemented in the custom versions of
these functions.

As an example, consider g(x) = x%, f(y) = sin(y), and x = 3. Initially, x.val = 3; and we set x.der
= 1, designating x as an independent variable. Then we compute y, obtaining y.val = 9, and because
Python detects it is operating on our data type and not a float, it uses our overloaded code for the x operator
tocompute thaty.der = 2 % x.val * x.der = 2 x 3 % 1 = 6. Similarly, to compute %, we
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evaluate z.val = sin(y.val) and z.der = cos(y.val) * y.der. How exactly x, sin, efc.,
are replaced with our own functions is described in Sec. 3.

In order to demonstrate how to apply this approach to vector-valued functions with vector inputs, consider
- oo I B U . . - o S .
the example y = g(X) = 2%, 7= f(J) = Ay = [O 1] y,and X = [ 150] . Again, we replace X, ¥, and 7 with new

custom objects of type VecValDer, which contains its value, named val, and a 2 X 2 matrix representing

its Jacobian, named der. Initially x.val = [5, 10} " and we set x.der = b, the identity matrix of size
2, denoting that the entries of X are independent variables. Next, we apply g and by overloading scalar

0] and y.der =2x.der = [2 O} . Finally, we apply f, and by

o . 1
multiplication, we obtain y.val = [2 0 0 2

overloading matrix multiplication, we obtain z . val = Bg} and z.der =Ay.der = [3 g] .

In general, a VecValDer z of a vector 7 being differentiated with respect to X has the property that

dzi  dzu ... 9z
21 dx, dx, ox,
Zz 9z dzm ., dn
o 0. 0.
z.val=| .|, and z.der = ?C‘ 2 o
Z 92w 92w ... 9m
" x,  Ox, ox,

We now will discuss how to define VecValDer, how to overload all the relevant NumPy functions, and
some other details of the implementation.

3 auto_diff IMPLEMENTATION

From the previous section, we see that we need to make our own type, VecValDer, that needs to store both
the value it represents and the corresponding derivative. We do so in the fields val and der, respectively,
as we did in the previous section. The type must be usable exactly as the NumPy array stored in val is.
Further, the type needs to track the independent variables we are differentiating with respect to. Finally, the
type must allow the extraction of the Jacobian from der.

In order to emulate NumPy during automatic differentiation completely, we need to overload every function
which returns or modifies a NumPy array to also perform derivative computations. This includes binary
functions, unary functions, and functions that take no vector arguments, but return a new NumPy array.
Examples of binary functions and operators, i.e., those which take two arguments, include addition, sub-
traction, matrix multiplication, efc.. Examples of unary functions and operators (those taking one argument)
include the sine, cosine, square root, and absolute value functions, as well as unary operators like + and —.
Examples of functions that take no vector arguments are the constructors for the NumPy ndarray class
and include np.ones, np.zeros, np.array, np.ndarray, and many other similar functions.

In the remainder of this section, we describe how we create VecValDer. In Sec. 3.1, we outline how
VecValDer stores its data and implements some important methods, such as indexing. In Sec. 3.2, we
explain how VecValDer implements NumPy’s functions. As part of this, we describe how to track which
variables are independent, how to extract the Jacobian, and provide other important implementation details.
We illustrate the use of our library with an example, and touch upon how the code is organized in Sec. 3.3.
Finally, we provide a brief comparison against Autograd, including a small example on which Autograd
fails, but which that aut o_di £ f handles correctly.



class VecValDer (np.lib.mixins.NDArrayOperatorsMixin) :

1

2 __slots__ = ’val’, ’der’ 16 def _ getitem__ (self, key):

3 17 return VecValDer (self.val[key], self.der[key])

4 def __init_ (self, val, der): 18

5 self.val = val 19 def __array_ufunc__(self, ufunc, method, *args,*xkwargs):
6 self.der = der 20 if method == ’__call_ '’ and ufunc in _HANDLED_UFUNCS:
7 21 return _HANDLED_UFUNCS [ufunc] (xargs, xxkwargs)

