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Abstract—We extend the concept of timing/phase macromodels, pre-
viously established rigorously only for oscillators, to apply to gen-
eral systems, both non-oscillatory and oscillatory. We do so by first
establishing a solid foundation for the timing/phase response of any
nonlinear dynamical system, then deriving a timing/phase macromodel
via nonlinear perturbation analysis. The macromodel that emerges is
a scalar, nonlinear time-varying equation that accurately characterizes
the system’s phase/timing responses. We establish strong links of this
technique with projection frameworks for model order reduction.

We then present numerical methods to compute the phase model.
The computation involves a full Floquet decomposition – we discuss
numerical issues that arise if direct computation of the monodromy
matrix is used for Floquet analysis, and propose an alternative method
that are numerically superior. The new method has elegant connections
to the Jacobian matrix in harmonic balance method (readily available in
most RF simulators).

We validate the technique on several highly nonlinear systems, in-
cluding an inverter chain and a firing neuron. We demonstrate that
the new scalar nonlinear phase model captures phase responses under
various types of input perturbations, achieving accuracies consider-
ably superior to those of reduced models obtained using LTI/LPTV
MOR methods. Thus, we establish a powerful new way to extract
timing models of combinatorial/sequential systems and memory (e.g.,
SRAMs/DRAMs), synchronization systems based on oscillator enslaving
(e.g., PLLs, injection-locked oscillators, CDR systems, neural processing,
energy grids), signal-processing blocks (e.g., ADCs/DACs, FIR/IIR filters),
etc..

I. INTRODUCTION

Automatic macromodeling, also known as model order reduction

(MOR), has been important in EDA for more than 20 years and is

of increasing interest today to several other communities, including

biology, aeronautics and energy. Given a large input-output system,

these algorithmically-rooted techniques extract smaller models that

match certain important behaviors of a given system, to within a

fidelity acceptable for a given application.

The behaviors or fidelity metrics to be preserved determine, to a

great extent, the characteristics of a given macromodeling method.

For example, many linear time-invariant (LTI) [1], [2] and linear

periodic time-varying (LPTV) [3] MOR techniques choose moments

(of transfer functions) as fidelity metrics to preserve. Similarly,

weakly nonlinear macromodelling methods [3]–[6] match moments

of multivariate Volterra transfer functions [7], and many strongly

nonlinear MOR techniques [8]–[10], being based on gluing together

reduced models of linearizations, rely heavily on moment matching

as well.

The value of moments as fidelity metrics stems chiefly from the

fact that they are closely related to timing and delay properties of

linear systems. For example, the first moment of an LTI system is the

well-known Elmore delay, while higher moments capture finer details

of timing. Timing is of fundamental interest in many disciplines. For

example, interconnect and buffer delays, the longest (critical) path

of a combinational circuit, setup/hold times of latches/registers, jitter

and phase shifts in oscillators/PLLs, etc., are important in IC design.

Similarly, the timing and synchronization properties of firing neurons

are thought to be their most important functional characteristic in

neuroscience [11]. Such is the importance of timing in applications

that it can be plausibly argued that MOR/macromodelling has been

driven chiefly by a single underlying goal, a desire to capture timing

properties of complex systems well.

An interesting observation is that moments are an indirect means

of getting to the underlying timing properties of a system, in the sense

that they infer timing indirectly from waveform information. For

example, consider the waveform x(t) = sin(ωt + τ(t)), the essential

timing feature of which is a time-varying delay τ(t). The same time-

varying delay can be embedded in a differently-shaped waveform,

e.g., y(t) = squarewave(ωt + τ(t)). [x(t) could be, for instance, the

output of a time-varying RC circuit (with slowly changing time

constant); while y(t) could be the output of the same circuit followed

by a memoryless hard clipper.] Note that x(t) and y(t) have different

Elmore delays, even though the underlying timing quantity of interest,

τ(t), is the same for both waveforms. This example indicates that,

especially for nonlinear systems, moments or other indirect means

of inferring timing properties can have shortcomings; a more direct

way of capturing τ(t), that does not rely on waveform shapes such

as sin(·) or squarewave(·), is therefore desirable.

In this paper, we develop a theory to identify and macromodel

the underlying timing/phase properties of any system. Our approach

is based on ideas originally developed for phase macromodelling

of autonomous oscillators, but generalizes them considerably in

order to arrive at techniques applicable to any kind of system,

whether or not they are autonomous or oscillatory. The timing/phase

macromodel we generate is a single scalar, nonlinear differential

equation that captures any system’s input/output timing properties.

We also establish pleasing connections of this timing macromodel

with projection frameworks [4], [10] for model reduction – we

show that it is a projection of the original system onto a time-

varying subspace derived from trajectory linearizations. We prove

that existing phase macromodelling techniques that apply only to

autonomous oscillators [12] are simply a special case of our general

timing macromodelling method.

We then develop numerical methods for implementing and apply-

ing the theory. A core step in extracting the timing macromodel is a

full Floquet decomposition [13]. We show that straightforward tech-

niques based on computing monodromy matrices can face significant

numerical issues, to address which we develop an alternative tech-

nique that has far superior numerical properties. The new technique

is based on exploiting elegant eigen-properties of frequency-domain

Jacobian matrices that arise naturally in the standard numerical

methods of harmonic balance, widely available in RF simulators.

Finally, we validate and explore the uses of the new timing

modeling technique by applying it to representative examples drawn

from circuits and biology. To obtain concrete insights into the

technique’s properties, we first study a simple nonlinear system in

some detail. We then apply the technique to a firing neuron and

an inverter chain circuit. We show that the new method provides

large speedups in simulating timing properties, while at the same

time providing results considerably more accurate than those from

existing LTI/LPTV model reduction techniques.

