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Abstract
We present OIM (Oscillator Ising Machines), a new way to make Ising machines using networks of coupled self-sustaining

nonlinear oscillators. OIM is theoretically rooted in a novel result that establishes that the phase dynamics of coupled

oscillator systems, under the influence of subharmonic injection locking, are governed by a Lyapunov function that is

closely related to the Ising Hamiltonian of the coupling graph. As a result, the dynamics of such oscillator networks evolve

naturally to local minima of the Lyapunov function. Two simple additional steps (i.e., turning subharmonic locking on and

off smoothly, and adding noise) enable the network to find excellent solutions of Ising problems. We demonstrate our

method on Ising versions of the MAX-CUT and graph colouring problems, showing that it improves on previously

published results on several problems in the G benchmark set. Using synthetic problems with known global minima, we

also present initial scaling results. Our scheme, which is amenable to realisation using many kinds of oscillators from

different physical domains, is particularly well suited for CMOS IC implementation, offering significant practical

advantages over previous techniques for making Ising machines. We report working hardware prototypes using CMOS

electronic oscillators.

Keywords Ising machines � Oscillators � CMOS � Hamiltonian � Lyapunov � MAX-CUT � Frustrated loops �
Graph colouring

1 Introduction

The Ising model (Ising 1925; Brush 1967) takes any

weighted graph and uses it to define a scalar function called

the Ising Hamiltonian. Each vertex in the graph is associ-

ated with a spin, i.e., a binary variable taking values �1.

The Ising problem is to find an assignment of spins that

minimises the Ising Hamiltonian (which depends on the

spins and on the graph’s weights). Solving the Ising

problem in general has been shown to be very difficult

(Barahona 1982), but devices that can solve it quickly

using specialised hardware have been proposed in recent

years (Marandi et al. 2014; McMahon et al. 2016; Inagaki

et al. 2016; Johnson et al. 2011; Bian et al. 2014; Yamaoka

et al. 2016). Such Ising machines have attracted much

interest because many classically difficult combinatorial

optimisation problems (including all 21 of Karp’s well-

known list of NP-complete problems Karp 1972) have

known mappings to Ising problems (Lucas 2014).1 Hence,

as Moore’s Law nears its limits, Ising machines offer

promise as a novel alternative paradigm for solving diffi-

cult computational problems efficiently.

We present a new and attractive means for realising

Ising machines, i.e., using networks of coupled, self-sus-

taining nonlinear oscillators. We first establish a key the-

oretical result that relates the (continuous) phase dynamics
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of an oscillator network with the (discrete/combinatorial)

Ising Hamiltonian of the graph representing the oscillator

couplings (Wang and Roychowdhury 2017). We then build

on this result to develop practical oscillator-based Ising

machines and demonstrate their effectiveness by solving

MAX-CUT and graph colouring combinatorial optimisa-

tion problems (Festa et al. 2002; Jensen and Toft 1995).

We also present working hardware prototypes of our

oscillator-based Ising machines.

We first show that the phase dynamics of any network of

coupled, self-sustaining, amplitude-stable oscillators can be

abstracted using the Generalised Adler model (Gen-Adler)

(Neogy and Roychowdhury 2012; Bhansali and Roy-

chowdhury 2009), which leads to a generalisation of the

well-known Kuramoto model (Kuramoto 1975, 2003;

Acebrón et al. 2005). The model’s phase dynamics are

governed by an associated Lyapunov function, i.e., a scalar

function of the oscillators’ phases that is always non-in-

creasing and settles to stable local minima as phase

dynamics evolve. If each oscillator’s phase settles to either

0 or p (radians) and these values are associated with spins

of �1, we show that this Lyapunov function is essentially

identical to the Ising Hamiltonian of the oscillator net-

work’s connectivity graph. In general, however, oscillator

phases do not settle to the discrete values 0/p, but span a

continuum of values. In order to binarise oscillator phases

(i.e., get them to settle to values near 0/p), we inject each

oscillator with a second harmonic signal (dubbed SYNC)

that induces subharmonic injection locking (SHIL), which

makes the phase of each oscillator settle to a value near

either 0 or p (Wang and Roychowdhury 2014; Neogy and

Roychowdhury 2012; Wang 2017a, b). We devise a new

Lyapunov function that governs the network’s dynamics

with SHIL, then show its equivalence to the Ising Hamil-

tonian at phase values of 0/p.
Thus we show that when SHIL binarisation is applied,

coupled oscillator network dynamics settle naturally to

local minima of a continuised version of the associated

Ising Hamiltonian. To evolve the system out of local

minima towards a global minimum, we show that a simple

scheme, in which the binarising second-harmonic SYNC

signal’s amplitude is ramped up and down together with

judicious amounts of noise added, works well.2

Our approach, dubbed OIM (Oscillator Ising Machine)

is analogous to several existing schemes to map a system’s

Lyapunov function to a minimisation objective, including

the Hopfield–Tank neural network proposed for the trav-

elling salesman problem (Hopfield and Tank 1985), and the

more recent work on designing differential equations for

satisfiability (SAT) problems (Ercsey-Ravasz and Tor-

oczkai 2011; Yin et al. 2018). Based on the equivalence we

establish (in Sect. 3.3, below) between the Ising Hamilto-

nian and a Lyapunov function for coupled oscillators under

SHIL, OIM can be applied to problems that have an Ising

formulation (Lucas 2014), a wide class that includes the

problems addressed by these other schemes.

We present simulation results on a standard MAX-CUT

benchmark set of 54 large problems, demonstrating that

OIM finds the best-known results in many cases, indeed

better results than seem to have been previously published

for several of the problems. We also present initial results

on so-called ‘‘frustrated loop’’ problems, i.e., synthetic

problems that have known global minima. Such problems

enable us to assess the probability of actually finding global

minima. Our initial results, which are restricted to the

particular type of frustrated loop problems used in Sheldon

et al. (2019), indicate that the time taken to find global

minima scales polynomially with problem sizes in the

range 216 to 64000; but at the same time, we find that

simulated annealing’s performance on these problems is

polynomial as well. As another application, we demon-

strate OIM on the graph colouring problem. We summarize

prototypes (with up to 240 spins) built on breadboard and

PCB that function well, testifying to the ease with which

practical hardware implementations can be built.

Our scheme is different from previous Ising machine

approaches, which are of 3 types (see Sect. 2): (1) a fibre-

optic laser-based scheme known as the Coherent Ising

Machine (Marandi et al. 2014; McMahon et al. 2016;

Inagaki et al. 2016), (2) the D-WAVE quantum Ising

machine (Johnson et al. 2011; Bian et al. 2014) and (3)

CMOS hardware-accelerated simulated annealing chips for

solving Ising problems (Yamaoka et al. 2016; Aramon

2019; Gyoten et al. 2018a, b). Unlike CIM and D-WAVE,

which are large, expensive and ill-suited to low-cost mass

production, our approach is a purely classical scheme that

does not rely on quantum phenomena or novel nano-de-

vices. Indeed, it can be implemented using conventional

CMOS electronics, which has many advantages: scalabil-

ity/miniaturisability (i.e., very large numbers of spins in a

physically small system), well-established design processes

and tools that essentially guarantee first-time working

hardware, very low power operation, seamless integration

with control and I/O logic, easy programmability via

standard interfaces like USB, and low-cost mass produc-

tion. CMOS implementations of our scheme also allow

flexibility in introducing controlled noise and programming

SYNC ramping schedules. Furthermore, implementing

oscillator coupling by physical connectivity makes our

scheme inherently parallel, unlike CIM, where coupling is

implemented via FPGA-based digital computation and is

2 This is somewhat analogous to annealing schedules that are used in

simulated annealing (SA, Myklebust 2015), though we stress that the

underlying minimization mechanism of OIM is completely different

from that of SA.
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inherently serial. The advantages of CMOS also apply, of

course, to hardware simulated annealing engines (Yamaoka

et al. 2016; Aramon 2019; Gyoten et al. 2018a, b), but our

scheme has additional attractive features. One key advan-

tage relates to variability, a significant problem in nanos-

cale CMOS. For oscillator networks, device- and circuit-

level variability impacts the system by causing a spread in

the natural frequencies of the oscillators. Unlike other

schemes, where performance deteriorates due to variability

(Yamaoka et al. 2016), we can essentially eliminate vari-

ability by means of simple VCO-based calibration to bring

all the oscillators to the same frequency.3 Another potential

advantage stems from the continuous/analog nature of our

scheme (as opposed to purely digital simulated annealing

schemes). Computational experiments indicate that the

time our scheme takes to find good solutions of the Ising

problem grows only very slowly with respect to the number

of spins. This is a significant potential advantage over

simulated annealing schemes (Aramon 2019) as hardware

sizes scale up to large numbers of spins. Note that we can

use virtually any type of nonlinear oscillator (not just

CMOS) to implement our scheme, including optical,

MEMS, biochemical, spin-based, etc., oscillators; however,

CMOS seems the easiest and most advantageous imple-

mentation route given the current state of technology.