8 def __setitem__ (self, key, value): 22 return NotImplemented

9 if isinstance(value, VecValDer) :

10 self.vall[key] = value.val

11 self.der[key] = value.der

12 else:

13 self.val[key] = value

14 self.der[key] =true_np.zeros(self.der[key].shape)

Figure 1: Implementation of VecValDer and some of its methods.
3.1 VecvalDer Data Layout

As described above, we only have two fields in the class, val and der, which store the two arrays. We
use ___slots__ to inform Python’s optimizer that there are only two fields in this object, allowing for
memory compression (Python Software Foundation 2019). The class declaration, along withits __init_-
_ function, is reproduced in Figure 1. The other methods will be described later. Note that we inherit the
classnp.lib.mixins.NDArrayOperatorsMixin, which will be described in Sec. 3.2.

The exact size and shape of der evolved during the development process. Initially, we supported differen-
tiating column vectors with respect to column vectors. As in the example above, if we start with a column
vector X of size m, we store it in val as a NumPy array and then create der as the identity matrix to indicate
that each value in X is an independent variable. As we compute other dependent vectors, we have der store
a matrix where each row is a row vector storing the gradient of an entry in val. As an example, consider
an intermediate column vector y of size 5 being differentiated with respect to a vector, X, of size 4. val

has shape 5, while der has shape 5 x 4. The (i, /)" entry in der corresponds directly to 3;’ , the partial
J

derivative of the i entry of ¥ with respect to the j" entry of .

We then added support for dependent objects beyond column vectors. Support for computing the derivative
of matrices can be very useful, e.g., for the outer product ¥x' of a vector ¥. We changed der to have one-
more dimension then the array in val. For example, if val is a matrix A of shape 3 x 4 being differentiated
with respect to a vector, X, of size 5, then der is a 3-dimensional array of shape 3 x 4 x 5. In this 3-
dimensional array, after indexing on the first two dimensions, say to [2, 1], we have a vector with 5 entries
that is the gradient of the corresponding entry in val, VyA; ;.

In the last iteration of defining der, we added support for differentiating with respect to any NumPy array.
We do this by making the shape of der the concatenation of the shape of val and the vector we’re differ-
entiating with respect to. For example, if we differentiate a 3 x 4 matrix A with respect to a vector X of shape
5 x 1, then der must have shape 3 x 4 x 5 x 1. Indexing into this four dimensional array to position i, j, k, ¢

) QA
corresponds to the partial derivative 5.
k.l

One of the benefits of this design decision is that it allows us to support slicing i.e., writing x [1 : ] to select
multiple entries from an array, in a simple and clean manner, which generalizes easily to more complicated
slicing. We can implement the __getitem__ and __ setitem__ methods as reproduced in Figure 1,
because the arrays have the same indexing in the initial dimensions. These methods are called when a user
executes code like x [3], x[1:5],0rx[4, 0] to access values or to assign values, respectively.
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3.2 Overloading NumPy Functions

In this section, we first describe how we overload NumPy’s functions which take arguments. Second, we
explain how we replace the constructors of the ndarray class. As part of the discussion, we address a few
loose ends, such as how we indicate which variables are independent.

NumPy has two types of functions that take arrays as arguments, ufuncs and what NumPy refers to as
functions; however, as NumPy is currently trying to reimplement many functions as ufuncs, we will only
describe how we handle ufuncs. Curious readers can rest assured that what NumPy calls functions are
handled almost identically to ufuncs and that the documentation is fairly thorough (SciPy 2019a).

NumPy’s ufuncs include most functions which operate element-wise, such as np.negative, np.sin,
and np.multiply, as well as, some others such as np .matmul. A number of these operations, including
np.negative, np.multiply, and np.matmul, have corresponding operators in Python; —, *, and @
for our three examples. In order to avoid duplicating implementations between the operator and the ufunc,
we inherit the np.lib.mixins.NDArrayOperatorsMixin class. This class implements all of the
operators with methods that defer to the corresponding ufunc (SciPy 2019b).