The remainder of the paper is organized as follows. In Section II,

we define the generalized concept of timing/phase response and

discuss applications where timing/phase is important. We also re-

view the projection framework of MOR, and explain limitations

of LTI/LPTV reduced models in systems that are highly nonlinear.

We then develop the theory of the new timing/phase macromodel

in Section III and present numerical methods for computing it in

Section IV. In Section V, we validate this new model on a set



of benchmarks and compare results against full simulations of the

original systems.

II. BACKGROUND AND MOTIVATION

A. Problem Definition and Applications

Consider a nonlinear dynamical system described by a set of

differential algebraic equations

d

dt
~q(~x(t))+ ~f (~x(t))+~b(t) = 0, (1)

where~x∈R
n are state variables (for example, node voltages in circuit

equations) and ~b ∈ R
n are inputs. We aim to derive a differential

equation in terms of the phase variable that captures the phase

response of the system. To make sense of this goal, we define the

phase response as follows:

Definition 2.1 (Phase response): Suppose in (1), the (unper-

turbed) response to (unperturbed) input ~bS(t) is ~xS(t), and the

(perturbed) response to (perturbed) input ~bp(t) is ~xp(t). There exists

z(t) : R+ →R, such that ~xS(t+z(t)) best approximates ~xp(t) in some

sense1. We call z the phase variable, and z(t) the phase response.

This concept can be best understood geometrically. As shown in

Fig. 1, the solid (blue) orbit is the trajectory of ~xS(t), and the dotted

(red) orbit is the trajectory of ~xp(t) (we show two closed orbits in

Fig. 1 for simplicity, but there is no restriction of the orbit being

closed in our definition – the orbit can be arbitrary). At time t, on

the orbit of ~xS(t), there exists a point given by ~xS(t+z(t)) which best

approximates ~xp(t) on the perturbed orbit. The remaining difference

~y(t) = ~xp(t)−~xS(t + z(t)) is called the amplitude deviation [12].

Therefore, we can view the response to input ~bp(t) as combined

effects of the phase response and the amplitude deviation, i.e.,

~xp(t) =~xS(t + z(t))+~y(t). (2)

According to (2), we see that when~y(t) is small, i.e.,~xp(t) stays close

to the orbit of ~xS(t) in the state space, capturing phase response alone

gives a reasonably good approximation to the perturbed solution.

Fig. 1. Illustration of phase response.

With this definition of phase response, it is worth noting that

although the phase response is an important characteristic of os-

cillators as pioneered by many researchers [11], [12], it is not a

special characteristic only for oscillators, but generally for all kinds

of dynamical systems. It has broad applications in many fields.

Phase response is of great importance in circuits in particular. For

examples, in oscillators, phase noise or timing jitter is the phase

response in a stochastic setting where noise/uncertainties are present;

in digital gates and RC interconnects, timing information such as

delay and slope are essentially derived from the phase response; in a

pulse generator, the pulse width can also be derived from the phase

response.

Scientists in biology and neuroscience also place a great emphasis

on quantitative understanding of the phase response. For examples,

normal human circadian rhythm disorders, which can be caused by

insomnia, fatigue and jet lag, are phase responses of underlying phys-

iological processes under different perturbations; synchronization of

1The notion of best approximation is defined in Section III.

a neural network is a phenomenon where the phase responses of all

neurons settle down to the same value; some neuron firing/bursting

behaviors, which are exhibited when currents are injected, can also

be understood as the phase response of the neuron.

It must be noted that the assumption (that the trajectories of the

system under various perturbations all cluster around a fixed orbit)

is important for the phase response to be a good characteristic. In

many systems, the validity of this assumption depends on both the

system properties as well as input perturbations.

Fortunately, we see a lot of applications where this assumption is

satisfied. For examples: in oscillators that are asymptotically orbital

stable, the periodic orbit is an attractor which by definition attracts

all trajectories nearby; in digital applications, although circuits never

reside in a periodic steady state, their trajectories follow almost the

same path since inputs are basically signals switching between “0”

and “1” with variations of the slope, to the first-order approximation.

Among all possible perturbations, there is also a special one that is

very useful and normally makes the above assumption satisfied. This

is the phase perturbation, i.e., the perturbed input~bp(t) =~bS(t+ p(t))

is only a phase-modulated version of ~bS(t) with some signal p(t).
For example, it can be used to represent an FM/PM signal in RF

applications, or a delayed ramp signal with any slope and distortion

in digital applications. In particular, when p(t) is a constant, the

perturbed solution ~xp(t) lies exactly on the same orbit of ~xS(t) if

initial condition is set properly.

We conclude that with valid assumptions, phase response alone

characterizes the system response, and therefore a good phase macro-

model is of great importance in practice.

B. Projection Framework

Most previous MOR techniques follow a linear or nonlinear

projection framework [4], [10], i.e., they try to identify two low order

(q ≪ n) linear subspaces or nonlinear manifolds in the state space,

and project the state variables and differential equations (residual)

onto them respectively. This boils down to computing two projection

functions ~v : Rq → R
n and ~w : Rn → R

q, and deriving the reduced

model of (1) as

~w

(

d

dt
~q(~v(~z(t)))+ ~f (~v(~z(t)))+~b(t)

)

= 0, (3)

where ~z ∈ R
q are state variables of the reduced system.

We will show in Section III that our phase macromodeling tech-

nique indeed fits into this projection framework by carefully defining

appropriate nonlinear projection functions.

C. Why Previous Reduced Models Can Fail

Most systems, including non-oscillatory ones, mentioned in

Section II-A are highly nonlinear. Although LTI/LPTV reduced mod-

els have successes in modeling weakly nonlinear systems [4], they

are almost determined to fail in these highly nonlinear applications.