In the remainder of this paper, we first provide a brief

summary of the Ising problem and existing Ising machine

schemes in Sect. 2. We then present our oscillator-based

Ising machine scheme (dubbed OIM, for Oscillator Ising

Machine) in Sect. 3, explaining the theory that enables it to

work. Then in Sect. 4, we present both computational and

hardware examples showing the effectiveness of our

scheme for solving several combinatorial optimisation

problems.

2 The Ising problem and existing Ising
machine approaches

The Ising model is named after the German physicist Ernst

Ising. It was first studied in the 1920s as a mathematical

model for explaining domain formation in ferromagnets

(Ising 1925). It comprises a group of discrete variables

fsig, dubbed spins, each taking a binary value �1, such

that an associated ‘‘energy function’’, known as the Ising

Hamiltonian, is minimised. The Ising Hamiltonian is

defined as

H,�
X

1� i\j� n

Jijsisj �
Xn

i¼1

hisi;

such that si 2 f�1;þ1g;
ð1Þ

where n is the number of spins; fJijg and fhig are real

coefficients. The Ising model is often simplified by drop-

ping the fhig terms. Under this simplification, the Ising

Hamiltonian becomes

H ¼ �
X

i;j; i\j

Jijsisj: ð2Þ

What makes the Ising model particularly interesting is that

many hard optimisation problems can be shown to be

equivalent to it (Barahona 1982; Bian et al. 2010). In fact,

all of Karp’s 21 NP-complete problems can be mapped to it

by assigning appropriate values to the coefficients (Lucas

2014). Physical systems that can directly minimise the

Ising Hamiltonian, namely Ising machines, thus become

very attractive for potentially outperforming conventional

algorithms run on CPUs for these problems.

Several schemes have been proposed recently for real-

ising Ising machines in hardware. One well-known exam-

ple is from D-Wave Systems (Johnson et al. 2011; Bian

et al. 2014). Their quantum Ising machines use supercon-

ducting loops as spins and connect them using Josephson

junction devices (Harris et al. 2010). As the machines

require a temperature below 80 mK (�273:07�C) to

operate (Johnson et al. 2011), they all have a large foot-

print to accommodate the necessary cooling system. While

some question their advantages over simulated annealing

run on classical computers (Rønnow et al. 2014), propo-

nents believe that through a mechanism known as quantum

annealing, they can offer large speedups on problems with

certain energy landscapes (Denchev et al. 2016).

Other proposals use novel non-quantum devices as Ising

spins instead, so that the machines can function at room

temperature. Most notable among them is a scheme based

on lasers and long optical fibres (Marandi et al. 2014;

McMahon et al. 2016; Inagaki et al. 2016). The Ising spins

are represented using time-multiplexed optical parametric

oscillators (OPOs), which are laser pulses travelling on the

same fibre. The coupling between these pulses is imple-

mented digitally by measurement and feedback using

FPGA chips. While these machines can potentially be more

compact than D-Wave’s machines, it is unclear how far

they can be miniaturised and integrated. Recent studies

have also proposed the use of several novel nanodevices as

Ising spins, including MEMS (Micro-Electro-Mechanical

Systems) resonators (Mahboob et al. 2016) and nanomag-

nets from Spintronics (Camsari et al. 2017). Physical

realisation of these machines still awaits future develop-

ment of these emerging device technologies.
3 Moreover, as we show in Sect. 3.4, our scheme is inherently

resistant to variability even without such calibration.
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Another broad direction is to build Ising model emula-

tors using digital circuits. A recent implementation (Ya-

maoka et al. 2016) uses CMOS SRAM cells as spins, and

couples them using digital logic gates. The authors point

out, however, that ‘‘the efficacy in achieving a global

energy minimum is limited’’ (Yamaoka et al. 2016) due to

variability. The speedup and accuracy reported by

Yamaoka et al. (2016) are instead based on deterministic

on-chip computation paired with an external random

number generator—a digital hardware implementation of

the simulated annealing algorithm. More recently, similar

digital accelerators have also been tried on FPGAs (Ya-

mamoto et al. 2017). These implementations are not

directly comparable to the other Ising machine imple-

mentations discussed above, which attempt to use inter-

esting intrinsic physics to minimise the Ising Hamiltonian

while achieving large speedups.

3 Oscillator-based Ising machines

In this section, we show that a network of coupled self-

sustaining oscillators can function as an Ising machine. To

do so, we first study the response of a single oscillator

under injection locking in Sect. 3.1. Specifically, we

examine the way the oscillator’s phase locks to that of the

external input. While regular injection locking typically

aligns the oscillator’s phase with the input, as illustrated in

Fig. 1a and b, its variant—subharmonic injection locking

(SHIL)—can make the oscillator develop multiple

stable phase-locked states (Fig. 1c and d). As we show in

Sect. 3.1, these phenomena can be predicted accurately

using the Gen-Adler model (Bhansali and Roychowdhury

2009).

The Gen-Adler equation of a single oscillator, when

extended to the phase dynamics of coupled oscillator net-

works, becomes equivalent to a variant of the Kuramoto

model. In Sect. 3.2, we show that the model’s dynamics are

governed by a global Lyapunov function, a scalar ‘‘energy-

like’’ quantity that is naturally minimised by the coupled

oscillator network. Then in Sect. 3.3, we introduce SHIL

into the system to binarise the phases of oscillators. As

illustrated in Fig. 1e, SHIL induces each oscillator to settle

to one of two stable phase-locked states. Due to the cou-

pling between them, a network of such binarised oscillators

will prefer certain phase configurations over others. We

confirm this intuition in Sect. 3.3 by deriving a new Lya-

punov function that such a system (i.e., with SHIL) min-

imises. By examining this function’s equivalence to the

Ising Hamiltonian, we show that such a coupled oscillator

network under SHIL indeed physically implements an Ising

machine. Finally, in Sect. 3.4, we consider the effect of

variability on the system’s operation. We show that a

spread in the natural frequencies of the oscillators con-

tributes a linear term in the global Lyapunov function,

which does not affect Ising machine performance by much

if the variability is not extreme.

3.1 Injection locking in oscillators

When an oscillator with natural frequency x0 is perturbed

by a small periodic input at a similar frequency x1, its

phase response can be predicted well by the Generalised

Adler model (Gen-Adler) (Bhansali and Roychowdhury

2009). Gen-Adler has the following form:

d

dt
/ðtÞ ¼ x0 � x1 þ x0 � cð/ðtÞ � /inÞ; ð3Þ

where /ðtÞ and /in are the phases of the oscillator and the

perturbation. c(�) is a 2p-periodic function derived based on

Fig. 1 Illustration of the basic mechanism of oscillator-based Ising

machines: (a) oscillator shifts its natural frequency from f0 to f1 under
external perturbation; (b) oscillator’s phase becomes stably locked to

the perturbation; (c) when the perturbation is at 2f1, the oscillator

locks to its subharmonic at f1; (d) bistable phase locks under

subharmonic injection locking; (e) coupled subharmonically injec-

tion-locked oscillators settle with binary phases representing an

optimal spin configuration for an Ising problem

T. Wang et al.
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an intrinsic property of the oscillator known as the Phase

Response Curve (PRC) (Winfree 1967) or the Perturbation

Projection Vector (PPV) (Demir et al. 2000). A derivation

of Gen-Adler from the low-level differential equations of

an oscillator is provided in a preprint of this paper (Wang

and Roychowdhury 2019a).

The Gen-Adler equation governs the dynamics of the

oscillator’s phase under periodic inputs; its equilibrium

states can be used to accurately predict the injection-locked

states of the oscillator. The equilibrium Gen-Adler equa-

tion can be derived by rearranging (3):

x1 � x0

x0

¼ cð/� � /inÞ; ð4Þ

where /� is the solution of phase in equilibrium.

The Left Hand Side (LHS) of (4) is a constant repre-

senting the frequency detuning of the oscillator from the

input; the Right Hand Side (RHS) is a periodic function of

/�; its magnitude depends on both the PPV of the oscillator

and the strength of the input (Bhansali and Roychowdhury

2009). By plotting both terms and looking for intersections,

one can easily predict whether injection locking will occur,

and if it does, what the locked phase of the oscillator /�

will be. Figure 2a plots a few examples of LHS/RHS,

showing their shapes and magnitudes under different

conditions.

As mentioned in Sect. 1, SHIL can occur when the

external input is about twice as fast as the oscillator. When

the input is at frequency x1 ’ 2x0, it can be shown that the

corresponding c(�) becomes a p-periodic function (Neogy

and Roychowdhury 2012; Wang and Roychowdhury

2015a); a typical example is given in Fig. 2b, where c(�)
takes the shape of � sinð2/Þ. In this case, two of the four

LHS-RHS intersections represent stable phase-locked

states; it can be shown that they are separated by a phase

difference of 180� (Neogy and Roychowdhury 2012). Gen-

Adler is a powerful technique for predicting and under-

standing injection locking in oscillators and constitutes an

important foundation for the analyses that follow.