NumPy allows any class to implement a magic method named __array_ufunc___ to implement NumPy
ufuncs. This method is called on argument types that NumPy does not recognize, so that they can properly
handle the ufunc. For example, if NumPy sees a VecValDer in any of the parameters of a ufunc, it calls
VecValDer.__array_ufunc__ with parameters of a pointer to the original ufunc, the constant string
" __call__ ', and the parameters passed into the ufunc. This allows us to maintain a dictionary named _ -
HANDLED_UFUNCS that maps from the NumPy ufunc to our implementation of that ufunc. We implement
__array_ufunc__ asreproduced in Figure 1.

An example entry in _HANDLED_UFUNCS would map np . sin to the function in Figure 2(a) that correctly
computes both the value of sine and the corresponding derivative with the chain rule.

To implement the binary ufunc multiply, we need to consider the case of either one of or both parameters
being a VecValDer. The code is presented in Figure 2(b).

1 def sin(x): 1 def multiply(xl, x2):
2 val = np.sin(x.val) 2 if isinstance (x1,VecValDer) and isinstance (x2,VecValDer) :
3 der = np.ndarray(x.der.shape) 3 return VecValDer (x1.val*x2.val,
4 for index, y in np.ndenumerate (np.cos(x.val)): 4 xl.derxx2.val + xl.valxx2.der)
5 der[index] = y * dx[index] 5 elif isinstance(x1l, VecValDer):
6 return VecvValDer (val, der) 6 return VecValDer (xl.val * x2, xl.der * x2)
7 elif isinstance(x2, VecValDer) :
8 return VecValDer (x1 » x2.val, x1 » x2.der)
(a) Our sine function. (b) Our multiply function.

Figure 2: Our implementations of sine and multiply.

Finally, in order to overload NumPy methods with no vector arguments, we replace the NumPy functions
with new ones that output VecValDers. For example, np.ones no longer points at NumPy’s ones
function, but to ours. For this to work, we do impose a limitation on the user’s code; they must use import
numpy as np to import NumPy instead of writing from numpy import =. The first form of the
import statement imports a global instance of the NumPy module, which we modify when we introduce our
own functions. The second form copies the original NumPy methods into the local namespace, preventing
us from being able to replace them. As the first form of the import statement is common practice in Python
scripting, we do not consider this restriction significant. As these functions are allocating new VecValDer
derivative matrices, we need to know the shape of the vector we’re differentiating with respect to. This leads
to two problems: (1) how do we ensure we undo the changes to the global NumPy module (so as not to




1 def value_and_jacobian(z) : 19

2 return z.val, z.der.reshape((-1,z.der.shape([-2])) 20 def __exit__ (self, type_, value, traceback):

3 21 _swap_numpy_methods (self.old_nps)

4 22

5 class AutoDiff: 23 def zeros(self, shape):

6 def _ init__ (self, x): 24 val = true_np.zeros (shape)

7 self.x = x 25 der = true_np.zeros((xval.shape, xself.x.shape))
8 26 return VecValDer (val, der)

9 def _ _enter_ (self): 27

10 new_np = {fn_name: getattr(self, fn_name) 28

11 for fn_name in _list_of_masked_functions} 29 def _swap_numpy_methods (new) :

12 self.old_nps = _swap_numpy_methods (new_np) 30 output = {fn_name: getattr (np, fn_name)

13 31 for fn_name in _list_of masked_functions}
14 val = np.asarray(self.x) 32 for fn_name in _list_of_masked_functions:

15 der = true_np.zeros((xval.shape, #val.shape)) 33 setattr(np, fn_name, new[fn_name])

16 for i in np.ndindex(val.shape) : 34 return output

17 der[(xi, =i)] = 1.0

18 return VecValDer (val, der)

Figure 3: Implementation of AutoDiff and value_and_jacobian.

break normal NumPy code), especially if we encounter an exception in the user’s code, and (2) how do we
best provide the shape of the vector we’re differentiating with respect to the constructors?