LTI MOR techniques for nonlinear systems basically generate an

LTI reduced model for the LTI system obtained by linearizing the

nonlinear system around its DC operating point. Therefore, they

inherit the assumption that inputs (perturbations) to the system must

be small enough so that the system operates in its linear region.

This assumption is valid in circuits like amplifiers, but fails in other

systems. For example, digital circuits (such as an inverter) never

operate in the linear region.

Similarly, LPTV MOR techniques for nonlinear systems generate

an LPTV reduced model for the LPTV system obtained by linearizing

the nonlinear system around its periodic steady state. It captures the

nonlinearity of the system assuming that at time t, the small signal

response to the nonlinear system can be approximated by

d

dt
[C(~xS(t))~y(t)]+G(~xS(t))~y(t)+∆~b(t) = 0. (4)



It can be viewed as the combination of a series of linear models

around every point on the periodic steady state, and it assumes that

at any time t, the perturbed response~xp(t) is close to~xS(t).
2 However,

this is not true in our applications. For example, if the input ~b(t) =
~bS(t + τ) is a time-shifted version of ~bS(t), then asymptotically the

perturbed solution is ~xp(t) =~xS(t + τ), which can be very far away

from ~xS(t). This simple fact makes the LPTV approximation fail, let

alone the reduced model derived from it.

General nonlinear reduced models will capture the phase response

correctly if the subspace or manifold is chosen correctly. Since the

reduction criterion is normally to match transfer functions of many

linearized systems and to cover training trajectories, the reduced

model works in a general setting. However, if only the delay/phase

property is of interest, these general-purpose reduced models are too

redundant to be used.

As a brief summary, LTI/LPTV models fail since their basic

assumptions are unsatisfied; nonlinear reduced models are good but

still redundant and need to be tuned to capture the phase response.

III. GENERALIZED NONLINEAR TIMING/PHASE MACROMODEL

In this section, we derive the generalized phase macromodel.

We show that a scalar nonlinear time-varying equation encodes the

dynamics of the phase response. We further interpret this phase

macromodel both in the traditional projection framework and via

a nonlinear perturbation analysis from which we see clearly what

system behaviors are characterized in the model. Note that our

derivations make the assumption that the unperturbed system is in a

periodic steady state. This assumption is crucial for both analysis and

numerical methods. We then generalize the idea to the case where the

unperturbed system is not in a periodic steady state in Section III-F.

A. Preliminaries and Notations

To understand derivations in following sections, we need to intro-

duce a few notations and lemmas. For simplicity, we consider the

system defined by a set of ordinary differential equations

d

dt
~x(t) = ~f (~x(t))+~b(t). (5)

Following [14], the results can be extended to differential algebraic

equations. We omit derivations for this extension due to page limits.

We assume that the input~b(t) is a periodic signal~bS(t) with period

T , and that under this input, the asymptotic response of the system

is ~xS(t) which is also periodic with period T .

A traditional perturbation analysis using linearization can then be

carried out: assuming that the response to the perturbed input~bp(t) =
~bS(t)+~bw(t) is ~xp(t) =~xS(t)+~w(t), and substituting ~xp(t) and ~bp(t)
in (5), we obtain

d

dt
(~xS(t)+~w(t)) = ~f (~xS(t)+~w(t))+

(

~bS(t)+~bw(t)
)

. (6)

To the first order approximation, we have

d

dt
~w(t) = G(t)~w(t)+~bw(t), (7)

where G(t) = ∂~f
∂~x

∣

∣

∣

~xS(t)
is a time-varying matrix with period T .

(7) is an LPTV system, whose solution, according to Floquet theory

2Note that there is a crucial difference between this assumption and the
assumption that the trajectories of ~xp(t) and ~xS(t) stay close to each other.

[13], is

~w(t) =Φ(t,0)~w0 +

∫ t

0
Φ(t,s)~bw(s)ds

=U(t)D(t)V T (0)~w0 +U(t)
∫ t

0
D(t − s)V T (s)~bw(s)ds

=
n

∑
i=1

~ui(t)e
µit~vT

i (0)~w0 +
n

∑
i=1

~ui(t)
∫ t

0
eµi(t−s)~vT

i (s)~bw(s)ds

=
n

∑
i=1

~ui(t)

(

eµit~vT
i (0)~w0 +

∫ t

0
eµi(t−s)~vT

i (s)
~bw(s)ds

)

,

(8)

where ~w0 is the initial condition, Φ(t,s) =U(t)D(t − s)V T (s) is the

state transition matrix of (7), µis are the Floquet exponents, D(t) =
diag(eµ1t , · · · ,eµnt), U(t)= [~u1(t), · · · ,~un(t)], V (t)= [~v1(t), · · · ,~vn(t)],
and V T (t)U(t) = In. More theories and proofs about LPTV systems

can be found in [13], and are omitted here due to page constraints.

We now introduce a lemma showing that
d~xS(t)

dt
, the time derivative

of the periodic solution ~xS(t) of (5), satisfies an LPTV system.