3.2 Global Lyapunov function

For an oscillator in a coupled oscillator network, its

external perturbations come from the other oscillators

connected to it. Its Gen-Adler equation can be written as

d

dt
/iðtÞ ¼ xi � x� þ xi �

Xn

j¼1; j 6¼i

cijð/iðtÞ � /jðtÞÞ; ð5Þ

where f/ig represent the phases of n oscillators, xi is the

frequency of the ith oscillator, and x� is the central fre-

quency of the network. cijð�Þ is a 2p-periodic function that

abstracts relevant properties of the coupling between

oscillator i and oscillator j, as well as of the PPVs of the

oscillators.

To simplify exposition, we now assume that the cij
functions are sinusoidal, although in Wang and Roy-

chowdhury (2019a), we show that this does not have to be

the case for the analysis to hold true.4 We further assume

zero spread in the natural frequencies of oscillators, i.e.,

xi � x�, and discuss the effect of frequency variability

later in Sect. 3.4. With these simplifications, (5) can be

written as

d

dt
/iðtÞ ¼ �K �

Xn

j¼1; j 6¼i

Jij � sinð/iðtÞ � /jðtÞÞ: ð6Þ

Here, we are using the coefficients fJijg5 from the Ising

model (1) to set the connectivity of the network, i.e., the

coupling strength between oscillators i and j is proportional

to Jij. xi � x� is incorporated in the parameter K, which

modulates the overall coupling strength of the network.

There is a global Lyapunov function associated with (6)

(Shinomoto and Kuramoto 1986):

Fig. 2 Illustration of the LHS and RHS of the equilibrium Gen-Adler

equation. (a) Under normal injection locking, the intersection of LHS

and RHS predicts the only stable solution of / under different

scenarios. (b) Perturbation at 2x1 changes the shape of c(.) in Gen-

Adler; the intersections now predict the locations of two stable phase-

locked states

4 More generally, cijs can be any 2p-periodic odd functions, which

are better suited to practical oscillators.
5 In the Ising Hamiltonian (1), Jij is only defined when i\j; here we
assume that Jij ¼ Jji for all i, j.

Solving combinatorial optimisation problems using oscillator based Ising machines
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Eð/~ðtÞÞ ¼ �K �
X

i;j; i6¼j

Jij � cosð/iðtÞ � /jðtÞÞ; ð7Þ

where /~ðtÞ ¼ ½/1ðtÞ; . . .;/nðtÞ	T . Being a global Lyapunov

function, it is an objective function the coupled oscillator

system always tends to minimise as it evolves over time

(Lyapunov 1992).

If we look at the values of this continuous function

Eð/~ðtÞÞ at some discrete points, we notice that it shares

some similarities with the Ising Hamiltonian. At points

where every /i is equal to either 0 or p,6 if we map /i ¼ 0

to si ¼ þ1 and /i ¼ p to si ¼ �1, we have

Eð/~ðtÞÞ ¼ � K �
X

i;j; i6¼j

Jij � cosð/iðtÞ � /jðtÞÞ

¼ � K �
X

i;j; i6¼j

Jijsisj ¼ �2K �
X

i;j; i\j

Jijsisj:
ð8Þ

If we choose K ¼ 1=2, the global Lyapunov function in (7)

exactly matches the Ising Hamiltonian in (2) at these dis-

crete points. But this does not mean that coupled oscillators

are naturally minimising the Ising Hamiltonian, as there is

no guarantee at all that the phases f/iðtÞg are settling to

these discrete points. In fact, networks with more than two

oscillators almost always synchronise with analog phases,

i.e., f/iðtÞg commonly settle to continuous values spread

out in the phase domain as opposed to converging towards

0 and p. As an example, Fig. 3a shows the phase responses

of 20 oscillators connected in a random graph. As phases

do not settle to the discrete points discussed above, the

Lyapunov function they minimise becomes irrelevant to

the Ising Hamiltonian, rendering the system ineffective for

solving Ising problems. While one may think that the

analog phases can still serve as solutions when rounded to

the nearest discrete points, experiments in Sect. 4.3 show

that the quality of these solutions is very poor compared

with our scheme of Ising machines proposed in this paper.

3.3 Network of coupled oscillators under SHIL
and its global Lyapunov function

In our scheme, a common SYNC signal at 2x� is injected

into every oscillator in the network. Through the mecha-

nism of SHIL, the oscillator phases are binarised. The

example shown in Fig. 3b confirms that this is indeed the

case: under SHIL, the phases of 20 oscillators connected in

the same random graph now settle very close to discrete

points. Recall from Sect. 3.1 that a x1 ’ 2x0 perturbation

introduces a p-periodic coupling term (e.g., sinð2/Þ) in the

phase dynamics; (6) becomes (see Wang and Roychowd-

hury 2019a for the derivation)

d

dt
/iðtÞ ¼ � K �

Xn

j¼1; j 6¼i

Jij � sinð/iðtÞ � /jðtÞÞ

� Ks � sinð2/iðtÞÞ;
ð9Þ

where Ks represents the strength of coupling from SYNC,

i.e., the input signal at x1 ’ 2x0.

Remarkably, there is a global Lyapunov function for (9)

as well:

Eð/~ðtÞÞ ¼ � K �
X

i;j; i 6¼j

Jij � cosð/iðtÞ � /jðtÞÞ

� Ks �
Xn

i¼1

cos 2/iðtÞð Þ:
ð10Þ

We now show that E in (10) is indeed a global Lyapunov

function. To do so, we first differentiate E with respect to

/~.
We observe that the first component of E is the sum of

ðn2 � nÞ number of cosðÞ terms. Among them, for any

given index k, the variable /k appears a total of 2 � ðn� 1Þ
times. It appears ðn� 1Þ times as the subtrahend inside

cosðÞ: these ðn� 1Þ terms are Jkl � cosð/kðtÞ � /lðtÞÞ,
where l ¼ 1; . . .; n and l 6¼ k. For the other ðn� 1Þ times, it

appears as the minuend inside cosðÞ: in

Jlk � cosð/lðtÞ � /kðtÞÞ, where l ¼ 1; . . .; n, l 6¼ k. So when

we differentiate E with respect to /k, we have

oEð/~ðtÞÞ
o/kðtÞ

¼ �K �
Xn

l¼1; l6¼k

Jkl
o

o/kðtÞ
cosð/kðtÞ � /lðtÞÞ½ 	

� K �
Xn

l¼1; l6¼k

Jlk
o

o/kðtÞ
cosð/lðtÞ � /kðtÞÞ½ 	

� Ks �
o

o/kðtÞ
cosð2/kðtÞÞ

¼ K �
Xn

l¼1; l6¼k

Jkl sinð/kðtÞ � /lðtÞÞ

� K �
Xn

l¼1; l6¼k

Jlk sinð/lðtÞ � /kðtÞÞ

þ Ks � 2 � sinð2/kðtÞÞ

¼ K �
Xn

l¼1; l6¼k

Jkl � 2 � sinð/kðtÞ � /lðtÞÞ

þ Ks � 2 � sinð2/kðtÞÞ
ðusing sinðxÞ ¼ � sinð�xÞ and Jlk ¼ JklÞ

¼ �2 � d/kðtÞ
dt

:

ð11Þ

Therefore,

6 More generally, we can use f2kp j k 2 Zg and f2kpþ p j k 2 Zg
to represent the two states for each oscillator’s phase.

T. Wang et al.

123



oEð/~ðtÞÞ
ot

¼
Xn

k¼1

oEð/~ðtÞÞ
o/kðtÞ

� d/kðtÞ
dt

" #

¼ �2 �
Xn

k¼1

d/kðtÞ
dt

� �2

� 0:

ð12Þ

Thus, we have proved that (10) is indeed a global Lya-

punov function which is naturally minimized over time by

coupled oscillators under SHIL. A similar but more

detailed proof for the general case, where we do not

assume sinusoidal coupling functions, is given in Wang

and Roychowdhury (2019a).

At the discrete points (phase values of 0/p), because
cosð2/iÞ � 1, (10) reduces to

Eð/~ðtÞÞ 
 �K �
X

i;j; i6¼j

Jij � cosð/iðtÞ � /jðtÞÞ � n � Ks; ð13Þ

where n � Ks is a constant. By choosing K ¼ 1=2, we can

then make (13) equivalent to the Ising Hamiltonian in (2)

with a constant offset.