The solution to both of these is a Python object known as a context manager and the with statement and
corresponding block. A context manager ct xmgr is used as follows:

with ctxmgr as c:
<the with block>
<code outside block>

A context manager has two magic methods, enter and __exit . The _enter  method is
called at the beginning of the with block. Its return value is assigned to the variable c in this example,
though any identifier can be used there. Whenever control exits the with block, whether that be through an
exception or by finishing executing, then the __exit__ method is called to run cleanup code.

We define a context manager AutoDiff to capture when we are masking these constructors to instead
return VecValDers. AutoDiff’s constructor takes one argument, x, the vector which we differentiate
with respect to. AutoDiff.__enter__  returns the VecValDer that has a val of x, and a der of the
identity matrix, to represent that x is independent. AutoDiff’s __exit___ method restores the original
NumPy functions.

We reproduce partial code for AutoDiff in Figure 3. We only show the implementation of one masked
method; the others are similar. _1ist_of_masked_functions isalistof strings naming each function
we are masking. Additionally, t rue_np contains copies of all the original NumPy functions and is not
modified when we change the NumPy methods. We have removed internal error handling code from the
_swap_numpy_methods helper method for brevity.

3.3 How to Use auto_diff

To extract the Jacobian from the der field of a VecvValDer, we just need to reshape the der array into a
matrix. We included the function value_and_jacobian in Figure 3 to extract the Jacobian from a der
array. We assume that we’re differentiating a column vector, i.e., a NumPy array with shape m x 1, with
respect to a column vector.

Putting everything together, we can compute and print the derivative of the function £ with the code in
Figure 4.

Finally, we give a brief overview of the codebase, available on GitHub. There are 5 files:
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import numpy as np
import auto_diff as ad

def f(x):
out = np.zeros((3, 1))
out [0, 0] = x[1, 0]
out[1l, O np.sin(out [0, 0])
out[2, 0 %[0, 0]

9 return o

Lo I e N O N

]
]
]
ut

11 with ad.AutoDiff (np.array([[np.pil, [2]])) as x:
12 v, J = ad.value_and_jacobian (f (x))

14 print ("f(x)_=", vy)
15 print ("Jacobian_of _f _at_x", J)

Figure 4: An example of using auto_diff.

* vecvalder.py implements the VecValDer class, implementing all the methods described here
and the NumPy ndarray methods.

* vecvalder_funcs_and_ufuncs.py contains all of our ufunc implementations.

* numpy_masking.py implements the Aut oDiff class and its helper methods.

* true_np.py copies all of the contents of np, so that auto_diff can access them even in
AutoDiff contexts.

e __ init__ .pyimplements value_and_Jjacobian and copies AutoDiff, these two form the
public API of auto_diff.

3.4 Comparison with Autograd

Google’s JAX project provides Autograd, another automatic differentiation library for Python (Bradbury
et al. 2018). Autograd’s approach to solving the NumPy overloading problem, which we solve with _—
_array_ufunc___ and the AutoDiff context manager, is to reimplement NumPy. They require users
of their code to import Jjax.numpy as np instead of using NumPy itself. Autograd’s NumPy imple-
mentation is very different from the default in a number of key ways; for example, all arrays are immutable,
and the np.ndarray constructor cannot be called directly. Further, jax.numpy is incompatible with
real NumPy’s objects, making calling into libraries and modules that were not designed to use JAX im-
possible without code modification. Code modification is often non-trivial, because all mutation needs to
be eliminated. For example, the function £ from the previous section, reproduced in Figure 5, cannot be
differentiated by Autograd due to its dependence on mutating out.

1 def f(x):

2 out = np.zeros((3, 1))

3 out [0, 0] = x[1, 0]

4 out[1l, 0] = np.sin(out[0, 0])
5 out[2, 0] = x[0, 0]

6 return out

Figure 5: A function which is incompatible with Autograd.