Lemma 3.1: The time derivative of the periodic solution ~xS(t) of

(5), i.e., d
dt
(xS(t)) satisfies

d

dt
~w(t) = G(t)~w(t)+

d~bS(t)

dt
, (9)

and can be written as

d~xS

dt
(t) =U(t)~c(t) =

n

∑
i=1

~ui(t)ci(t), (10)

where

ci(t) = lim
t→∞

(

eµit~vT
i (0)

d~xS

dt
(0)+

∫ t

0
eµi(t−s)~vT

i (s)

(

d

ds
~bS(s)

)

ds

)

. (11)

Proof: Since ~xS(t) satisfies (5), we have

d

dt
~xS(t) = ~f (~xS(t))+~bS(t). (12)

Take the time derivative of (12) on both sides, we obtain

d

dt

(

d~xS(t)

dt

)

=
d

dt

(

~f (~xS(t))+~bS(t)
)

=
∂~f

∂~x

∣

∣

∣

∣

~xS(t)

d~xS(t)

dt
+

d~bS(t)

dt
. (13)

Therefore, d
dt
(~xS(t)) satisfies (9).

Since d
dt
~xS(t) is the asymptotic periodic solution to (9), according

to (8), we further have (10) with ~c(t) defined by (11).

B. Main Results via Nonlinear Perturbation Analysis

With the important assumption that the trajectory of the perturbed

system stays close to the trajectory of ~xS(t), the key idea is to show

that under the perturbed input ~bp(t), the perturbed response ~xp(t)
can be decomposed into the phase response z(t) and the amplitude

deviation ~y(t) in a reasonable way, i.e.,

~xp(t) =~xS(t + z(t))+~y(t), (14)

and that by defining the right differential equation for z(t), ~y(t) is

minimized in some sense.

To show this, we start by defining the phase equation, i.e., the

differential equation for the phase response z(t). We then show that

the input ~bp(t) can be decomposed into ~bz(t) and ~by(t) such that

when only ~bz(t) is applied to (5), the perturbed response is exactly

~xS(t + z(t)). We then derive the first-order approximation of ~y(t) by

linearizing original differential equations around the phase-shifted

solution ~xS(t + z(t)), and show that ~y(t) is minimized in some sense.

Definition 3.1: We define the phase equation to be

~cT (t + z)~c(t + z)
dz

dt
=~cT (t + z)V T (t + z)

[

~bp(t)−~bS(t + z)
]

, (15)

where ~c(t) is defined in (11) and V (t) is defined in (8).



With the definition of z(t), we present a theorem showing that part

of the input ~bp(t) contributes only to the phase response.

Theorem 3.2: Given any perturbed input ~bp(t), define

~bz(t) =~bS(t + z)+
~cT (t + z)

~cT (t + z)~c(t + z)
V T (t + z)

·
[

~bp(t)−~bS(t + z)
]

U(t + z)~c(t + z),

(16)

then ~xS(t + z(t)) is the solution to

d

dt
(~x(t)) = ~f (~x(t))+~bz(t). (17)

With this input decomposition, it remains to show that by de-

composing the perturbed response ~xp(t) into phase response and

amplitude deviation according to (15), the amplitude deviation is

minimized in some sense. This is proven by the following theorem.

The proof also gives another derivation of the phase equation (15).

Theorem 3.3: Suppose the perturbed response is ~xp(t) =~xS(t +
z(t))+~y(t), then to the first-order approximation, ~y(t) is

~y(t) =U(τ)
∫ τ

0
eΛ(τ−s)~r(s)ds, (18)

where τ = t + z, Λ = diag(µ1, · · · ,µn) are the Floquet exponents of

(7), and ~y(t) is minimized in the sense that ||~r(s)||2 is minimized.
Sketch of proof: Using the input decomposition in Theorem 3.2, we

can perform a perturbation analysis of the original nonlinear system
around its periodic solution. Assuming ~xp(t) =~xS(t + z)+~y(t), we
can derive an LPTV system in terms of ~y(t). By applying Floquet
theory (i.e., (8)), we obtain (18), where

~r(t) =V T (t + z)
(

~bp(t)−~bS(t + z)
)

−
dz

dt
~c(t + z). (19)

The minimization of ||~r(t)||2 boils down to the problem of min-

imizing ||A~x−~b||2 where A = ~c(t + z), x = a(t) and ~b = V T (t +

z)
[

~bp(t)−~bS(t + z)
]

. The solution to this problem is simply

dz

dt
=

~cT (t + z)

~cT (t + z)~c(t + z)
V T (t + z)(~bp(t)−~bS(t + z)), (20)

which again leads to (15). �

C. Algorithm

Based on the above analysis, the algorithm to generate a general-

purpose phase macromodel is shown in Algorithm 1.

Algorithm 1 Generalized Phase Macromodeling

1: Given input ~bS(t), compute the periodic steady state ~xS(t).

2: Compute
d~xS(t)

dt
, the time derivative of ~xS(t).

3: Perform Floquet decomposition of the LPTV system
d~w
dt

= G(~xS(t))~w(t) (compute U(t), V (t), and D(t)).

4: Compute ~c(t) =V T (t)
d~xS(t)

dt
.

5: Precompute ~cT (t)~c(t) and ~cT (t)V T (t) and store them in the

model.

D. Interpretation in the Projection Framework

The model shown in Section III-B can be interpreted as a special

reduced order model in the projection framework mentioned in

Section II-B, where state variables are forced to lie in a q-dimensional

manifold defined by ~x =~v(~z), and the residual is forced to lie in a

q-dimensional manifold defined by ~rz = ~w(~rx).
To derive the same phase macromodel under the projection frame-

work, we first enforce that the perturbed response ~xp(t) only induces

a phase shift, i.e., the state variable lie on the same orbit as that of

the unperturbed solution. This is equivalent to say that we project the

state space onto the one-dimensional nonlinear manifold defined by

the unperturbed solution ~xS(t) which has a natural parameterization

by time t. Therefore, the projection function is defined by

~x(t) =~v(z(t)) =~xS(t + z). (21)

Substituting (21) in (5), we have

d

dt
~xS(t + z) =~f (~xS(t + z))+~bp(t). (22)

Therefore,

d

dt
[~xS(t + z)] =

d~xS

dτ
(τ)

dτ

dt
=

d~xS

dτ
(τ)

(

1+
dz

dt

)

=
d~xS

dτ
(τ)+

d~xS

dτ
(τ)

dz

dt
.