Note that the introduction of SYNC does not change the

relative E levels between the discrete points, but modifies

them by the same amount. However, with SYNC, all

phases can be forced to eventually take values near either 0

or p—the system now tries to reach a binary state that

minimises the Ising Hamiltonian, thus functioning as an

Ising machine. We emphasise that this is not equivalent to

running the system without SHIL and then rounding the

analog phase solutions to discrete values as a post-pro-

cessing step. Instead, the introduction of SHIL modifies the

energy landscape of E, changes the dynamics of the cou-

pled oscillator system, and as we show in Sect. 4, results in

greatly improved minimisation of the Ising Hamiltonian.

It is worth noting, also, that the Lyapunov function in

(10) will, in general, have many local minima and there is

no guarantee the oscillator-based Ising machine will settle

at or near any global optimal state. However, when judi-

cious amounts of noise are introduced via a noise level

parameter Kn, we have seen empirically that the system is

more likely to settle to lower minima. Noise in the phases

of oscillators is commonly modelled by adding white noise

sources to the oscillator frequencies, changing the system

Eq. (9) to

d

dt
/iðtÞ ¼ � K �

Xn

j¼1; j 6¼i

Jij � sinð/iðtÞ � /jðtÞÞ

� Ks � sinð2/iðtÞÞ þ Kn � niðtÞ;
ð14Þ

where variable niðtÞ represents Gaussian white noise with a

zero mean and auto-correlation hniðtÞ; niðsÞi ¼ dðt � sÞ;
the scalar Kn represents the magnitude of noise (Wang and

Roychowdhury 2019a).

Indeed, the several parameters in the Ising machine—K,

Ks and Kn—all play an important role in its operation and

should be given suitable values. Furthermore, K, Ks, Kn can

also be time varying, creating various ‘‘annealing sched-

ules’’. As we show in Sect. 4, this feature gives us con-

siderable flexibility in operating oscillator-based Ising

machines for good performance.

3.4 Coupled oscillator networks with frequency
variations

A major obstacle to the practical implementation of large-

scale Ising machines is variability. While few analyses

exist for assessing the effects of variability for previous

Ising machine technologies (Sect. 2), the effect of vari-

ability on our oscillator-based Ising machine scheme is

easy to analyse, predicting that performance degrades

gracefully.

One very attractive feature of oscillators is that vari-

ability, regardless of the nature and number of elemental

physical sources, eventually manifests itself essentially in

only one parameter, namely the oscillator’s natural fre-

quency. As a result, the effect of variability in an oscillator

network is that there is a spread in the natural frequencies

of the oscillators. Incorporating frequency variability sim-

ply entails not making the assumption xi � x� that was

used to derive (6) from (5). Without this assumption, (9)

becomes

Fig. 3 Phases of 20 oscillators

with random fJijg generated by

rudy -rnd_graph 20 50
10001: (a) without SYNC; (b)
with Ks ¼ 1
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d

dt
/iðtÞ ¼ xi � x� � xi

x� � K �
Xn

j¼1; j 6¼i

Jij � sinð/iðtÞ � /jðtÞÞ

� xi

x� � Ks � sinð2/iðtÞÞ: ð15Þ

As it turns out, there is also a global Lyapunov function

associated with this system:

Eð/~ðtÞÞ ¼ � K

x� �
X

i;j; i6¼j

Jij � cosð/iðtÞ � /jðtÞÞ

� Ks

x� �
Xn

i¼1

cos 2/iðtÞð Þ � 2
Xn

i¼1

xi � x�

xi
/i:

ð16Þ

This can be proven as follows:

oEð/~ðtÞÞ
o/kðtÞ

¼ K

x� �
Xn

l¼1; l 6¼k

Jkl � 2 � sinð/kðtÞ � /lðtÞÞ

þ Ks

x� � 2 � sinð2/kðtÞÞ � 2
xk � x�

xk

¼ � 2

xk
� d/kðtÞ

dt
:

ð17Þ

Therefore,

dEð/~ðtÞÞ
dt

¼ �
Xn

k¼1

2

xk

d/kðtÞ
dt

� �2

� 0: ð18Þ

Note that (16) differs from (10) only by a weighted sum of

/i—it represents essentially the same energy landscape,

but tilted linearly with slopes proportional to the relative

frequency variability. While it can still change the loca-

tions and values of the solutions, its effects are easy to

analyse given a specific combinatorial optimisation prob-

lem. Also, as the coupling coefficient K becomes larger, the

impact of variability is reduced. A small amount of vari-

ability merely perturbs the locations of minima a little, i.e.,

the overall performance of the Ising machine remains

essentially unaffected. A very large amount of variability

can, of course, eliminate minima that would exist if there

were no variability. However, another great advantage of

using oscillators is that even in the presence of large

variability, the oscillator frequencies can be calibrated

(e.g., using a voltage-controlled oscillator (VCO) scheme)

prior to each run of the machine. As a result, the spread in

frequencies can be essentially eliminated in a practical and

easy-to-implement way.

4 Examples

In this section, we demonstrate the feasibility and efficacy

of our oscillator-based Ising machine scheme by applying

it to several MAX-CUT examples, a set of frustrated loop

problems, and a graph colouring problem.

4.1 Small MAX-CUT problems

Given an undirected graph, the MAX-CUT problem

(Myklebust 2015; Festa et al. 2002) asks us to find a subset

of vertices such that the sum of the weights of the cut set

between this subset and the remaining vertices is max-

imised. As an example, Fig. 4 shows a size-8 cubic graph,

where each vertex is connected to three others—neigh-

bours on both sides and the opposing vertex. As shown in

Fig. 4, dividing the 8 vertices randomly yields a cut size of

5; grouping even and odd vertices, which one may think is

the best strategy, results in a cut size of 8; the maximum cut

is actually 10, with one of the solutions shown in the

illustration. Changing the edge weights to non-unit values

can change the maximum cut and also make the solution

look less regular, often making the problem more difficult

to solve. While the problem may not seem challenging at

size 8, it quickly becomes intractable as the size of the

graph grows. In fact, MAX-CUT is one of Karp’s 21 NP-

complete problems (Karp 1972).

The MAX-CUT problem has a direct mapping to the

Ising model (Barahona 1982), by choosing Jij to be the

opposite of the weight of the edge between vertices i and j,

i.e., Jij ¼ �wij. To explain this mapping scheme, we can

divide the vertices into two sets—V1 and V2. Accordingly,

all the edges in the graph are separated into three groups—

those that connect vertices within V1, those within V2, and

the cut set containing edges across V1 and V2. The sums of

the weights in these three sets are denoted by S1, S2 and

Scut. Together, they constitute the total edge weights of the

graph, which is also the negation of the sum of all the Jijs:

S1 þ S2 þ Scut ¼
X

i;j; i\j

wij ¼ �
X

i;j; i\j

Jij: ð19Þ

We then map this division of vertices to the values of Ising

spins, assigning þ1 to a spin i if vertex vi 2 V1, and �1 if

the vertex is in V2. The Ising Hamiltonian in (2) can then be

calculated as
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H ¼�
X

i;j; i\j

Jijsisj

¼�
X

i\j; vi;vj2V1

Jijðþ1Þðþ1Þ

�
X

i\j; vi;vj2V2

Jijð�1Þð�1Þ �
X

i\j; vi2V1; vj2V2

Jijðþ1Þð�1Þ

¼ �
X

i\j; vi;vj2V1

Jij �
X

i\j; vi;vj2V2

Jij þ
X

i\j; vi2V1;Vj2V2

Jij

¼ S1 þ S2 � Scut ¼
X

i;j; i\j

wij � 2 � Scut:

ð20Þ

Therefore, when the Ising Hamiltonian is minimised, the

cut size is maximised.

To show that an oscillator-based Ising machine can

indeed be used to solve MAX-CUT problems, we simu-

lated the Kuramoto model in (9) while making the Jijs

represent the unit-weight cubic graph in Fig. 4. The mag-

nitude of SYNC is fixed at Ks ¼ 3, while we ramp up the

coupling strength K from 0 to 5. Results from the deter-

ministic model (Kn ¼ 0) and the stochastic model

(Kn ¼ 0:1) are shown in Figs. 5 and 6 respectively. In the

simulations, oscillators started with random phases

between 0 and p; after a while, they all settled to one of the

two phase-locked states separated by p. These two groups

of oscillators represent the two subsets of vertices in the

solution. The results for the 8 spins shown in Figs. 5 and 6

are fþ1;�1;þ1;�1;�1;þ1;�1;þ1g and

f�1;þ1;þ1;�1;þ1;�1;�1;þ1g respectively; both are

globally optimal solutions.

A minimal code for reproducing these results is shown

in Wang and Roychowdhury (2019a). Note that these are

simulations on stochastic differential equations with ran-

dom initial conditions. Every run will return different

waveforms; there is no guarantee that the global optimum

will be reached on every run.

We have also directly simulated coupled oscillators at

the SPICE level (using ngspice) to confirm the results

obtained on phase macromodels. Such simulations are at a

lower level than phase macromodels and are less efficient.