Autograd’s code is heavily optimized for Graphic Processing Units and Tensor Processing Units rather
than for CPUs; accordingly, running it on a system without a GPU or a TPU leads to very poor performance.
Experiments run in Sec. 4.1 suggest that Autograd, when run only on a CPU, is 5 times slower than auto_—
diff, even after applying the JAX optimizer to the Autograd function.

Additionally, Autograd is now delivered as part of JAX, which is a large library with lots of features and
dependencies; an installation of JAX is 51 times larger then the entirety of the aut o_diff codebase. Our
library is significantly smaller and better suited for experimental projects.
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Finally, because of Autograd’s functional API and GPU-centric design, it is not possible to differentiate in
an interactive environment without wrapping code into functions or to view derivatives in a debugger in the
middle of a function. In contrast, auto_diff allows users to enter and exit AutoDiff contexts in an
interactive python shell. This allows users to experiment interactively. We also allow users to access the
derivative of any intermediate VecValDer they may encounter while using a debugger.

Autograd also provides an implementation of computing Jacobians using the reverse-mode differentiation
algorithm. In reverse-mode differentiation, instead of directly computing the Jacobian at intermediate steps,
the algorithm builds a graph that describes the dependence of the outputs on the inputs. A walk of this
graph allows direct computation of the gradient of one output of the function. Reverse-mode is often faster
for computing gradients of a single output (or a few outputs); while forward-mode is typically faster for
functions with many outputs, such as vector-valued functions, which are important in many applications.
Reverse-mode requires a significantly more complex implementation, but can be much more memory effi-
cient. We plan to augment aut o_di f £ with a reverse-mode differentiation option in the future.

4 VALIDATION AND APPLICATIONS

In this section, we illustrate the use of auto_diff in electronic device, circuit and mechanical system
modelling and simulation.

4.1 Electronic Device Modeling and Circuit Simulation

Here, we describe an electronic device model which we will use to validate auto_diff. This device
model captures the behaviour of a Bipolar Junction Transistor (BJT), using the Ebers-Moll model (Ebers
and Moll 1954). In essence, these models provide differential equations that describe the behaviour of a
BIJT. These models are used by “equation engines” that compile device models together, given a description
of how different circuit components are connected, to generate a differential-algebraic equation system that
models the circuit as a whole (Wang et al. 2015).

The Ebers-Moll model is

9 (CVer —Vie)) — 1V Vee )Y 1) 4 gl (¥l 1), (1)

Ic= —
€T ar
_d
Cdr

Is (CVig) 4+ (1 — o)L (€"2 /Y — 1) + (1 — o)Ly (eVEE—Ver) Vi 1), 2)

Useful values for the parameters are Iy = 1 % 10712A,V, =2.6x 1072V, ag = 0.5, ap = 0.99, and C =
1 x 1072F. Vg is defined as the voltage between the top node (where I¢ is located) and the bottom node of
the BJT. Vg is the voltage between the left node and the bottom node of the BJT. Iy and I¢ are the currents
labeled on the diagram in Figure 6(a).

We rewrite this using two functions (Roychowdhury 2009): ¢(V), which takes in the two voltages and returns
the portion of the right hand side of each equation which is being differentiated, and f (V), which captures

Ip
code implementing f(-) and g(-) is shown in Figure 6. Numerical solvers require the derivatives of both g(-)
and f(-); these derivatives are computed using auto_diff on the code in Figure 6.

the rest of each of the right hand sides. Using these, (1)-(2) can be rewritten as [IC} = %ﬁ(\‘/’) +f (V). The

In order to test aut o_diff, we also hand-wrote code to compute the Jacobians of EbersMoll_BJT. f
and EbersMoll_BJT.q and then compared the values of the Jacobian produced by our hand-written
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)
(np.exp ( (VBE self._vt) - 1)
f£._alphaF
0 - self. .
e_ID + (1.0 - self._alphaR)
y([Icl, [18]1)

14 return np.a

16 def qg(se
17 VBE, VCE = vs[0,0], vs[1,0]
18 return np.array([[self. C » (VCE - VBE)], [self. C » VBE]])

(a) Schematic. (b) Code.