(23)

On the other hand, we have

d

dτ
~xS(τ) = ~f (~xS(τ))+~bS(τ), (24)

and therefore, (23) can be written as

d

dt
~xS(t + z) =~f (~xS(τ))+~bS(τ)+

d

dτ
~xS(τ)

dz

dt
. (25)

Combining (22) and (25), we obtain

d

dτ
~xS(τ)

dz

dt
=~bp(t)−~bS(τ), (26)

or equivalently,

U(τ)~c(τ)
dz

dt
=~bp(t)−~bS(τ). (27)

Therefore, after the projection onto the periodic orbit, we obtain n

equations (27) and 1 unknown variable z. To derive a reduced order

model, we further project the residual, i.e., (27), to a one-dimensional

manifold. In our model, we have chosen the projection to be

~w(~rx) =~cT (τ)V T (τ)~rx, (28)

which is shown to minimize the amplitude deviation in the sense of

Theorem 3.3.

E. Connections to PPV Macromodel

The PPV phase macromodel [12] is specifically devised to char-

acterize the phase response of an oscillatory system. Its limitation is

that it is only applicable to oscillators. This excludes it from wide

applications such as traditional timing analysis and excitory firing

neuron network simulations.

Following previous derivations, the PPV macromodel is indeed a

special case of our generalized phase macromodel. We can obtain the

PPV model for oscillators by choosing~c(t) in (15) to be [1,0, · · · ,0]T .

This choice of ~c(t) in fact is the definition in (11) for autonomous

oscillators. To see that, we note that for autonomous oscillators,

the following two conditions are typically satisfied: (1) one Floquet

exponent of (9) to be 0 and others negative (e.g., µ1 = 0, µi < 0,

2 ≤ i ≤ n), and (2) ~bS(t) is constant. Therefore, (11) becomes

c1(t) = lim
t→∞

~vT
i (0)

d~xS

dt
(0) = 1,

ci(t) = lim
t→∞

eµit~vT
i (0)

d~xS

dt
(0) = 0, 2 ≤ i ≤ n,

(29)

which leads to ~c(t) = [1,0, · · · ,0]T , and the PPV model.

F. Generalization for Non-Periodic Trajectories

Above derivations are based on the assumption that ~xS(t) is the

asymptotic periodic orbit in the state space. This is not generally the

case for some systems such as digital circuits. However, if we force

the input to be a periodic signal (for example, a square wave), then

the system will converge to a periodic steady state, and transient

behaviors (for example, the rising and falling edge of waveforms)



are well-approximated by its periodic steady state. Hence, we can

force the input to be periodic as long as the periodic trajectory well-

approximates the non-periodic ones. As a result, the derived phase

model will also characterize the transient phase responses.

IV. NUMERICAL METHODS FOR COMPUTING THE PHASE MODEL

As shown in algorithm 1, to compute the phase macromodel, we

need to compute the periodic steady state ~xS(t), its time derivative
d~xS(t)

dt
, and perform a full Floquet decomposition of an LPTV system.

PSS analysis has been widely adopted in commercial tools and

usually uses shooting method [15], FDTD method [15] or harmonic

balance [15]. The time derivative of the PSS solution can be computed

either in the time domain directly by finite difference approximation

or in the frequency domain and be transformed back to time domain.

The main numerical challenge lies in the Floquet decomposition,

which is numerically much more ill-conditioned. Implementations

according to textbook definitions using Monodromy matrix fail

without question. In this section, we first demonstrate that methods

based on explicitly computing the Monodromy matrix are numerically

extremely bad. We then present a much better-behaved method to

solve this challenge, based on harmonic balance method.

A. Floquet Decomposition using Monodromy Matrix

We consider the Floquet decomposition of the LPTV system

d

dt
~x(t)+G(t)~x(t) = 0. (30)

Floquet decomposition [13] refers to computing matrices U(t),
V (t) and D = eΛt (where Λ is a diagonal matrix of all Floquet

exponents) such that the state transition matrix of (30) is

Φ(t,s) =U(t)D(t − s)V T (s). (31)

The definition for Floquet exponents are derived from the eigen-

values of the monodromy matrix defined by

B = Φ(T,0) = PeΛT P−1, (32)

and U(t) is then defined as Φ(t,0)Pe−Λt , and V (t) =U−1(t).
This definition naturally gives a straightforward implementation of

Floquet decomposition:

Algorithm 2 Floquet Decomposition using Monodromy Matrix

1: Starting with initial condition X(0) = I, integrate (30) to compute

Φ(t,0) for t ∈ [0,T ].
2: Compute the monodromy matrix B = Φ(T,0).
3: Eigen-decompose the monodromy matrix B = PeΛT P−1.

4: Compute U(t) = Φ(t,0)Pe−Λt and V (t) =U−1(t).

This algorithm will work in perfect precision. However, it almost

never works in practice. For real systems, most Floquet exponents

are normally negative. This means that using any initial condition P,

the solution to (30) (which is Φ(t,0)P) tends to 0 exponentially. This

makes the computed monodromy matrix B extremely numerically

singular, and the eigen-decomposition of B provides useless results.

Also, computing V (t) using the inverse of U(t) is not a good choice

since the smoothness of V (t) can easily be destroyed.