But they are closer to physical reality and are useful for

circuit design. In the simulations, 8 cross-coupled LC

oscillators are tuned to a frequency of 5MHz. They are

coupled through resistors, with conductances proportional

to the coupling coefficients; in this case, we use

Jij � 1=100kX. Results from transient simulation using

ngspice-28 are shown in Fig. 7. The 8 oscillators’ phases

settle into two groups {1,4,6,7} and {2,3,5,8}, representing

one of the optimal solutions for the MAX-CUT problem.

They synchronise within 20ls after oscillation starts, which
is about 100 cycles. We have tried this computational

experiment with different random initial conditions; like

the phase macromodels, the SPICE-level simulations of

these coupled oscillators reliably return optimal solutions

for this size-8 MAX-CUT problem.

4.2 Hardware prototypes

We have built several OIM hardware prototypes (Wang

et al. 2019), summarized in Fig. 8. They all use CMOS LC

oscillators made with cross-coupled inverters (from TI

SN74HC04N ICs), fixed inductors, trimmer capacitors and

a 5V single supply. OIM8 and OIM32 (Wang and Roy-

chowdhury 2019b) use 33lH inductors with capacitors

tuned to around 30pF, for a natural frequency of 5MHz. In

OIM8, resistors and potentiometers on the breadboard were

plugged in manually and changed to program different

problems, with results read out using oscilloscopes. For

OIM32, rotary potentiometers were soldered on perfboards

as couplings. Next to each potentiometer, we put male pin

connectors to control the polarity of each connection, by

shorting different pins using female jumper caps (color

coded green and pink for positive and negative couplings).

We soldered TI SN74HC86N Exclusive-OR (XOR) gate

ICs to convert the oscillator phases to voltage levels, to

power on-board LEDs for visualization and readout (via

two 16-channel logic analyzers). We observed that for

small-sized (8 and 32) Ising problems, global optima were

achieved easily using these prototypes.

OIM64 and OIM240 use AD5206 digital potentiometer

ICs (6-channel potentiometers with 8-bit accuracy) for

programmability. Because these ICs are designed primarily

for audio processing and do not have multi-MHz

Fig. 4 Illustration of different cut sizes in a 8-vertex cubic graph with unit edge weights, and another one with random weights (rightmost)
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bandwidth, we reduced oscillator frequencies to 1MHz.

Both prototypes consist of multiple PCBs. OIM64 connects

64 oscillators in a 8x8 2D toroidal grid, with 192 couplings,

each made of one channel of AD5206 and a SPDT switch

for setting its polarity. Even though it was a bit cumber-

some to ‘‘program’’ OIM64 due to the use of physical

switches, we tried 10 randomly generated toroidal Ising

grid instances, achieving the global optimum for each one.

In OIM240, we improved the design to use the position

of the potentiometer wiper to switch polarity, thus elimi-

nating the use of switches and making the coupling soft-

ware programmable. On each PCB, we implemented 12

oscillators with a denser connectivity; 20 such PCBs were

plugged into a motherboard through edge connectors, and

interconnected in a 4� 5 toroidal grid, implementing a

total of 240 oscillators with 1200 couplings. The mother-

board also distributes CLK, data lines and address lines for

programming the 200 AD5206 ICs and for reading oscil-

lator states, all controlled by an Arduino module on the

motherboard that communicates with a PC through USB.

When operating OIM240, we flip on the supply digitally,

wait 1ms for oscillators to synchronize, then read back the

solution. Even with all the overhead from serial reading,

solutions can be read back every 3.5 ms. OIM240’s oper-

ation consumes � 5W of power for all the oscillators and

peripheral circuitry, excluding only the LEDs.

We tested OIM240 with many randomly generated Ising

problems (with each of the 1200 couplings randomly

chosen from 0, �1, þ1). A typical histogram for the energy

levels of the measured solutions is shown in Fig. 8c. Note

that a random (trivial) solution has an energy around 0,

whereas the best polynomial-time algorithm (based on

SDP) guarantees that 87.8% of the global optimum will be

achieved. In comparison, results from OIM240 center

around a very low energy, and achieve the global optimum

multiple times. We performed the same measurements for

20 different random Ising problems, with the distances of

solutions from their respective global optima7 shown in

Fig. 8d. The fact that OIM240 is finding highly non-trivial

solutions indicates that it indeed physically implements a

working and effective Ising machine.

4.3 MAX-CUT benchmark problems

In this section, we demonstrate oscillator-based Ising

machines on larger-scale MAX-CUT problems. Specifi-

cally, we have run simulations on all the problems in a

widely used set of MAX-CUT benchmarks known as the

G-set [46,47].8 In Table 1, in the column labelled OIM, we

list the results of our OIM simulations alongside those from

several heuristic algorithms developed for MAX-CUT—

Scatter Search (SS) (Martı́ et al. 2009), CirCut (Burer et al.

2002), and Variable Neighbourhood Search with Path

Relinking (VNSPR) (Festa et al. 2002).9 We also list the

performances of simulated annealing from a recent study

(Myklebust 2015), the only one we were able to find that

contains results for all the G-set problems.

For each problem, we ran 200 simulations of an OIM;

each simulation had a randomly generated initial condition

and injected random noise. The maximum cut value found

over these 200 simulations is reported in Table 1. The

column labelled nmax counts the number of simulations in

which the OIM generated a cut with this maximum value.

Fig. 5 Phases of oscillators solving a size-8 MAX-CUT problem

without noise

Fig. 6 Phases of oscillators solving a size-8 MAX-CUT problem with

noise

7 We ran simulated annealing for a long time (1m) multiple times,

then treated the best results as global optima.
8 Benchmarks G1� 21 are of size 800; G22� 42 are of size 2000;

G43� 47, G51� 54 are of size 1000; G48� 50 are of size 3000.
9 Results and runtimes for SS, CirCut and VNSPR are available in

the ‘‘Computational Experiences’’ section of Wang (2017).
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Similarly, the column labelled n0:999 counts the number of

simulations which generated cuts that were within 99:9%

of the value reported in the OIM column.

The OIM Time column of Table 1 reports the total time

it took for all 200 simulations to run on a single processor

core.10 While we list runtime results for each algorithm in

Fig. 7 Circuit-level simulation

results: ngspice on 8 coupled

oscillators

Fig. 8 OIM prototypes: (a) photos and schematics of OIM8, OIM32,

OIM64; (b) OIM240; (c) energy levels of 1000 measured solutions

from OIM240, on a random instance of size-240 Ising problem;

(d) energy levels for 20 such random instances (showing the distances

to their respective global minimum)

10 Note that the 200 simulations can be run in parallel to greatly

reduce this runtime. However, we stress that software simulation time

is not of immediate relevance for OIM; instead, it is the time the OIM

hardware will take to solve the problem, as discussed below.
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Table 1 Overview of OIM run on MAX-CUT benchmarks in the G-set, compared with several heuristic algorithms