Figure 6: Ebers-Moll BJT code.

code and the Jacobian produced by auto_diff. We compared them on two hundred and fifty thousand
different input values. The average absolute error for each element of the derivative of £ was on the order of
10~20, significantly smaller then the values in the Jacobian, which were on the order of 10~3. Computing the
derivatives with auto_diff takes 43.2 seconds. With our handwritten code, it took 3.11 seconds. With
Autograd, running on a CPU instead of a GPU, it took 232 seconds.

For further validation, we inserted auto_di ff into our implementation of Newton-Raphson, enabling it
to compute Jacobians automatically from code for the function, rather than using user-provided code for
derivatives. We then built, using the previous device model, a 3-dimensional ordinary differential equation
of the BJT differential pair circuit shown in Figure 7(a).

VDD

BIJT Differential Pair DC Sweep
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(a) Schematic. (b) DC sweep.

Figure 7: DC sweep on a BJT differential pair circuit.

We then conducted a DC sweep analysis, i.e., finding the DC steady state of the circuit for over a range of
input voltages. As can be clearly seen from Figure 7(b), the DC steady states computed by auto_diff
are identical to those from hand-generated code. The performance difference between the two was small:
with hand-generated derivative code, it took 0.633 seconds to do the full DC sweep; with, auto_diff, it
took 0.906 seconds. We did not attempt to use Autograd with our Newton-Raphson implementation due to
the difficulty of porting all of our code to JAX’s NumPy, with its immutable arrays and slow performance
on CPU-bound tasks.

4.2 A 1-D Mechanical System Equation Engine

In order to validate auto_diff on a larger system, we developed a 1-dimensional Spring-Mass Equation
Engine, which builds larger DAEs that model one dimensional systems of springs, masses, anchor points,
and stiff rods. The schematic in Figure 8(a) shows our mechanical system. It is formed with an anchor on
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the left, followed by 51 spring-mass pairs. The system is drawn horizontally with a floor as we include a
friction term along the floor. Finally, we applied a sinusoidal force, labeled u(7). Our DAE model for this
system has 309 independent variables.

We used Backward Euler with Newton-Raphson to simulate 120 seconds of dynamics with a step size of
0.05 seconds. With hand-written derivative code, the simulation took 141 seconds; with auto_diff it
took 461 seconds. We plot the displacement of the masses m;, my7, and ms; below.

Simulated Dynamics of Large Mechanical System

Displacment (meters)
=
<

1T —— Axofm

Ax of my7
0414 — Ax of ms
0 20 40 60 80 100 120
Time (seconds)
(a) Diagram. (b) Simulation results.

Figure 8: The large mechanical system.

S CONCLUSION

We have introduced a new library, auto_diff that computes the Jacobians of almost arbitrary Python
functions. We achieve this by using a Python context manager and NumPy’s built-in support for overloading
functions and operators to simplify the implementation. Unlike existing offerings, notably JAX’s Autograd,
we support mutable arrays and support using most libraries that were not designed to work with our library.
We have validated the correctness of aut o_dif f, and evaluated its performance, via simulations of circuits
and mechanical systems.

Future work on auto_diff will include adding support for computing Hessians and other higher-order
derivatives. This will make auto_diff useful for optimization tasks. Additionally, we will add an imple-
mentation of reverse-mode differentiation. Further, we can optimize the codebase to improve performance.
Switching from using NumPy arrays to SciPy’s sparse arrays should reduce both the memory footprint and
improve the speed of auto_diff. Other performance optimizations includes replacing the most com-
monly called functions with faster implementations in C or another compiled language. This should reduce
the overhead of calling Python code and further improve performance.
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