B. Equations in terms of U(t) and V (t)

As the first and the most important step to tackle the problems

in the Monodromy matrix method, we derive equations whose

unknowns are U(t) and V (t), respectively. Because U(t) and V (t)
are periodic, the resulting differential equations have solutions that

are periodic, instead of decaying to 0. Therefore, this avoids nu-

merical errors in the Monodromy matrix computation. Moreover,

having equations for U(t) and V (t) separately avoids computing

V (t) =U−1(t).

To derive these equations, we start with a fundamental matrix

X(t) = Φ(t,0) =U(t)D(t)V T (0), (33)

which solves (30). Substituting (33) in (30), we have

d

dt

[

U(t)D(t)V T (0)
]

+G(t)U(t)D(t)V T (0) = 0

⇔
d

dt
[U(t)D(t)]+G(t)U(t)D(t) = 0

⇔

[

d

dt
U(t)

]

eΛt +U(t)

[

d

dt
eΛt

]

+G(t)U(t)eΛt = 0.

(34)

Therefore,
d

dt
U(t)+U(t)Λ+G(t)U(t) = 0. (35)

Similarly, to derive the equations for V (t), we apply the same

technique to the adjoint system of (30)

dy(t)

dt
−GT (t)y(t) = 0, (36)

which has a fundamental matrix

Y (t) =V (t)D(−t)UT (0). (37)

Substituting (37) in (36), we have

d

dt
(V(t)D(−t))−GT (t)V(t)D(−t) = 0

⇔

(

d

dt
V (t)e−Λt +V (t)(−Λ)e−Λ(t)

)

−GT (t)V(t)e−Λ(t) = 0.
(38)

Therefore,

d

dt
V (t)−V (t)Λ−GT (t)V (t) = 0. (39)

Therefore, we have shown that U(t) and V (t) satisfy differential

equations (35) and (39), respectively. To solve for U(t) and V (t), we

note that they are by definition periodic with period T , and therefore

we need to force the their periodicity during the computation. A well-

known numerical method that forces the periodicity is HB, and we

now show how to apply HB to solve for U(t) and V (t).

C. Floquet Decomposition via Harmonic Balance

1) Notations: We follow the notations in [16]: For any periodic
matrix or vector A(t) which has a truncated Fourier series A(t) =
∑M

i=−M Aie
jiωt (ω = 2π

T
), we define the block vector VA(t) of Ais and

the block-Toeplitz matrix TA(t) of Ais to be

VA(t) =
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Using this notation, two lemmas follow [16]:

Lemma 4.1: If Z(t) = X(t)Y (t), and X(t), Y (t) are T -periodic,

then,

VZ(t) = TX(t)VY (t), VZT (t) = TY T (t)VX T (t),

TZ(t) = TX(t)TY (t), TZT (t) = TY T (t)VX T (t).
(41)

Lemma 4.2: If X(t) is T -periodic, then

VẊ(t) = ΩVX(t), TẊ(t) = ΩTX(t)−TX(t)Ω, (42)

where Ω = Ω0 ⊗ In, Ω0 = jωdiag(· · · ,2,1,0,−1,−2, · · · ). (43)

2) HB for Floquet decomposition:

Theorem 4.3: The eigenvalues and eigenvectors of the HB Jaco-

bian matrix for (30) (JHB = Ω+TG(t)) are given by the diagonal of



Ω0 ⊗ In − I2M+1 ⊗Λ and TU(t), respectively.

The eigenvalues and eigenvectors of the HB Jacobian matrix for

(36) (ĴHB = Ω − TGT (t)) are given by the diagonal of Ω0 ⊗ In +
I2M+1 ⊗Λ and TV (t), respectively.

Proof: Applying lemmas 4.1 and 4.2 to to (35), we have

ΩTU(t)−TU(t)Ω+TU(t)TΛ +TG(t)TU(t) = 0

⇔ (Ω+TG(t))TU(t)+TU(t)(TΛ −Ω) = 0,
(44)

which is already in the eigen-decomposed form of JHB = Ω+TG(t).

Similarly, applying lemmas 4.1 and 4.2 to to (39), we have

(ΩTV (t)−TV (t)Ω)−TV (t)TΛ −TGT (t)TV (t) = 0

⇔ (Ω−TGT (t))TV (t)−TV (t)(Ω+TΛ) = 0,
(45)

which is already in the eigen-decomposed form of ĴHB = Ω−TGT (t).

Therefore, solving for U(t) and V (t) boils down to the matrix

eigenvalue problem of JHB and ĴHB. To pick up the right eigenvectors

for U(t) and V (t), we note that eigenvalues of two matrices are

λi,k = jiω ∓ µk,−M ≤ i ≤ M,1 ≤ k ≤ n. and the block vector VU(t)
and VV (t) correspond to eigenvalues λ0,k = µk. Therefore, assuming

µks are real, we can pick up the eigenvectors corresponding to real

eigenvalues to obtain VU(t) and VV (t). This leads to the following

algorithm:

Algorithm 3 Floquet Decomposition via Harmonic Balance

1: Construct Jacobian matrices JHB and ĴHB in Thm. 4.3.

2: Eigen-decompose JHB and ĴHB.

3: Select real eigenvalues to be the Floquet exponents µks, and

eigenvectors corresponding to µks to be VU(t) and VV (t).

4: Perform inverse FFT to compute U(t) and V (t) in time-domain.

V. VALIDATION AND APPLICATIONS

In this section, we illustrate applications of the previously devel-

oped phase macromodeling technique to several nonlinear systems.

We first look at a simple two-dimensional nonlinear system in

detail – we present results on phase macromodel construction, and

show that our numerical methods to compute the phase macromodel

(which mainly involves the full Floquet decomposition) have superior

accuracy over the straightforward Monodromy matrix method. We

then compare the simulation results of the phase model to those of the

full model, and analyze the results for different types of perturbations,

including perturbations on amplitude, frequency, phase and initial

condition (impulse perturbation).