Benchmark (|V|, |E|) SS Time CirCut Time VNSPR Time SA Time OIM Time nmax n0:999

G1 (800, 19,176) 11,624 139 11,624 352 11,621 22,732 11,621 295 11,624 10,520 14 57

G2 (800, 19,176) 11,620 167 11,617 283 11,615 22,719 11,612 327 11,619 10,540 1 39

G3 (800, 19,176) 11,622 180 11,622 330 11,622 23,890 11,618 295 11,621 10,480 2 50

G4 (800, 19,176) 11,646 194 11,641 524 11,600 24,050 11,644 294 11,646 10,540 7 44

G5 (800, 19,176) 11,631 205 11,627 1128 11,598 23,134 11,628 300 11,630 10,520 4 46

G6 (800, 19,176) 2165 176 2178 947 2102 18,215 2178 247 2177 10,560 4 9

G7 (800, 19,176) 1982 176 2003 867 1906 17,716 2006 205 2006 10,580 1 1

G8 (800, 19,176) 1986 195 2003 931 1908 19,334 2005 206 2004 10,560 2 11

G9 (800, 19,176) 2040 158 2048 943 1998 15,225 2054 206 2051 10,520 1 6

G10 (800, 19,176) 1993 210 1994 881 1910 16,269 1999 205 2000 10,580 1 3

G11 (800, 1600) 562 172 560 74 564 10,084 564 189 564 1340 69 69

G12 (800, 1600) 552 242 552 58 556 10,852 554 189 556 1260 57 57

G13 (800, 1600) 578 228 574 62 580 10,749 580 195 582 1280 39 39

G14 (800, 4694) 3060 187 3058 128 3055 16,734 3063 252 3061 2920 3 32

G15 (800, 4661) 3049 143 3049 155 3043 17,184 3049 220 3050 3220 3 47

G16 (800, 4672) 3045 162 3045 142 3043 16,562 3050 219 3051 2900 3 13

G17 (800, 4667) 3043 313 3037 366 3030 18,555 3045 219 3044 2920 1 26

G18 (800, 4694) 988 174 978 497 916 12,578 990 235 992 2940 1 1

G19 (800, 4661) 903 128 888 507 836 14,546 904 196 906 2900 5 5

G20 (800, 4672) 941 191 941 503 900 13,326 941 195 941 2940 47 47

G21 (800, 4667) 930 233 931 524 902 12,885 927 195 930 2920 6 6

G22 (2000, 19,990) 13,346 1336 13,346 493 13,295 197,654 13,158 295 13,354 11,740 1 22

G23 (2000, 19,990) 13,317 1022 13,317 457 13,290 193,707 13,116 288 13,330 11,720 1 21

G24 (2000, 19,990) 13,303 1191 13,314 521 13,276 195,749 13,125 289 13,321 11,800 1 18

G25 (2000, 19,990) 13,320 1299 13,326 1600 12,298 212,563 13,119 316 13,322 11,740 1 26

G26 (2000, 19,990) 13,294 1415 13,314 1569 12,290 228,969 13,098 289 13,312 11,780 1 16

G27 (2000, 19,990) 3318 1438 3306 1456 3296 35,652 3341 214 3320 11,800 4 6

G28 (2000, 19,990) 3285 1314 3260 1543 3220 38,655 3298 252 3290 12,240 4 6

G29 (2000, 19,990) 3389 1266 3376 1512 3303 33,695 3394 214 3400 11,780 1 1

G30 (2000, 19,990) 3403 1196 3385 1463 3320 34,458 3412 215 3408 11,800 1 2

G31 (2000, 19,990) 3288 1336 3285 1448 3202 36,658 3309 214 3294 11,820 1 5

G32 (2000, 4000) 1398 901 1390 221 1396 82,345 1410 194 1408 3500 2 2

G33 (2000, 4000) 1362 926 1360 198 1376 76,282 1376 194 1380 3180 3 3

G34 (2000, 4000) 1364 950 1368 237 1372 79,406 1382 194 1384 3180 1 1

G35 (2000, 11,778) 7668 1258 7670 440 7635 167,221 7485 263 7676 7420 1 6

G36 (2000, 11,766) 7660 1392 7660 400 7632 167,203 7473 265 7663 7520 2 16

G37 (2000, 11,785) 7664 1387 7666 382 7643 170,786 7484 288 7674 7560 1 20

G38 (2000, 11,779) 7681 1012 7646 1189 7602 178,570 7479 264 7674 7540 1 7

G39 (2000, 11,778) 2393 1311 2395 852 2303 42,584 2405 209 2397 7440 1 2

G40 (2000, 11,766) 2374 1166 2387 901 2302 39,549 2378 208 2387 7620 1 1

G41 (2000, 11,785) 2386 1017 2398 942 2298 40,025 2405 208 2401 7560 3 9

G42 (2000, 11,779) 2457 1458 2469 875 2390 41,255 2465 210 2470 7460 1 1

G43 (1000, 9990) 6656 406 6656 213 6659 35,324 6658 245 6660 5820 1 46

G44 (1000, 9990) 6648 356 6643 192 6642 34,519 6646 241 6647 5840 3 55

G45 (1000, 9990) 6642 354 6652 210 6646 34,179 6652 241 6653 5820 7 13

G46 (1000, 9990) 6634 498 6645 639 6630 38,854 6647 245 6645 5820 2 24

G47 (1000, 9990) 6649 359 6656 633 6640 36,587 6652 242 6656 5820 4 18

G48 (3000, 6000) 6000 20 6000 119 6000 64,713 6000 210 6000 4640 193 193
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Table 1, note that they come from different sources and

were measured on different platforms. Results for SS,

CirCut and VNSPR were obtained from Dual Intel Xeon at

3.06 GHz with 3.2 GB of RAM; SA was run on Intel Xeon

E3-1245v2 at 3.4 GHz with 32 GB of RAM (Myklebust

2015). To make the results generally comparable, we ran

our simulations on a modest personal desktop with Intel

Xeon E5-1603v3 at 2.8 GHz with 16 GB of RAM. Another

notable feature of our method is that unlike other algo-

rithms, SDE simulation does not know about the Ising

Hamiltonian or cut value—it never needs to evaluate the

energy function or relative energy changes, which are

implicit in the dynamics of differential equations.

The data in Table 1 shows that our oscillator-based Ising

machine is indeed effective—it finds best-known cut val-

ues for 29 out of the 54 problems, 17 of which are better

than those reported in the above literature.11 Moreover, in

the 200 random trials, the best cut is often reached more

than once—the average nmax for all benchmarks is 20 out

of 200. Further, the relaxed objective of n0:999 has an

average of 56, i.e., very good cuts are found in more than a

quarter of the total trials.

The results can be improved further if we tailor the

‘‘annealing schedule’’ for each problem. For simplicity,

and also to evaluate how necessary it is to tailor schedules

to obtain good results, we used a single annealing schedule

for all the problems. This schedule was chosen empirically

for one problem, G1, and appears to work well for most G-

set problems, as is apparent from the table. Rather than

using constants for K, Ks, and Kn from (14), we increased

the coupling strength K linearly with time, linearly

increased the noise level Kn from 0 to 1 early in the sim-

ulation, and ramped the SYNC’s amplitude Ks up and

down multiple times. Figure 9 shows how K, Ks, and Kn

vary with time and also plots the oscillator phases and the

instantaneous cut values when solving the G1 benchmark

to its best-known cut size. MATLAB� code illustrating the

‘‘annealing schedule’’ is shown in Wang and Roychowd-

hury (2019a); we used a much faster implementation in

C?? to generate the results in Table 1. In time, we plan to

release our code as open-source software.

The fact that we were using the same schedule for all the

benchmarks implies that the actual hardware time for the

Ising machine to solve all these benchmarks would be the

same, regardless of problem size and connectivity. Note

that in Fig. 9, the end time 20 means 20 oscillation cycles,

but this end time is predicated on a coupling strength of

K� 1. The actual value of K for each oscillator depends on

the nature of the oscillators (in particular their PPV func-

tions and nominal oscillation waveform shapes), as we

show in the derivation of Gen-Adler in Wang and Roy-

chowdhury (2019a). As an example, for the LC oscillators

we use in Sect. 4.1 with 100k resistive coupling, K 
 0:02.

This indicates that it takes less than 100 cycles for the

oscillators to synchronise in phase, which is consistent with

measurements. For such a coupled LC oscillator network, a

hardware time of 20 in Fig. 9 represents approximately

2000 cycles of oscillation; for 5 MHz oscillators, this takes

0.4 ms. If we use GHz nano-oscillators, the computation

time can be well within a microsecond. As comparison, the

runtime of the several heuristic algorithms listed in

Table 1, even with faster CPUs and parallel implementa-

tions in the future, is unlikely to ever drop to this range.

We also ran more computational experiments on the G-

set benchmarks in order to gauge the effects of adding

noise, SYNC ramping, the nature of the cij function in (5),

and frequency variability. For each experiment, we re-ran

each of the 54 benchmarks 200 times and recorded the best

cut value from each run. In Fig. 10, we compare the quality

of these cut values with results from the baseline (unal-

tered) runs by plotting histograms (over all 10,800 runs for

the entire G-set) of the distances of the cut values to their

respective maxima.

Table 1 (continued)

Benchmark (|V|, |E|) SS Time CirCut Time VNSPR Time SA Time OIM Time nmax n0:999

G49 (3000, 6000) 6000 35 6000 134 6000 64,749 6000 210 6000 4640 127 127

G50 (3000, 6000) 5880 27 5880 231 5880 147,132 5858 211 5876 5120 3 45

G51 (1000, 5909) 3846 513 3837 497 3808 89,966 3841 234 3845 3680 3 20

G52 (1000, 5916) 3849 551 3833 507 3816 95,985 3845 228 3848 3680 1 6

G53 (1000, 5914) 3846 424 3842 503 3802 92,459 3845 230 3845 3680 3 30

G54 (1000, 5916) 3846 429 3842 524 3820 98,458 3845 228 3850 3700 6 12

Bold entries indicate highest cut values across all columns. Runtimes are in seconds. The OIM Time column reports the total CPU time of our

200 simulations of the SDE. Notably, this workload is highly parallelizable. As described elsewhere in this section, on a physical OIM, the

running time of 200 optimizations would be on the order of milliseconds, significantly faster than running algorithms in software

11 The results here were re-generated using updated code, hence do

not exactly match the results we reported previously (Wang and

Roychowdhury 2019a, b).
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In the first experiment, we removed noise from the

simulation by setting Kn � 0. The solutions become con-

siderably worse as seen in Fig. 10a, confirming that noise

helps the coupled oscillator system settle to lower energy

states. In the next experiment (Fig. 10b), we eliminated

SYNC entirely by setting Ks � 0. Without SYNC, the

system becomes a simple coupled oscillator system with

phases that take a continuum of values, as discussed in

Sect. 3.2. The settled analog values of the phases that were

then thresholded to 0 or p to correspond to Ising spins. As

shown in Fig. 10, the results become much worse; indeed,

none of the best-known results were reached. This indicates

that the SYNC signal and the mechanism of SHIL we

introduce to the coupled oscillator networks are indeed

essential for them to operate as Ising machines.

Our baseline Ising machine actually uses a smoothed

square function tanhðsinð�ÞÞ for the cijð�Þ functions in (5), as
opposed to the sinð�Þ used in the original Kuramoto model,

as shown in the code in Wang and Roychowdhury (2019a).

This changes the cosð�Þ term in the energy function (10) to

a triangle function. Such a change appears to give better

results than the original, as shown in Fig. 10c. The change

requires designing oscillators with special PPV shapes and

waveforms such that their cross-correlation is a square

wave, which is not difficult in practice based on our

derivation in Wang and Roychowdhury (2019a). As an

example, rotary travelling wave oscillators naturally have

square PPVs. Ring oscillators can also be designed with

various PPVs and waveforms by sizing each stage indi-

vidually. We cannot say definitively that the square func-

tion we have used is optimal for Ising solution

performance, but the significant improvement over sinu-

soidal coupling functions indicates that a fruitful direction

for further exploration may be to look beyond the original

Kuramoto model for oscillator-based computing.

The last experiment we report here (Fig. 10d) adds

variability to the natural frequencies of the oscillators, as in

(15). We assigned Gaussian random variables to the xis,

Fig. 9 Coupled oscillators

solving MAX-CUT benchmark

problem G1 (Helmberg and

Rendl 2000) to its best-known

cut size 11,624

Fig. 10 Histograms of cut values for different modifications of the

Ising machine/simulation, compared with the baseline used for

generating in Table 1. In (a), noise has been removed from the

simulation (Kn ¼ 0). The SYNC signal has been removed in (b). cijð�Þ
(in (5)) has been changed in (c), and frequency variability has been

added in (d). Results indicate that noise, SYNC and appropriately

choosing cijð�Þ functions are key to OIM’s operation, whereas

moderate frequency variability does not affect OIM’s performance

much
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with x� as the mean, and 0.01 (1%) and 0.05 (5%),

respectively, as the standard deviations for two separate

runs. From Fig. 10d, we observe that even with such non-

trivial spread in the natural frequencies of oscillators, the

performance is affected very little.

Finally, we conducted a preliminary study of the scaling

of the time taken by the Ising machine to reach good

solutions as problem sizes increase. As the G-set bench-

marks have only a few sizes (800, 1000, 2000 and 3000),

we used the program (named rudy [50]) that generated

them to create more problems of various sizes. All gener-

ated problems used random graphs with 10% connectivity

and �1 coupling coefficients. We simulated all of them,

each for 200 instances, with fixed parameters K ¼ 1,

Ks ¼ 0:1, Kn ¼ 0:01, and show all their Ising Hamiltonians

over time in Fig. 11. Much to our surprise, the speed in

which the values settle appears almost constant, regardless

of the problem size. While this does not necessarily mean

they all converge to the global optima within the same

time, this preliminary study is encouraging as it confirms

the massively parallel nature of the system. For larger Ising

problems, our Ising machine only needs to scale linearly in

hardware size with the number of spins, but does not

necessarily require much more time to reach a solution.

4.4 Frustrated loop problems

To best explore runtimes of any statistical algorithm or

probabilistic machine for solving combinatorial optimisa-

tion problems, it is helpful to have benchmark problems

that (1) can be of any desired size, and (2) feature known

global minima of the objective function. Such problem sets

make it possible to assess, quantitatively, how well the

algorithm/machine is finding the known global minimum,

and how long it is taking to do it. The G-set MAX-CUT

benchmarks in Sect. 4.3, although widely used, are not

suitable for this purpose. They consist of problems of only

limited sizes (800, 2000, 3000) and do not have provable

globally optimal cuts—as a result, only best-known results

can be used for benchmarking and comparison. However, a

special set of benchmarks, known as ‘‘frustrated loop’’

problems, has been proposed (Hen et al. 2015; King et al.

2015; Sheldon et al. 2019) to address this issue. In this

section, we present a preliminary exploration of how

OIM’s runtime scales with problem size on frustrated loop

problems.

4.4.1 Frustrated loops

Consider a special Ising graph, i.e., one that forms a simple

loop. Frustrated loop Ising problems are constructed by

sharing edges between many such simple loops, to form

more complex graphs. If loops are constructed, and edges

shared, in a particular way, it can be shown that the Ising

Hamiltonian of the final graph is the sum of those of the

separate loops (Hen et al. 2015). By creating loops with

‘‘planted’’ solutions that have known minimum Hamilto-

nians, the global minimum Hamiltonian and solution for

the final graph also become known.

To understand how a solution can be planted, consider a

loop made of L spins and L edges. Predefine a solution s~�,
with spin values s�i 2 fþ1;�1g; i ¼ 1; 2; . . .; L. If the L

edge weights (Jij terms) are set to be

Jij ¼ s�i � s�j ; ð21Þ

the Ising Hamiltonian at s~� becomes

Hðs~�Þ ¼
X

i\j

�Jijs
�
i s

�
j ¼

X

i

�1 ¼ �L: ð22Þ

This is obviously the global minimum for this single loop

problem, as every term in the summation is minimized.

The loop becomes ‘‘frustrated’’ if some of the Jijs are

made different from (21)—more generally, if for any

choice of planted solution, not all Jijs can obey (21), i.e.,

not all L terms can reach �1 at the same time, then the loop

is called frustrated. A special case of such frustrated loops

is when only one of the L edge weights is flipped in sign

from �1 to þ1—i.e., a loop with one frustrated edge. It has

been shown that in this case, the global optimal Hamilto-

nian becomes �Lþ 2, with the pre-defined solution s~�

being one of the global optimal solutions (Hen et al. 2015).

From a set of N spins with a planted solution imposed, it

is possible to take M such frustrated loops and ‘‘connect’’

them together. If several loops are merged at an edge, the

weight of the merged edge becomes simply the sum of the

original weights of the edges. Given that all the individual

frustrated loops were constructed with the same planted

solution s�i 2 fþ1; �1g; i ¼ 1; 2; . . .;N, and that there is

one frustrated edge per loop,12 it can be shown that the

global Hamiltonian minimum is 2M �
PM

i¼1 Li, where Li is

the length of the ith loop (Sheldon et al. 2019).

Frustrated loop problems are typically generated on an

underlying lattice. The lattice can be D-Wave’s Chimera

graph (Hen et al. 2015; King et al. 2015), or 2-D/3-D grids

with nearest neighbour connections (Sheldon et al. 2019).

That is to say, the loops are formed from existing edges in

these lattices. As an illustration, Fig. 12 shows two loops in

a small 3-D grid, with blue and red edges representing

positive and negative Jij terms respectively. While this

particular problem is easily solvable by considering the two

loops separately, such problems become much harder with

12 Each single loop has one frustrated edge by design. When they

overlap, the weights of the frustrated edges can change, and they may

not remain individually frustrated. This does not change the result

regarding the global minimum energy level.
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denser loops on larger grids. Figure 13 displays a problem

with 2400 loops on an underlying 20-by-20-by-20 3-D grid.

As it happens, when the loops overlap heavily, there is no

known algorithm that can efficiently recover the loops from

the graph (hence compute the global minimum) (Sheldon

et al. 2019). During construction, a parameter a is used to

control the density of loops—it is the ratio between the

number of loops and the number of vertices, i.e., M ¼ aN.
When using 3-D grids as the underlying lattice, explo-

rations have indicated that problems are hardest when a is

around 0.3.

With the goal of reproducing the types of frustrated loop

problems used in Sheldon et al. (2019), the above discus-

sion can be summarized into a procedure for generating

frustrated loops:

• Start with an NL-by-NL-by-NL toroidal 3-D grid with a

number N ¼ N3
L of vertices—fvp;q;kg, where

p; q; k ¼ 1; 2; . . .;NL. In such a 3-D grid, each vertex

vp;q;k has edge connections to six ‘‘neighbours’’—the

vertices on its ‘‘left’’, ‘‘right’’, ‘‘up’’, ‘‘down’’, ‘‘front’’

and ‘‘back’’ directions. We call the grid toroidal as the

vertices on its boundaries connect to those on the

opposite sides. For example, the ‘‘left neighbour’’ of

vp;q;k is defined as: vp�1;q;k when p[ 1, or vNL;q;k when

p ¼ 1—there is an edge connecting the left-most vertex

with its corresponding right-most one. Similar toroidal

connections exist along the other directions as well.