Following this case study, we present results on a firing neuron

model and an inverter chain circuit, where special types of perturba-

tions that are of interest in practice are discussed.

A. A Simple Nonlinear System

The first nonlinear system we consider is described by

d

dt
x1 + x1 +1000(x1 − x2)

3 −b(t) =0

d

dt
x2 + x2 −1000(x1 − x2)

3 =0.

(46)

The (nominal) periodic input bS(t) is set to bS(t) = cos(2πt), and

the periodic steady state ~xS(t) is solved and shown in Fig. 2.

To derive the phase model described in Section III, we perform a

full Floquet decomposition of the LPTV system obtained by lineariz-

ing (46) around its periodic steady state ~xS(t). We apply the method

described in Section IV which boil down to solve an eigenvalue

problem of the HB Jacobian matrix. The computed eigenvalues of

the HB Jacobian matrix (using 45 harmonics) for the LPTV system

and its adjoint system are depicted in Fig. 3. From Fig. 3, we see

that eigenvalues are approximately ±1 + ji2π and ±20.68 + ji2π
(i = −45, · · · ,45). These eigenvalues match the theoretical results,
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although the eigenvalues at the end of the line x =±20.68 are off a

little bit,

The eigenvectors of these matrices corresponding to the Floquet

exponents -1 and -20.68 are then extracted to construct U(t) and

V (t), which are plotted in Fig. 4(a) and Fig. 4(b), respectively. To

examine the bi-orthonormality of the two matrices, we also plot the

matrix V T (t)U(t) in Fig. 4(c). From Fig. 4(c), we see that vT
1 (t)u1(t)

and vT
2 (t)u2(t) equal to constant 1, and vT

1 (t)u2(t) and vT
2 (t)u1(t) are

much less than 10−12. Therefore, the bi-orthonormality is preserved.
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Fig. 4. Floquet decomposition and phase macromodel construction.

We have not shown results using the Monodromy matrix method,

since these results do not make sense. For the fact that this system (as

well as almost all practical systems) is stable and Floquet exponents

are all negative, the Monodromy matrix is numerically extremely

singular, and the eigen-decomposition produces meaningless results.

Using results from Floquet decomposition, we construct the phase

macromodel, i.e., the phase equation (15). The time-varying function
cT (t)V T (t)B

cT (t)c(t)
(assuming input ~b(t) = Bb(t)) is plotted in Fig. 4(d). This

key function models the nonlinearities that contribute to the phase

response, and can be viewed as the sensitivity of inputs to the phase

response. From Fig. 4(d), we can infer that inputs applied at time

t ≃ 0.2 and t ≃ 0.7 have the most significant impact on the phase

response.

We now examine results of our phase model under different types

of input perturbations. Although any perturbation is applicable to

the model, we specifically consider four types of perturbations here:

for a periodic input ~bS(t), we consider phase perturbation ~bS(t +



p), frequency perturbation~bS( f t), amplitude perturbation A~bS(t), and

impulse perturbation ~bS(t)+Dδ (t).

The simulation results under a constant phase perturbation~bp(t) =
~bS(t + 0.4) with initial condition z = 0 are plotted in Fig. 5. Fig.

5(a) depicts the waveform of z(t), which shows that the phase is

converging to z=−0.6. This corresponds to the time-domain solution

~xS(t +0.4). Fig. 5(b) plots the time-domain waveforms of x1 and x2.

It is observed that the initial transient behaviors are not matched

exactly, but the waveforms stay quite close. To better understand the

dynamics, we examine the time-evolution of state variables in the

state space, which is depicted in the x− t space in Fig. 5(c). It is

observed that state variables of the phase model are confined on the

orbit of~xS(t), but they try to follow the correct trajectory by choosing

almost the closest point on the orbit of ~xS(t). The simulation results

for another initial condition z = 0.2 is also plotted in the x− t space

in Fig. 5(d), and this is equivalent to applying an impulse function

at time t = 0. Similar behaviors of the phase model are observed,

and it finally converges to the correct asymptotic response. Indeed,

if a constant phase-shifted input ~bS(t + p) is applied, no matter what

the initial condition is, our phase model will reproduce the correct

phase-shifted asymptotic output. This can be seen by the fact that

z(t) = p is a fixed point of (15).

0 1 2 3 4 5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
transient simulation of the phase model

(a) z(t).

0 1 2 3 4 5

−0.1

−0.05

0

0.05

0.1

 

 

x1 (full model)
x2 (full model)
x1 (phase model)
x2 (phase model)

(b) x(t).

0 1 2 3 4 5
−0.1

0

0.1

−0.06

−0.04

−0.02

0

0.02

0.04

 

time
x

1

 

x
2

(c) State space with time, z0 = 0.

0 1 2 3 4 5−0.1

0

0.1

−0.04

−0.02

0

0.02

0.04

0.06

time
x

1

x
2

(d) State space with time, z0 = 0.2.

Fig. 5. Transient simulation of the phase model when b(t)= cos(2π(t+0.4)).
In Fig. 5(c) and Fig. 5(d), red(circled): phase model, Blue(solid): full model.

We then make the phase perturbation time-varying – we apply

an PM signal bp(t) = cos(2π(t +0.1sin(0.2πt))), and the simulation

results for 100 cycles are shown in Fig. 6. It is seen in Fig. 6(b) that

the response of the full model almost lies on the periodic orbit of

~xS(t), and therefore, the phase model works perfectly.
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Fig. 6. Transient simulation when bp(t) = cos(2π(t + 0.1sin(0.2πt))). In
Fig. 6(b), red(circled): phase model, Blue(solid): full model.

Now we apply a frequency perturbed input ~bp(t) =~bS(1.2t), and

the simulation results are shown in Fig. 7. It is seen that the periodic

orbit has a large deviation from that of ~xS(t), and the phase model is

doing its best to approximate the right trajectory using points on~xS(t).
Most importantly, although the resulting time-domain waveforms do

not match exactly, the timing information is captured – the frequency

of the output waveform is 1.2 which is the same as that of ~bp(t).
Also note that the frequency perturbation can be interpreted as a

phase perturbation p(t) = 0.2t which can grow unboundedly as time

evolves. This shows that the perturbation can be arbitrary large as

long as the underlying assumption (that the trajectory does not change

much) is satisfied.
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Fig. 7. Transient simulation of the phase model when bp(t) = cos(2π(1.2t)).
In Fig. 7(b), red(circled): phase model, Blue(solid): full model.

Then an amplitude perturbed signal ~bp(t) = 1.2~bS(t) is applied,

and the simulation results are shown in Fig. 8. Similar to previous

results, the periodic orbit deviates from that of ~xS(t), and the phase

model produces a reasonably well-approximated waveforms. Note

that in many applications such as digital circuits and neuron models,

voltage/potential waveforms reach a saturated value in the nominal

periodic solution ~xS(t). This fact makes the periodic orbit insensitive

to the amplitude perturbation, and therefore the assumption that the

trajectory stays close to ~xS(t) is satisfied. Therefore, the phase model

generates good results in these cases, as we will show in next two

examples.
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Fig. 8. Transient simulation of the phase model when bp(t) = 1.2cos(2πt).
In Fig. 8(b), red(circled): phase model, Blue(solid): full model.

We have not provided results of LTI and LPTV reduced models

since they simply produce meaningless results. The assumption that

the additive perturbation input must be small is generally not satisfied.

Specifically, in the case of the phase and frequency perturbations,

suppose the magnitude of bS(T ) is A, then the corresponding additive

perturbation ∆b(t) = bS(t+ p(t))−bS(t) can have a magnitude of 2A,

and this usually breaks the small signal assumption.

The speedups are not easy to measure considering various factors

including memory allocation and MATLAB optimization. For the

examples we show in this paper, the measured transient runtime

speedup is generally about 10× to 20×. However, since the size

of the phase model is 1, the speedups are expected to be much larger

for larger systems, similar to PPV models [12].

B. A Firing Neuron Model

The firing neuron model we consider is known as Morris-Lecar
model [17]. The differential equations for a single neuron are

d

dt
V =

1

CM
(−gL(V −VL)−gCaM∞(V −VCa)−gKN(V −VK)+ I)

d

dt
N =(N∞ −N)

1

τN
,

(47)

where M∞ = 0.5(1 + tanh((V −V1)/V2),N∞ = 0.5(1 + tanh((V −
V3)/V4),τN = 1/(Φcosh((V −V3)/(2V4))). The input is the injec-

tion current I, and other parameters are chosen as CM = 20,gK =
8,gL = 2,VCa = 120,VK = −80,VL = −60,V1 = −1.2,V2 = 18,V4 =
17.4,gCa = 4,Φ = 1/15,V3 = 12, which are adapted from [17].

Using this set of parameters, the neuron is not self-oscillatory, and

therefore the PPV model for oscillators is not applicable. However,



the neuron fires when adequate currents are injected. We set the input

current to be a pulse signal shown in Fig. 9(a). The phase macromodel

of this neuron is computed, and the time-varying function
cT (t)VT (t)B

cT (t)c(t)
is plotted in Fig. 10(a).

0 50 100 150
30

35

40

45

50

55

60

(a) Input pulse.

0 50 100 150
−20

−15

−10

−5

0

5

time

(b)
cT (t)V T (t)B

cT (t)c(t)
in (15).

Fig. 9. Input signal and the phase model.

We then apply a pulse input whose magnitude is twice of the

original one, and the simulation results are plotted in Fig. 10. It is

seen that although the input amplitude is doubled, the periodic orbit

only deviates a little bit, and the phase model results almost match

those of the full model.
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Fig. 10. Transient simulation under amplitude perturbation.

C. An Inverter Chain

We now apply the phase macromodeling technique to a nine-stage

inverter chain circuit. The nominal periodic input is set to a square

wave shown in Fig. 11(a), and the time-varying function
cT (t)VT (t)B

cT (t)c(t)
is plotted in Fig. 11(b). This circuit is a typical “digital circuit” in

the sense that each node voltage settles to a saturated value in a short

time, and this makes the trajectory in the state space less sensitive to

input perturbations. However, the timing properties are sensitive to

input perturbations.
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Fig. 11. Input signal and the phase model.

We have tried the several kinds of perturbations and similar results

to those of previous examples are observed. Here, we show a special

perturbation that is of interest in timing analysis – the perturbation

is on the slope of the input ramp. In timing analysis and library

generation, people normally compute a look-up table storing a map

from input slope to output delay and slope. We show that our phase

model reproduces accurate timing properties.
In Fig. 12, we plot the transient simulation results of the phase

model and the full model when the slope of the rising edge is 0.6

(instead of 0.5 for the nominal input). It is observed that delays of

waveforms change due to perturbation, and the phase model matches

that of the full model.

VI. CONCLUSION

We have developed a generalized phase macromodeling technique

both via nonlinear perturbation analysis and in projection framework.
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Fig. 12. Transient simulation under slope perturbation.

We have also devised a numerical method for computing the model,

and it can be readily implemented in current RF simulators. We

have shown several applications of this general phase model, and

demonstrated that phase/timing responses are well-characterized by

the macromodel.
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