We treat the N vertices as N spins, and initialize all

edge weights Jij to zero.

• Predefine or ‘‘plant’’ a set of solutions fs�i g, where

i ¼ 1; 2; . . .;N, with each s�i randomly chosen to be þ1

or �1.

• To generate a loop, start from a random vertex and

perform a random walk (randomly taking one of the six

possible directions at each step) until the path crosses

itself, then keep the loop and discard the vertices not in

the loop.

• Check if the loop is too short.13 If so, discard the whole

loop. If not, randomly choose an edge to be the

frustrated edge14 and assign its Jij as �s�i � s�j ; assign all

other Jij edge weights to be þs�i � s�j . Then add these

edge weights to the total J matrix of the graph.

• Repeat the generation of loops until the number of valid

(not too short) loops reach a � N.

Since we know the length of each loop and the number of

loops, for every instance generated, we also know the

lowest achievable Hamiltonian value and the ‘‘planted’’

globally optimal solution. With a randomly generated set

of such frustrated loop problems, we can explore how

effective a given algorithm is for finding (known) global

optima.

When running a statistical algorithm on a given prob-

lem, reporting the time it takes for one run to reach the

global optimum is often not enough. We are often more

interested in knowing the total runtime needed for the

algorithm to achieve the global optimum more or less

reliably. Such a concept can be concretized as the time to

solution, or TTS (Hamerly et al. 2019), given by

TTS ¼ logð1� PÞ
logð1� pÞ T; ð23Þ

where T is the length of a simulation run, P ¼ 0:99 is the

(desired) probability of achieving a global minimum (over

a simulation of duration TTS), and p is the probability with

Fig. 11 Speed of energy

minimisation for problems of

different sizes

13 Different criteria are used in different versions of frustrated loop

benchmarks. In Sheldon et al. (2019), a loop is too short when its

length is smaller than 6; in Hen et al. (2015), when its length is

smaller than 8; in King et al. (2015), when the loop remains confined

in a 8-vertex cube. We choose to be consistent with Sheldon et al.

(2019) for this preliminary exploration.
14 In Sheldon et al. (2019) and Hen et al. (2015), the frustrated edge

is chosen randomly; in King et al. (2015), the frustrated edge is

chosen randomly among edges with a total weight below a certain

threshold, such that ideally most edge weights reach the threshold

eventually.
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which a simulation of duration T achieves the global

minimum.

Note that (23) estimates the TTS given a runtime T, and

a corresponding probability p of finding the global mini-

mum in this runtime. In practice, using different T values

can lead to different TTS values, since successive runs are

typically not statistically independent for nonlinear

dynamical systems, especially for small T, even if random

initial conditions are used and statistically independent

input noise is applied. Therefore, in practice, TTS is

defined to be the one for the best-case scenario. That is to

say, it is assumed that we can find an optimal set of

parameters (including runtime T) such that the TTS cal-

culated in (23) is minimized. Needless to say, this is hard to

ensure in practice. The results reported (Sheldon et al.

2019; Hamerly et al. 2019) are always the upper bound of

this ‘‘true TTS’’ of the algorithms.

4.4.2 Experimental set-up and results

Our first goal here is to reproduce the benchmarks used in

Sheldon et al. (2019) statistically, i.e., to generate random

frustrated loop instances on 3-D grids of multiple sizes,

following the benchmark description in Sheldon et al.

(2019). The lengths of the grids are {6, 7, 8, 9, 10, 11, 13,

15, 17, 20, 25, 30, 35, 40}, corresponding to spin numbers

ranging from 216 to 64,000. One peculiar observation from

Sheldon et al. (2019) is that the TTS of simulated

annealing scales exponentially with problem size, whereas

the TTS of a heuristic algorithm called ‘‘memcomputing’’

scales polynomially. Here we report our own observations

on the TTS of simulated annealing (SA), and also pre-

liminary15 results for OIM, running on these frustrated loop

problems.

We generated 50 instances with different random seeds

for each problem size. For each instance, we ran SA and

OIM with various values of T, performing 100 runs for

each T to measure success probability. Finally, we took the

minimum TTS over all values of T; these are plotted in

Fig. 14. From the scatter plots in Fig. 14, we observe that

for any given problem size, the 50 instances used in this

experiment have a spread of TTS values, indicating a

varying degree of computational difficulty. The median of

the TTSs for each problem size, depicted with darker lines

in Fig. 14, is also shown, to indicate the trend of TTS

scaling.

From Fig. 14, we observe that the TTS of SA (our own

simple implementation, from first principles) does not scale

exponentially on these frustrated loop problems; instead,

the almost-straight line on the log-log plot indicates

Fig. 12 Two frustrated loops in a 3-D lattice with one overlapping

edge. Blue and red edges represent positive and negative Jij terms

respectively (Color figure online)

Fig. 13 A size-8000 frustrated loop instance on a 20-by-20-by-20 3-D

lattice

Fig. 14 TTS from SA and OIM simulations of 3-D grid frustrated

loop instances

15 e.g., we have not yet explored OIM parameter tuning to achieve

lower TTS.
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polynomial scaling. Similarly, the TTS of OIM also scales

roughly polynomially—note that further experiments, after

parameter tuning, may yield better results. The TTS values

of OIM simulation and SA are similar for large-sized

problems.

4.5 A graph colouring example

As mentioned in Sect. 2, many problems other than MAX-

CUT can be mapped to the Ising model (Lucas 2013) and

solved by OIM. Here we show an example of a graph

colouring problem—assigning four colours to the 51 states

(including a federal district) of the United States such that

no two adjacent states have the same colour.16

Each state is represented as a vertex in the graph. When

two states are adjacent, there is an edge in the graph that

connects the corresponding vertices. For every vertex i, we

assign four spins siR, siG, siB and siY to represent its

colouring scheme; when only one of them is þ1, the vertex

is successfully coloured as either red, green, blue or yellow.

Then we write an energy function H associated with these

4� 51 ¼ 204 spins as follows:

H ¼
Xn

i

ð2þ siR þ siG þ siB þ siYÞ2

þ
XnE

ði;jÞ2E
ð1þ siRÞð1þ sjRÞ þ ð1þ siGÞð1þ sjGÞ
�

þð1þ siBÞð1þ sjBÞ þ ð1þ siYÞð1þ sjYÞ
�
;

ð24Þ

where n ¼ 51 is the number of vertices, E represents the

edge set, and nE is the number of edges—in this case equal

to 220.17

The first term of H is a sum of squares never less than

zero; it reaches zero only when fsiR; siG; siB; siYg con-

tains three �1s and one þ1 for every i, i.e., each state has a

unique colour. The latter term is also a sum that is always

greater than or equal to zero, as each spin can only take a

value in f�1;þ1g; it is zero when siX ¼ sjX ¼ þ1 never

occurs for any edge connecting i and j, and for any colour

X 2 fR; G; B; Yg, i.e., adjacent states do not share the

same colour. Therefore, when H reaches its minimum

value 0, the spin configuration represents a valid colouring

scheme—following the indices of the þ1 spins

fi; X j siX ¼ þ1g, we can then assign colour X to state i.

Note that when expanding the sum of squares in (24),

we can use the fact that s2iX � 1 to eliminate the square

terms. This means H contains only products of two spins—

modelled by Jijs, and self terms—modelled by hi. These

Ising coefficients can then be used to determine the cou-

plings in an oscillator-based Ising machine.

We simulated these 204 coupled oscillators; the results

are shown in Fig. 15. In the simulation, we kept K and Kn

constant while ramping Ks up and down 5 times. We found

the Ising machine to be effective with this schedule as it

could colour the map successfully in more than 50% of the

random trials and returned many different valid colouring

schemes.

5 Conclusion

In this paper, we have proposed a novel scheme for

implementing Ising machines using self-sustaining non-

linear oscillators. We have shown how coupled oscillators

naturally minimise an ‘‘energy’’ represented by their global

Lyapunov function, and how introducing the mechanism of

subharmonic injection locking modifies this function to

encode the Ising Hamiltonian. The validity and feasibility

of the scheme have been examined via phase-model and

circuit-level simulations, as well as proof-of-concept

hardware implementations. Simulations of larger-scale

Fig. 15 Coupled oscillators

colouring the states in the US

map: (a) phases of oscillators
evolve over time; (b) energy
function (24) decreases during

the process; (c) the resulting US

map colouring scheme

16 Ising machines can be used on general graph colouring problems,

and this four-colouring problem is chosen here for illustrative

purposes. Four-colouring a planar graph is actually not NP-hard and

there exist polynomial-time algorithms for it Robertson et al. (1996).
17 Hawaii and Alaska are considered adjacent, hence their colours

will be different in the map.
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benchmark problems have also shown promising results in

both speed and the quality of solutions. We believe that our

scheme constitutes an important and practical means for

the implementation of scalable Ising machines.
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